PRINT NAME: SCOTT WEINSTEIN

LGIC 010 & PHIL 005 Practice Final Examination Spring Term, 2016

1. Let S be the conjunction of the following schemata.

- $(\forall x)(\forall y)(Lxy \supset \neg Lyx)$
- $(\forall x)(\forall y)(x \neq y \supset (Lxy \lor Lyx)) \lor (\forall x)(\forall y)(\forall z)(Lxy \supset (Lyz \supset Lxz))$
- (a) (15 points) Construct a maximal length succinct list l of structures such that each structure listed on l is a member of mod(S, 3).

A	$O\inOrbs(A)$	S[A] = O
A_1	$\{1, 2, 3\}$	x = x
A_2	{1}	$(\forall y) \neg Lyx$
	$\{2\}$	$(\exists y)Lyx \land (\exists y)Lxy$
	{3}	$(\forall y) \neg Lxy$
A_3	$\{1, 2, 3\}$	x = x
A_4	{1}	$(\exists y)Lxy$
	$\{2\}$	$(\exists y)Lyx$
	{3}	$\neg (\exists y) Lxy \land \neg (\exists y) Lyx$
A_5	{1}	$(\exists y)Lxy$
	$\{2,3\}$	$\neg(\exists y)Lxy$
A_6	{1}	$(\exists y)Lyx$
	$\{2,3\}$	$\neg(\exists y)Lyx$

(b) (15 points) For each structure A on your list l and each $O \in \mathsf{Orbs}(A)$ write down a schema S(x) such that S[A] = O.

- 2. Let A be a structure interpreting a single triadic predicate letter P and a single dyadic predicate letter L with $U^A = \mathbb{Z}$, $P^A = \{\langle i, j, k \rangle \mid i + j = k\}$, the sum relation on \mathbb{Z} , and $L^A = \{\langle i, j \rangle \mid j = |i|\}$, the absolute-value relation on \mathbb{Z} .
 - (a) (15 points) Let $X_1 = \{i \in \mathbb{Z} \mid i < 0\} = \{-1, -2, -3, \ldots\}$. Is X_1 definable in A? If it is, write down a schema $S_1(x)$ such that $S_1[A] = X_1$; if not, specify an $h_1 \in \operatorname{Aut}(A)$ such that $h_1[X_1] \neq X_1$.

 $S_1(x) : (\forall y) \neg Lyx$

(b) (15 points) Let $X_2 = \{i \in \mathbb{Z} \mid i > 0 \text{ and there is a } j \in \mathbb{Z} \text{ such that } i = 5j + 3\} = \{3, 8, 13, \ldots\}$. Is X_2 definable in A? If it is, write down a schema $S_2(x)$ such that $S_2[A] = X_2$; if not, specify an $h_2 \in \operatorname{Aut}(A)$ such that $h_2[X_2] \neq X_2$.

TO BE CONTINUED