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23 Lecture 04.20

We considered the problem of establishing that a schema S is not implied by a
set of schemata X, or equivalently, that the set of schemata X ∪ {¬S} is not
satisfiable. As we noted last time, there is no uniform approach to this problem,
that is, the collection of satisfiable schemata is not semi-decidable.

Let X be the conjunction of the following schemata.

• (∀x)(∀y)(∀z)((Lxy ∧ Lyz) ⊃ Lxz)

• (∀x)(∀y)(x 6= y ⊃ (Lxy ∨ Lyx))

• (∀x)¬Lxx

• (∀x)(∃y)(Lxy ∧ (∀z)¬(Lxz ∧ Lzy))

• (∀x)(∃y)(Lyx ∧ (∀z)¬(Lyz ∧ Lzx))

• (∀x)(∃y)(Lyx ∧ Fy)

• (∀x)(∃y)(Lxy ∧ Fy)

• (∀x)(∀y)((Fx ∧ Fy ∧ Lxy) ⊃ (∃z)(Fz ∧ Lxz ∧ Lzy))

We showed that X 6|= (∀x)Lxx, that is, we showed X is satisfiable by con-
structing a structure A with A |= X. The structure A is defined as follows.
Recall that Z is the set of integers and Q+ is the set of positive rational num-
bers.

• UA = Q+ × Z = {〈r, i〉 | r ∈ Q+ and i ∈ Z} (the cartesian product of Q+

and Z).

• LA = {〈〈r, i〉, 〈s, j〉〉 | r < s} ∪ {〈〈r, i〉, 〈s, j〉〉 | r = s and i < j}.

We gave another example of demonstrating satisfiability, this time for an infi-
nite collection of schemata. Let S be the conjunction of the following schemata.

• (∀x)(∀y)(∀z)((Lxy ∧ Lyz) ⊃ Lxz)

• (∀x)(∀y)(x 6= y ⊃ (Lxy ∨ Lyx))

• (∀x)¬Lxx

• (∀x)((∃y)Lxy ⊃ (∃y)(Lxy ∧ (∀z)¬(Lxz ∧ Lzy)))

• (∀x)((∃y)Lyx ⊃ (∃y)(Lyx ∧ (∀z)¬(Lyz ∧ Lzx)))

• ¬(∀x)(∃y)Lyx

• ¬(∀x)(∃y)Lxy



PHIL 005 Spring, 2016 Scott Weinstein 51

For each n ≥ 2, let Rn be the schema,

(∃x1) . . . (∃xn)
∧

1≤i<j≤n

Lxixj .

Finally, let X = {S} ∪ {Rn | n ≥ 2}. We gave two proofs that X is satisfiable.
The first appealed to the

Theorem 1 (Compactness Theorem) Let Σ be a set of schemata of polyadic
quantification theory. If every finite ∆ ⊆ Σ is satisfiable, then Σ is satisfiable.

First Proof : Observe that for every n ≥ 2, {S}∪{Rm | m ≤ n} is satisfied by
a linear order of length n. Hence, by the Compactness Theorem, X is satisfiable.

Second Proof : Define the structure B as follows.

• UB = Z.

• LB = {〈i, j〉 | (0 ≤ i and j < 0) or (i < j and (0 ≤ i, j or i, j < 0))}.

Observe that B |= X.


