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18 Lecture 04.04

We continued our analysis of definability in the structure B that we began on
03.30. The argument we presented at the end of class on 03.30 to show that
B is rigid suggests that for every k ∈ UB , {k} is definable over B. Let’s show
this, again by induction. First, the schema S0(x) : (∀y)¬Lyx defines {0} over
B. Next, as induction hypothesis, suppose that Sn(x) defines {n} over B. Let
z be a variable which does not occur anywhere in Sn(x) and let Sn(z) be the
result of replacing x with z at all its occurrences in Sn(x). then the schema
(∃z)(Sn(z) ∧ Lzx) defines {n + 1} over B. this completes the induction and
establishes that for every k ∈ UB , {k} is definable over B. It follows at once
that every finite subset of UB and every co-finite subset of UB is definable over
B.

What other subsets of UB are definable over B? Note that since B is rigid,
there is no possibility of exhibiting an automorphism h of B with h[X] 6= X,
that is, the “automorphism method” is powerless to establish the undefinability
of any subset of UB in B. Could it be that every subset of UB is definable over
B? We show at once that for every infinite structure C there is a subset X ⊆ UC

which is not definable over C. This result is a corollary to the celebrated Cantor
Diagonal Theorem.

Theorem 1 (Cantor) Let U be a set and let {Va | a ∈ U} be a collection of
subsets of U indexed by U , that is, for each a ∈ U , Va is a subset of U . Then
there is subset W of U such that for all a ∈ U , W 6= Va.

Proof : Let W = {a | a 6∈ Va}. Thus, for every a ∈ U , a ∈ W if and only if
a 6∈ Va. It follows that for all a ∈ U , W 6= Va.

In order to apply Theorem 1 to questions about definable sets we require
the following result.

Theorem 2 For every structure C, there is a sequence V1, V2, . . . of subsets of
UC such that for every set X definable over C, there is an i such that X = Vi.

Proof : Every schema is a finite sequence of symbols drawn from a finite alpha-
bet. Thus, we may arrange all schemata S(x) in a list S1(x), S2(x), . . ., first
ordered by length, and then within length, alphabetically. We obtain a list
V1, V2, . . . of all the sets definable over C by setting Vi = Si[C] for all i.

The following result is an immediate consequence of Theorems 1 and 2.

Corollary 1 For every infinite structure C there is a subset X ⊆ UC which is
not definable over C.

Of course, this gives us no idea which particular sets are not definable over
a given infinite structure. In the case of the graph B introduced above, we
will show that if a set is neither finite nor co-finite, it is not definable over B.
In order to establish this, we will deploy one of the fundamental properties of
polyadic quantification theory: compactness. First, some definitions requisite
to state the Compactness Theorem for polyadic quantification theory.
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• A schema S is satisfiable if and only if for some structure A, A |= S.

• A set of schemata Γ is satisfiable if and only if there is structure A such
that for every schema S ∈ Γ, A |= S.

• A set of schemata Γ is finitely satisfiable if and only if for every finite set
∆ ⊆ Γ, ∆ is satisfiable.

Theorem 3 (Compactness Theorem) For every set Γ of schemata of polyadic
quantification theory, if Γ is finitely satisfiable, then Γ is satisfiable.

Though the Compactness Theorem makes no mention of the notion of a
derivation, one of its well-known proofs proceeds via the elaboration of a sound
and complete formal system for logical deduction. This development will occupy
our attention for much of the remainder of the Term. But for the moment, let’s
see how we can apply the Compactness Theorem to complete the analysis of
the definable subsets of the structure B specified above.

Theorem 4 If V ⊆ UB is definable over B, then V is finite or V is co-finite.


