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16 Lecture 03.23

On 03.23, we continued to look at the use of automorphisms, now as a tool for
analyzing which sets are definable in a structure.

Up to this point we have neglected schemata containing free variables. Today
we will correct this oversight. Consider the schema

S(x) : (∃y)(∀z)(Lxz ≡ z = y).

Let A be a graph. We define S[A] = {a ∈ UA | A |= S[x|a]}, that is, S[A] is
the set of nodes of A that satisfy the schema S(x) in A when assigned to the
variable x. We call S[A] the set defined by S(x) in A. In the case to hand, if A
is a simple graph, then S[A] is the set of nodes of A of degree 1.

Given a graph A, we will consider which subsets of UA are definable subsets
of A, that is for which V ⊆ UA is there a schema S[x] such that S[A] = V . In
the case of finite graphs, we will be able to give an entirely satisfactory analysis
in terms of the symmetries of A, that is, the collection of automorphisms of A.
Recall that h is an automorphism of A if and only if h is a bijection of UA onto
UA and for all a, b ∈ UA,

〈a, b〉 ∈ LA if and only if 〈h(a), h(b)〉 ∈ LA.

In other words, h is an automorphism of A if and only if h is an isomorphism
of A onto itself. We define Aut(A) = {h | h is an automorphism of A}. The
following theorem is fundamental.

Theorem 1 Let A be a graph and h ∈ Aut(A). For every a ∈ UA and every
schema S(x),

A |= S[x|a] if and only if A |= S[x|h(a)].

If f is a function with domain U and V ⊆ U , we define f [V ] = {f(a) | a ∈ V }
(the f image of V ). With this notation in hand, we can now state a corollary
to Theorem 1 which bears on definability.

Corollary 1 Let A be a graph and h ∈ Aut(A). If V is a definable subset of A,
then h[V ] = V .

Thus, in order to show that V is not a definable subset of A it suffices to exhibit
an h ∈ Aut(A) and a ∈ V such that h(a) 6∈ V . Moreover, in the case of finite
structures, the converse of Corollary 1 is true.

Theorem 2 Let A be a finite graph and V ⊆ UA. V is a definable subset of A,
if for every h ∈ Aut(A), h[V ] = V .

In order to prove Theorem 2, and to apply it to questions of counting definable
sets, it will be useful to introduce the notion of the orbit of a node a ∈ UA

under the action of Aut(A):

orb(a,Aut(A)) = {h(a) | h ∈ Aut(A)}.

We define Orbs(A,Aut(A)) = {orb(a,Aut(A)) | a ∈ UA}. As a corollary to
Corollary 1 and Theorem 2 we have:
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Corollary 2 Let A be a finite graph and V ⊆ UA. V is a definable subset of A
if and only if either V = ∅ or there is a sequence of sets O1, . . . , Ok, where each
Oi ∈ Orbs(A), and V = O1 ∪ . . . ∪Ok.

It follows at once from Corollary 2, that if A is a finite graph, then the number

of definable subsets of A is 2|Orbs(A,Aut(A))|.
We proceeded to give a complete analysis of the definable subsets of simple

graphs with four nodes. First, we classified all the members of mod(SG, 4)
up to isomorphism. We discovered that any maximal collection of pairwise
non-isomorphic graphs in mod(SG, 4) has exactly 11 members. We listed such a
collection A1, . . . , A11 and calculated |orb(Ai,S4)| and |Aut(Ai)| for each 1 ≤ i ≤
11. See the tables below. The complement Ac of a simple graph A is defined as
follows: UAc

= UA; for a 6= b, 〈a, b〉 ∈ LAc

if and only if 〈a, b〉 6∈ LA. In the table
of graphs below, each Ai with i odd, is drawn in red, and Ai+1 = Ac

i is drawn
in blue. The exceptional graph A11 is drawn in purple since it is isomorphic to
its own complement.
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Note that Aut(A) = Aut(Ac), for every simple graph A. This made it quick
work to complete the following table.
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Ai |orb(Ai,S4)| |Aut(Ai)|
A1 1 24
A2 1 24
A3 6 4
A4 6 4
A5 12 2
A6 12 2
A7 3 8
A8 3 8
A9 4 6
A10 4 6
A11 12 2

Note the “verification” of the result predicted by the Orbit-Stabilizer Theorem:
|orb(Ai,S4)| · |Aut(Ai)| = |S4|(= 24).

We introduced the notion of rigidity: a graph A is rigid if and only if
Aut(A) = {e}, that is , A has no non-trivial automorphisms. We noted that
no member of mod(SG, 4), is rigid, and mused about the question: “what is the
least n such that mod(SG, n) contains a rigid graph?”

16.1 Addendum

We began, but did not complete, a systematic account of which sets are definable
in the structures A1, . . . , A11. The following table, together with Corollary 2,
suffices. We write Orbs(A,Aut(A)) to denote the collection of orbits of Aut(A)
acting on UA. We list only the odd numbered structures, since, as already
observed, Aut(A) = Aut(Ac).

Ai Orbs(Ai,Aut(Ai))
A1 {[4]}
A3 {{1, 2}, {3, 4}}
A5 {{2}, {4}, {1, 3}}
A7 {[4]}
A9 {{1, 2, 3}, {4}}
A11 {{1, 4}, {2, 3}}


