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15 Lecture 03.21

On 03.21, we began to look more closely at the use of automorphisms of a
structure as a tool for counting the number of structures that satisfy a given
schema. The ideas we developed will also be very important in connection with
our upcoming study of definability.

We focused our attention on a concrete example. Let S be the conjunction
of SG and 1reg, that is, a graph A satisfies S if and only if A is a 1-regular,
simple graph. As we discussed earlier, every such finite graph A has an even
number, say 2n, of nodes; moreover, if A,B |= S and |UA| = |UB |, then A
is isomorphic to B. (Recall that A is isomorphic to B if and only if there is
an isomorphism h from A onto B; and that h is an isomorphism from A onto
B if and only if h is a bijection from UA onto UB such that for all a, b ∈ UA,
〈a, b〉 ∈ LA if and only if 〈h(a), h(b)〉 ∈ LB .) We devoted the class to calculating
the value of mod(S, 2n) in two ways, both for the intrinsic interest of each, and
for the opportunity to “check our work.”

Our first calculation involved an excursion through the concept of a group
action, though in class, we stuck to the concrete example quite closely, and may
not even have uttered this phrase. But in this memoir, memoirs being what
they are, we will take the liberty to invent an alternative past. So let’s take a
deep breath, or several shallow cleansing breaths, and ....

For every positive integer k we write [k] for {1, . . . , k} and Sk for the set
of bijections from [k] onto [k] (also called the permutation group on or the
symmetric group on [k]). These latter terms emphasize the following algebraic
aspect: we may think of Sk as an algebra with a binary operation ◦, a unary
operation −1, and a distinguished element e, where, for permutations f, g ∈ Sk,
f ◦ g is the permutation resulting from the composition of f and g, that is,
f ◦ g = h if and only if for every i ∈ [k], h(i) = f(g(i)); f−1 is the permutation
which is the inverse of f ; and e stands for the identity function on [k]. With
these understandings, you can verify that Sk is a group:

• ◦ is an associative operation, that is, (f ◦g)◦h = f ◦(g◦h), for all f, g ∈ Sk;

• e is an identity with respect to ◦, that is, e ◦ f = f ◦ e = f , for all f ∈ Sk;
and

• f ◦ f−1 = f−1 ◦ f = e, for all f ∈ Sk.

We write Gk for the set of simple graphs A with UA = [k]. For each f ∈ Sk
and A ∈ Gk, we define f [A] to be the graph with universe [k] such that for all
i, j ∈ [n], 〈f(i), f(j)〉 ∈ Lf([A]) if and only if 〈i, j〉 ∈ LA. Note that f is an
isomorphism of A onto f [A]. This is an example of a group action – the group
Sk acts on the set Gk via the assignment of f [A] to A. Verify that for all A ∈ Gk

and f, g ∈ Sk,

• (f ◦ g)[A] = f [g[A]], and

• e[A] = A.
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Recall that Aut(A) is the set of automorphisms of A. In the current context,
for A ∈ Gk, Aut(A) is often called the stabilizer of A, since f ∈ Aut(A) if and
only if f [A] = A. The orbit of A under the action of Sk (written orb(A,Sk))
is {h[A] | h ∈ Sk}. The following result is a special case of the Orbit-Stabilizer
Theorem.

Theorem 1 For all A ∈ Gn,

|Sn| = |orb(A,Sn)| · |Aut(A)|.

I present the proof, because several questions that arose yesterday suggest to
me that you may find it illuminating.
Proof : Let A ∈ Gk. We define an equivalence relation ∼ on Sk: for all f, g ∈
Sk, f ∼ g if and only if (f−1 ◦ g) ∈ Aut(A). (You should verify that ∼ is
an equivalence relation, for example, it is reflexive, that is, f ∼ f , because
f−1 ◦ f = e and e ∈ Aut(A); continue and show ∼ is symmetric and transitive.)
We establish the following two claims about ∼ from which the Theorem follows
immediately.

1. each equivalence class of ∼ has size |Aut(A)|, and

2. the number of equivalence classes of ∼ is |orb(A,Sk)|.

Ad claim 1: Fix f ∈ Sk. For each h ∈ Aut(A) there is a unique g ∈ Sk such
that f−1 ◦ g = h. (Verify!) It follows at once that there is a bijection between
{g | f ∼ g} and Aut(A).
Ad claim 2: We show that for every f, g ∈ Sk f [A] = g[A] if and only if
f ∼ g. We prove each direction of the bi-conditional. So suppose f ∼ g. Then
f−1 ◦ g ∈ Aut(A). Hence, (f−1 ◦ g)[A] = A. Hence, f [(f−1 ◦ g)[A]] = f [A].
Hence, (f ◦ (f−1 ◦ g))[A] = f [A]. Hence, ((f ◦ f−1) ◦ g)[A] = f [A]. Hence,
(e ◦ g)[A] = f [A]. Hence, g[A] = f [A]. In the other direction, suppose f [A] =
g[A]. Then, f−1[f [A]] = f−1[g[A]]. Hence, (f−1 ◦ f)[A] = (f−1 ◦ g)[A]. Hence,
(f−1 ◦ g)[A] = e[A] = A. Hence, f−1 ◦ g ∈ Aut(A), that is, f ∼ g. Thus, there
is a bijection between the equivalence classes of ∼ and orb(A,Sk).

We return to calculating the value of |mod(S, 2n)|. As noted above, if
A,B ∈ mod(S, 2n), then A ∼= B. Let A ∈ mod(S, 2n). It follows at once
that mod(S, 2n) = orb(A,S2n). Let’s calculate |Aut(A)|, since Theorem 1 will
then allow us to calculate |mod(S, 2n)|. Observe that A consists of n indepen-
dent edges. Imagine them standing upright and lined up horizontally in some
order. Now any permutation of the edges generates an automorphism of A.
Moreover, in the process of permuting the edges, we may choose to “flip” any
subset of them having those land on the edge to which they are permuted “head
to foot” and “foot to head”. Since there are n! permutations of the n edges, and
2n choices of which set of edges to flip, there are a total of n! ·2n automorphisms
of A. It therefore follows from Theorem 1 that |mod(S, 2n)| = (2n)!/n! · 2n.

We also discussed a second direct method of calculating |mod(S, 2n)| which,
thankfully, yielded the same result. We thought of constructing a member
A of mod(S, 2n) as follows. We successively choose the n independent edges
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that constitute A. So for the first edge, we have
(
2n
2

)
choices of a pair of nodes

between which to place an edge, and for the second edge, we have
(
2n−2

2

)
choices,

.... So the number of ways we can choose a sequence of n independent edges is(
2n

2

)
·
(

2n− 2

2

)
· · ·

(
4

2

)
·
(

2

2

)
=

(2n)!

2n
.

Now any set of n edges chosen via this process will appear as the result of n!
such sequences of choices; thus, the total number of members of mod(S, 2n) we
can construct is

(2n)!

n! · 2n
.


