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13 Lecture 03.02

On 03.02, we practiced counting the number of labelled simple graphs that sat-
isfy various conditions that can be expressed by quantificational schemata. You
asked wonderful questions that drove our investigation forward and highlighted
many points that would otherwise have remained in the shadows. I may not be
able to do justice to the full breadth of our conversation, but I’ll summarize at
least some of the main topics.

Since the set {1, . . . , n} occurs so often in our conversation, we decided to
use the common abbreviation [n] to denote it. We recalled that for a schema
S we’d defined mod(S, n) = {A | A |= S and UA = [n]}. Recall that a simple
graph is 2-regualr if and only if it satisfies the schema:

• 2reg: (∀x)(∃=2y)Lxy

Let S be the conjunction of 2reg and SG. We calculated |mod(S, 6)|. We began
by reminding ourselves that if A is finite and A |= S then A is a disjoint union
of cycles. This led immediately to the observation that if A ∈ mod(S, 6) then
A must consist of two disjoint triangles, or a single hexagon. So in order to
complete our calculation, we just need to determine how many distinct ways we
can label a structure of one or the other of these shapes. Suppose the unlabeled
structure T consists of two triangles, call them the top triangle and the bottom
triangle. We can label the top triangle with any set X ⊆ [6] of size three, leaving
[6]−X to label the bottom triangle. At first blush, this suggests that there are(
6
3

)
distinct labelings of T. But notice that we get the same labeled structure,

if we use [6]−X to label the top triangle, and X to label the bottom triangle,
so there are

(
6
3

)
/2 = 10 distinct labelings of T. Next, suppose the unlabeled

structure H consists of a single hexagon. We used our prior calculation that there
are 6! strict linear orders of [n] to calculate the number of distinct labelings of
H. For each such linear order, we can “wrap it around” the hexagon starting
from a fixed position to arrive at a labeling. It is clear that the reverse of any
order gives the same labeling as the order itself, as do each of the orders that
arise by starting at the i-th position of the given order, for i > 1, and continuing
on beyond the sixth position with the first i − 1 elements of the given order.
Thus, the total number of labelings of H is 6!/(6 · 2) = 60. It follows that
|mod(S, 6)| = 10 + 60 = 70.

We next turned our attention to Problem 1 in Problem Set 5, since that offers
considerable opportunity to practice counting. Here are the relevant definitions
and part of the problem itself.

• Irr to abbreviate the schema (∀x)¬Lxx,

• Sym to abbreviate the schema (∀x)(∀y)(Lxy ⊃ Lyx), and

• SG to abbreviate the conjunction of Irr and Sym. Structures that satisfy
SG are called simple graphs.
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• The order of a graph A (written ord(A)) is |UA|. The size of a simple
graph A (written size(A)) is |LA|/2. This corresponds to the number of
“undirected edges” of A.

• If S is a schema, we write mod(S, n) for the set of structures A such that
A |= S and UA = {1, . . . , n}.

• Let K be a set of simple graphs. We call A a size maximal member of K
if and only if A ∈ K and for every B ∈ K, size(A) ≥ size(B).

• For n ≥ 2, we let ∆n(x1, . . . , xn) abbreviate the schema:

x1 6= x2 ∧ x1 6= x3 . . . ∧ xn−1 6= xn.

• For n ≥ 3, we let Cn abbreviate the schema:

(∃x1) . . . (∃xn)(∆n(x1, . . . , xn) ∧ Lx1x2 ∧ Lx2x3 ∧ . . . Ln−1xn ∧ Lxnx1).

Let S1 be SG ∧ ¬C3 ∧ ¬C4 ∧ ¬C5 ∧ ¬C6.

• How many structures are size maximal members of mod(S1, 6)?

First we noted that the schemata ¬C3,¬C4,¬C5,¬C6 are satisfied by a structure
if and only if it is triangle-free, square-free, pentagon-free, and hexagon-free,
respectively, so their conjunction, ¬C3 ∧ ¬C4 ∧ ¬C5 ∧ ¬C6, is satisfied by a
simple graph of order ≤ 6 if and only if it is acyclic, that is, contains no cycles.
With this in mind, we listed all the unlabeled acyclic simple graphs of orders 2,
3, and 4, identified those which are size maximal, and counted their labelings
with [2], [3], and [4], respectively. For order 2, this was easy: there is the empty
graph and the single edge. Obviously, the single edge is size maximal, and
equally obviously, it has exactly one labeling. Almost as easy is the case of
order three. Here the empty graph, a single edge together with an isolated
node, and a simple path consisting of two nodes of degree one and one of degree
two, exhaust the unlabeled acyclic graphs of order three. The path is clearly
the unique edge maximal one among them, since the edge counts are 0, 1, and
2. We counted the labelings of the path by noting that each such labeling is
determined by a choice of label for the node of degree 2, and since there are
three such choices (namely 1, 2, and 3) there are three labelings. In handling
the order 4 case, we noted that a size maximal acyclic simple graph of order 4
has a size maximal acyclic simple graph of order 3 as a subgraph. So, in order
to construct such graphs, we just need to add a node and some edges to the the
path of order three, and determine which such additions are acyclic. After some
thought, we arrived at the conclusion that there are two size maximal unlabeled
acyclic simple graphs of order 4, each having exactly 3 edges, namely the path
with four nodes and three edges (let’s call this P) and the three-pointed star,
that is, the graph with one node of degree 3, and three nodes of degree 1 (and
let’s call this one A). Reasoning as we did in the case of the path with three
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nodes and two edges, we arrived at the conclusion that there are four labelings
of the star, one for each choice of label for the node of degree 3. When it came
to counting labelings of the path, an interesting discussion of symmetries arose.
We introduced the notions of isomorphism and automorphism to crystallize the
relevant notion of symmetry.

• Let A and B be graphs and let f be a function with domain UA and range
UB . f is an isomorphism from A onto B if and only if f is a bijection and
for all i, j ∈ UA, 〈i, j〉 ∈ LA if and only if 〈f(i), f(j)〉 ∈ LB .

• Let A be a graph and let f be a function with domain UA and range UA.
f is an automorphism of A if and only if f is an isomorphism of A onto
A.

• Let A be a graph with UA = [n] and let f be a permutation of [n], that is,
a bijection of [n] onto [n]. We define f [A] to be the graph with universe [n]
such that for all i, j ∈ [n], 〈f(i), f(j)〉 ∈ Lf([A]) if and only if 〈i, j〉 ∈ LA.

It follows from the definition of f [A] that f is an isomorphism of A onto f [A],
in particular, f is an automorphism of A if and only if f [A] = A.

Now, back to counting the labelings of P. One direct way of doing this is
to note that there are 4! labeled directed paths with three edges, and that each
labeling of a simple path corresponds to two distinct labeled directed paths,
depending on which end of the simple path we start from. Therefore, there are
4!/2 = 12 distinct labelings of P. Another way to count uses the symmetries of
P. Fix one labeling A of P, say the one with an edge between 1 and 2, between
2 and 3, and between 3 and 4. For each of the 4! permutations f from [4] onto
[4] (call the set of these permutations S4) note that exactly two of them are
automorphisms of A: the identity permutation id which maps each i to itself,
and the permutation g defined by

i g(i)
1 4
2 3
3 2
4 1

which rotates the path about its center. As f ranges over S4, f [A] ranges over
all the labelings of P. Since for each f , both the composition of f with id and
the composition of f with g yield the same labeling, the 4! members of S4 yield
only 4!/2 distinct labelings. Whew! Our second counting method yields the
same result as our first. Just to be sure, we checked that for a fixed labeling
B of A, six of the permutations in S4 are automorphisms of B (the ones that
leave the node of degree three fixed and permute the remaining three nodes
arbitrarily) and thus there are 4!/6 distinct labeling of A, again the same result
as we achieved by our direct method of counting. Thus, we conclude in the end
that there are 16 size maximal members of mod(S1, 4).


