PRINT NAME: \qquad

LGIC 010 \& PHIL 005 Practice Final Examination Spring Term, 2019

1. (10 points) Write down a schema S involving only the triadic predicate letter " P," the monadic predicate letters " F " and " G," and the identity predicate such that

- $\operatorname{Spec}(S)=\left\{2^{n} \mid n \in \mathbb{Z}^{+}\right\}$, and
- S implies

$$
(\forall x)(\forall y)(F y \supset(\exists z)(\forall w)(P x y w \equiv z=w)) \wedge(\forall x)(\forall y)(\forall z)(P x y z \supset G z)
$$

2. (10 points) Let T be the conjunction of the following schemata.

- $(\forall x)(\exists y)(\forall z)(L x z \equiv y=z))$
- $(\forall x)(\forall y)(\forall z)((L x z \wedge L y z) \supset x=y)$
- $(\exists x)(\forall y)(L y y \equiv y=x)$
- $(\forall x)(\forall y)(L x y \supset L y x)$

Specify the spectrum of T.
$\operatorname{Spec}(T)=$
3. Let S be the conjunction of the following schemata.

- $(\forall x) \neg L x x \wedge(\forall x)(\forall y)(L x y \supset L y x)$
- $(\exists x)(\exists y)(\exists z)(L x y \wedge L y z \wedge L x z)$
(a) (15 points) Construct a maximal length succinct list l of structures such that each structure listed on l is a member of $\bmod (S, 4)$.
(Additional space for your solution to 3.(a), as necessary)
(b) (15 points) For each structure A on your list l and each $O \in \operatorname{Orbs}(A)$ write down a schema $S(x)$ such that $S[A]=O$.
(Additional space for your solution to 3.(b), as necessary)

4. Let A be the structure interpreting a single triadic predicate letter P with $U^{A}=\mathbb{Z}$ and $P^{A}=\{\langle i, j, k\rangle \mid i \cdot j=k\}$, the multiplication relation on \mathbb{Z}.
(a) (10 points) Let $X_{1}=\{-1\}$. Is X_{1} definable in A ? If it is, write down a schema $S_{1}(x)$ such that $S_{1}[A]=X_{1}$; if not, specify an $h_{1} \in \operatorname{Aut}(A)$ such that $h_{1}\left[X_{1}\right] \neq X_{1}$.
(b) (10 points) Let $X_{2}=\{1,-1,8,-8,27,-27, \ldots\}$ (the set of perfect "cubes"). Is X_{2} definable in A ? If it is, write down a schema $S_{2}(x)$ such that $S_{2}[A]=X_{2}$; if not, specify an $h_{2} \in \operatorname{Aut}(A)$ such that $h_{2}\left[X_{2}\right] \neq X_{2}$.
5. For each of the following pairs consisting of a set of schemata X and a schema S determine whether X implies S. If so, provide a cogent argument to establish the implication. If not, specify a structure which makes S false and all the schemata in X true.
```
(a) (15 points)
\(X:\{(\forall x) \neg L x x,(\forall x)(\forall y)(L x y \supset(L y z \supset L x z))\),
\((\forall x)(\forall y)(x \neq y \supset(L x y \vee L y x),(\forall x)(\exists y)(L x y \wedge(\forall z) \neg(L z y \wedge L x z)))\),
\((\forall x)(\exists y)(L y x \wedge(\forall z) \neg(L y z \wedge L z x)),(\forall x)(\exists y)(F y \wedge L y x),(\forall x)(\exists y)(F y \wedge L x y)\),
\((\forall x)(\forall y)((F x \wedge F y \wedge L x y) \supset(\exists z)(F z \wedge L x z \wedge L z y))\}\)
\(S:(\forall x)(F x \wedge \neg F x)\)
\(A: U^{A}=\)
\(F^{A}=\)
\(L^{A}=\)
```

(b) (15 points)
$X:\{(\forall x)(\exists y)(\forall z)(L x z \equiv y=z)$,
$(\forall x)(\exists y)(\exists z)(y \neq z \wedge L y x \wedge L z x)\}$
$S:(\forall y) y \neq y$
$B: U^{B}=$
$L^{B}=$

Cogent Argument

My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this examination.

Name (printed)

Signature

Date

LGIC 010 \& PHIL 005
 Definitions for Final Examination
 Spring Term, 2019

- $[n]=\{1, \ldots, n\}$.
- $\bmod (S, n)=\left\{A \mid A \models S\right.$ and $\left.U^{A}=[n]\right\}$.
- $\operatorname{Spec}(S)=\{n \mid \bmod (S, n) \neq \emptyset\}$.
- $A \cong B$ if and only if A is isomorphic to B.
- A list l of structures is succinct if and only if for every pair of distinct structures A and B appearing on $l, A \neq B$.
- $\operatorname{Aut}(A)=\{h \mid h$ is an automorphism of $A\}$.
- $\operatorname{orb}(a, A)=\{h(a) \mid h \in \operatorname{Aut}(A)\}$.
- $\operatorname{Orbs}(A)=\left\{O \mid\right.$ for some $\left.a \in U^{A}, O=\operatorname{orb}(a, A)\right\}$.
- Let $S(x)$ be a schema with a single free variable x and A a structure.

$$
S[A]=\left\{a \in U^{A} \mid A \models S[x \mid a]\right\}
$$

- \mathbb{Z} is the set of integers $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.

