PRINT NAME:

LGIC 010 & PHIL 005 Practice Examination II Spring Term, 2019

- 1. (10 points) Let S be a pure monadic schema containing occurrences of only the predicate letters F and G, and suppose that S has power 2^{10} . What is the maximum possible value of |mod(S, 4)|?
- 2. (10 points) What is the length of the longest succinct list of pure monadic schemata containing occurrences of only the predicate letters F and G such that for every schema S on the list, |mod(S, 4)| = 4?
- 3. Let S_1 be $(\forall x)(\forall y)(Lxy \supset Lyx)$.
 - (a) (10 points) Specify a structure A_1 which is a member of $mod(S_1, 4)$.
 - $U^{A_1} =$

$$L^{A_1} =$$

- (b) (10 points) How many structures are members of $mod(S_1, 4)$?
- 4. Let S_2 be $(\exists x)(\forall y)Lxy$.
 - (a) (10 points) Specify a structure A_2 which is a member of $mod(S_2, 4)$.

 $U^{A_2} =$

 $L^{A_2} =$

(b) (10 points) How many structures are members of $mod(S_2, 4)$?

- 5. Let S_3 be the conjunction of the following schemata.
 - $(\forall x) \neg Lxx \land (\forall x)(\forall y)(Lxy \supset Lyx).$
 - $(\forall x)((\exists y)(\forall z)(Lxz \equiv z = y) \lor (\exists y)(\exists w)(\forall z)(Lxz \equiv (z = y \lor z = w)))$
 - $(\exists x)(\exists y)(\forall z)(Lxz \equiv z = y)$
 - (a) (10 points) Specify a structure A_3 which is a member of $mod(S_3, 5)$.

 $U^{A_{3}} =$

- $L^{A_3} =$
- (b) (10 points) How many structures are members of $mod(S_3, 5)$?
- 6. Let S_4 be the conjunction of the following schemata.
 - $(\forall x) \neg Lxx \land (\forall x) (\forall y) (Lxy \supset Lyx).$
 - $(\forall x)(\exists y)Lxy \land (\forall x)(\forall y)(Lxy \supset (Fx \oplus Fy))$
 - (a) (10 points) Specify a structure A_4 which is a member of $mod(S_4, 5)$.

 $U^{A_4} =$

 $L^{A_4} =$

$$F^{A_4} =$$

(b) (10 points) How many structures are members of $mod(S_4, 5)$?