PRINT NAME:

LGIC 010 \& PHIL 005
 Practice Examination II
 Spring Term, 2019

1. (10 points) Let S be a pure monadic schema containing occurrences of only the predicate letters F and G, and suppose that S has power 2^{10}. What is the maximum possible value of $|\bmod (S, 4)|$?
2. (10 points) What is the length of the longest succinct list of pure monadic schemata containing occurrences of only the predicate letters F and G such that for every schema S on the list, $|\bmod (S, 4)|=4$?
3. Let S_{1} be $(\forall x)(\forall y)(L x y \supset L y x)$.
(a) (10 points) Specify a structure A_{1} which is a member of $\bmod \left(S_{1}, 4\right)$.
$U^{A_{1}}=$
$L^{A_{1}}=$
(b) (10 points) How many structures are members of $\bmod \left(S_{1}, 4\right)$?
4. Let S_{2} be $(\exists x)(\forall y) L x y$.
(a) (10 points) Specify a structure A_{2} which is a member of $\bmod \left(S_{2}, 4\right)$.
$U^{A_{2}}=$
$L^{A_{2}}=$
(b) (10 points) How many structures are members of $\bmod \left(S_{2}, 4\right)$?
5. Let S_{3} be the conjunction of the following schemata.

- $(\forall x) \neg L x x \wedge(\forall x)(\forall y)(L x y \supset L y x)$.
- $(\forall x)((\exists y)(\forall z)(L x z \equiv z=y) \vee(\exists y)(\exists w)(\forall z)(L x z \equiv(z=y \vee z=w)))$
- $(\exists x)(\exists y)(\forall z)(L x z \equiv z=y)$
(a) (10 points) Specify a structure A_{3} which is a member of $\bmod \left(S_{3}, 5\right)$.
$U^{A_{3}}=$
$L^{A_{3}}=$
(b) (10 points) How many structures are members of $\bmod \left(S_{3}, 5\right)$?

6. Let S_{4} be the conjunction of the following schemata.

- $(\forall x) \neg L x x \wedge(\forall x)(\forall y)(L x y \supset L y x)$.
- $(\forall x)(\exists y) L x y \wedge(\forall x)(\forall y)(L x y \supset(F x \oplus F y))$
(a) (10 points) Specify a structure A_{4} which is a member of $\bmod \left(S_{4}, 5\right)$.
$U^{A_{4}}=$
$L^{A_{4}}=$
$F^{A_{4}}=$
(b) (10 points) How many structures are members of $\bmod \left(S_{4}, 5\right)$?

