PRINT NAME:

LGIC 010 \& PHIL 005
Practice Examination I
Spring Term, 2019

1. We call a set of numbers X harmonious if and only if NO number in X is divisible by some other number in X.
(a) (10 points) What is the maximum size of a harmonious set X contained in $\{1,2, \ldots, 18\}$?
(b) (15 points) Give an example of a maximum size harmonious set $X \subseteq\{1,2, \ldots, 18\}$ and explain why there is no larger such set.
2. (15 points) How many truth-assignments to the sentence letters p_{1}, p_{2}, p_{3} satisfy the following truth-functional schema?

$$
\left(p_{1} \equiv p_{2}\right) \vee\left(p_{1} \equiv p_{3}\right) \vee\left(p_{2} \equiv p_{3}\right)
$$

3. For the purposes of this problem, we restrict attention to truth-functional schemata all of whose sentence letters are among p_{1}, p_{2}, p_{3}, and p_{4}. We employ the following terminology.

- A list of truth-functional schemata is succinct if and only if no two schemata on the list are equivalent.
- A truth-functional schema implies a list of schemata if and only if it implies every schema on the list.
- The power of a truth-functional schema is the length of a longest succinct list of schemata it implies.
(a) (15 points) What is the length of a longest succinct list of schemata all of which have the same power?
(b) (15 points) What is the length of a longest list of schemata none of which have the same power?
(c) (15 points) Suppose that S_{1}, S_{2}, S_{3} is a succinct list of schemata such that S_{1} implies S_{2}, and S_{2} implies S_{3}. Let k be the difference between the power of S_{1} and the power of S_{3}. What is the maximum possible value of k that can be achieved by such a list?

4. (15 points) For the purposes of this problem, we restrict attention to monadic quantificational schemata (abbreviated MQ-schemata) all of whose predicate letters are among F and G, and to structures which interpret exactly these predicate letters. We employ the following terminology.

- If S and T are MQ-schemata we say that a structure A is a counterexample to the claim that S implies T if and only if $A \models S$ and $A \not \vDash T$.

Let S be the schema

$$
(\forall x)(F x \supset G x)
$$

and let T be the schema

$$
(\forall x)(G x \vee F x)
$$

How many structures with universe of discourse $\{1,2,3,4\}$ are counterexamples to the claim that S implies T ?

