
Presentations, Invariance, and Definability

Steven Lindell∗ Scott Weinstein∗∗

∗Haverford College

∗∗University of Pennsylvania

August 13, 2014

Gedanken ohne Inhalt sind leer,
Anschauungen ohne Begriffe
sind blind.

Immanuel Kant
The medium is the message.

Marshall McLuhan

Motivation

• In logic, a mathematical object, such as a simple graph, is
typically identified with an abstract relational structure: in the
case of a simple graph, this consists of a set of vertices paired
with an irreflexive and symmetric edge relation between them.

• But this identification is hardly universal throughout
mathematics and computer science.

• For example, a graph is often presented as a drawing of nodes
in the plane together with arcs joining them to indicate the
edges, or as an adjacency matrix whose axes are labelled by
the vertices in some arbitrary order and whose entries indicate
the presence or absence of an edge.

Motivation

• In logic, a mathematical object, such as a simple graph, is
typically identified with an abstract relational structure: in the
case of a simple graph, this consists of a set of vertices paired
with an irreflexive and symmetric edge relation between them.

• But this identification is hardly universal throughout
mathematics and computer science.

• For example, a graph is often presented as a drawing of nodes
in the plane together with arcs joining them to indicate the
edges, or as an adjacency matrix whose axes are labelled by
the vertices in some arbitrary order and whose entries indicate
the presence or absence of an edge.

Motivation

• In logic, a mathematical object, such as a simple graph, is
typically identified with an abstract relational structure: in the
case of a simple graph, this consists of a set of vertices paired
with an irreflexive and symmetric edge relation between them.

• But this identification is hardly universal throughout
mathematics and computer science.

• For example, a graph is often presented as a drawing of nodes
in the plane together with arcs joining them to indicate the
edges, or as an adjacency matrix whose axes are labelled by
the vertices in some arbitrary order and whose entries indicate
the presence or absence of an edge.

Motivation

• This talk will focus on the connection between an abstract
structure and such presentations of it.

• From our point of view, the significant feature of presentations
is not concreteness or perceptual accessibility, but rather the
additional information they carry about an abstract structure
and the availability of that information to the conceptual
apparatus of a logical language.

• We introduce the notion of presentation-invariant definability
to compare the information revealed by various modes of
presentation.

Motivation

• This talk will focus on the connection between an abstract
structure and such presentations of it.

• From our point of view, the significant feature of presentations
is not concreteness or perceptual accessibility, but rather the
additional information they carry about an abstract structure
and the availability of that information to the conceptual
apparatus of a logical language.

• We introduce the notion of presentation-invariant definability
to compare the information revealed by various modes of
presentation.

Motivation

• This talk will focus on the connection between an abstract
structure and such presentations of it.

• From our point of view, the significant feature of presentations
is not concreteness or perceptual accessibility, but rather the
additional information they carry about an abstract structure
and the availability of that information to the conceptual
apparatus of a logical language.

• We introduce the notion of presentation-invariant definability
to compare the information revealed by various modes of
presentation.

Structures and Presentations

• A simple graph G = 〈V, E〉 is a set of nodes V together with
an irreflexive and symmetric edge relation E ⊆ V × V .

• A (binary) presentation of G is an expansion H = 〈V, E, R〉 of
G where R ⊆ V × V .

• In this talk, almost all the presentations we discuss will be
given by orderings of the nodes.

• But orderings by no means exhaust the class of presentations
that are of interest from the point of view of computation and
cognition.

Structures and Presentations

• A simple graph G = 〈V, E〉 is a set of nodes V together with
an irreflexive and symmetric edge relation E ⊆ V × V .

• A (binary) presentation of G is an expansion H = 〈V, E, R〉 of
G where R ⊆ V × V .

• In this talk, almost all the presentations we discuss will be
given by orderings of the nodes.

• But orderings by no means exhaust the class of presentations
that are of interest from the point of view of computation and
cognition.

Structures and Presentations

• A simple graph G = 〈V, E〉 is a set of nodes V together with
an irreflexive and symmetric edge relation E ⊆ V × V .

• A (binary) presentation of G is an expansion H = 〈V, E, R〉 of
G where R ⊆ V × V .

• In this talk, almost all the presentations we discuss will be
given by orderings of the nodes.

• But orderings by no means exhaust the class of presentations
that are of interest from the point of view of computation and
cognition.

Structures and Presentations

• A simple graph G = 〈V, E〉 is a set of nodes V together with
an irreflexive and symmetric edge relation E ⊆ V × V .

• A (binary) presentation of G is an expansion H = 〈V, E, R〉 of
G where R ⊆ V × V .

• In this talk, almost all the presentations we discuss will be
given by orderings of the nodes.

• But orderings by no means exhaust the class of presentations
that are of interest from the point of view of computation and
cognition.

Structures and Presentations

• Let G be a class of graphs. A presentation scheme for G is a
class of presentations whose reducts coincide with G.

• We say that a presentation scheme P for G is logical if and
only if for all 〈V, E〉 ∈ G and R, S ⊆ V ×V , if 〈V, E, R〉 ∈ P and
〈V, E, R〉 ∼= 〈V, E, S〉, then 〈V, E, S〉 ∈ P.

• A presentation scheme P for G is elementary (alternatively, an
elementary presentation of G) if and only if for some first order
sentence θ and for all G = 〈V, E〉 ∈ G and all binary relations
P on V , 〈V, E, P〉 ∈ P if and only if 〈V, E, P〉 |= θ.

• Evidently, if P is elementary, then P is logical.

Structures and Presentations

• Let G be a class of graphs. A presentation scheme for G is a
class of presentations whose reducts coincide with G.

• We say that a presentation scheme P for G is logical if and
only if for all 〈V, E〉 ∈ G and R, S ⊆ V ×V , if 〈V, E, R〉 ∈ P and
〈V, E, R〉 ∼= 〈V, E, S〉, then 〈V, E, S〉 ∈ P.

• A presentation scheme P for G is elementary (alternatively, an
elementary presentation of G) if and only if for some first order
sentence θ and for all G = 〈V, E〉 ∈ G and all binary relations
P on V , 〈V, E, P〉 ∈ P if and only if 〈V, E, P〉 |= θ.

• Evidently, if P is elementary, then P is logical.

Structures and Presentations

• Let G be a class of graphs. A presentation scheme for G is a
class of presentations whose reducts coincide with G.

• We say that a presentation scheme P for G is logical if and
only if for all 〈V, E〉 ∈ G and R, S ⊆ V ×V , if 〈V, E, R〉 ∈ P and
〈V, E, R〉 ∼= 〈V, E, S〉, then 〈V, E, S〉 ∈ P.

• A presentation scheme P for G is elementary (alternatively, an
elementary presentation of G) if and only if for some first order
sentence θ and for all G = 〈V, E〉 ∈ G and all binary relations
P on V , 〈V, E, P〉 ∈ P if and only if 〈V, E, P〉 |= θ.

• Evidently, if P is elementary, then P is logical.

Structures and Presentations

• Let G be a class of graphs. A presentation scheme for G is a
class of presentations whose reducts coincide with G.

• We say that a presentation scheme P for G is logical if and
only if for all 〈V, E〉 ∈ G and R, S ⊆ V ×V , if 〈V, E, R〉 ∈ P and
〈V, E, R〉 ∼= 〈V, E, S〉, then 〈V, E, S〉 ∈ P.

• A presentation scheme P for G is elementary (alternatively, an
elementary presentation of G) if and only if for some first order
sentence θ and for all G = 〈V, E〉 ∈ G and all binary relations
P on V , 〈V, E, P〉 ∈ P if and only if 〈V, E, P〉 |= θ.

• Evidently, if P is elementary, then P is logical.

Structures and Presentations
Examples

• The Ur-presentation of a graph 〈V, E〉 is 〈V, E, ∅〉. U is the
class of Ur presentations of finite graphs.

• L is the class of all finite graphs equipped with arbitrary linear
orders of their nodes.

• Let G = 〈V, E〉 be a finite connected graph. P is a traversal of
G if and only if P is a linear order of V and for every a other
than the P-least element of V , there is a b P-less-than a such
that 〈b, a〉 ∈ E. A traversal of a not necessarily connected
graph G is an ordered sum of traversals of its connected
components.

• T is the class of all finite graphs equipped with arbitrary
traversals of their nodes.

• Note that U, L and T are elementary presentations of the
class of finite graphs.

Structures and Presentations
Examples

• The Ur-presentation of a graph 〈V, E〉 is 〈V, E, ∅〉. U is the
class of Ur presentations of finite graphs.

• L is the class of all finite graphs equipped with arbitrary linear
orders of their nodes.

• Let G = 〈V, E〉 be a finite connected graph. P is a traversal of
G if and only if P is a linear order of V and for every a other
than the P-least element of V , there is a b P-less-than a such
that 〈b, a〉 ∈ E. A traversal of a not necessarily connected
graph G is an ordered sum of traversals of its connected
components.

• T is the class of all finite graphs equipped with arbitrary
traversals of their nodes.

• Note that U, L and T are elementary presentations of the
class of finite graphs.

Structures and Presentations
Examples

• The Ur-presentation of a graph 〈V, E〉 is 〈V, E, ∅〉. U is the
class of Ur presentations of finite graphs.

• L is the class of all finite graphs equipped with arbitrary linear
orders of their nodes.

• Let G = 〈V, E〉 be a finite connected graph. P is a traversal of
G if and only if P is a linear order of V and for every a other
than the P-least element of V , there is a b P-less-than a such
that 〈b, a〉 ∈ E. A traversal of a not necessarily connected
graph G is an ordered sum of traversals of its connected
components.

• T is the class of all finite graphs equipped with arbitrary
traversals of their nodes.

• Note that U, L and T are elementary presentations of the
class of finite graphs.

Structures and Presentations
Examples

• The Ur-presentation of a graph 〈V, E〉 is 〈V, E, ∅〉. U is the
class of Ur presentations of finite graphs.

• L is the class of all finite graphs equipped with arbitrary linear
orders of their nodes.

• Let G = 〈V, E〉 be a finite connected graph. P is a traversal of
G if and only if P is a linear order of V and for every a other
than the P-least element of V , there is a b P-less-than a such
that 〈b, a〉 ∈ E. A traversal of a not necessarily connected
graph G is an ordered sum of traversals of its connected
components.

• T is the class of all finite graphs equipped with arbitrary
traversals of their nodes.

• Note that U, L and T are elementary presentations of the
class of finite graphs.

Structures and Presentations
Examples

• The Ur-presentation of a graph 〈V, E〉 is 〈V, E, ∅〉. U is the
class of Ur presentations of finite graphs.

• L is the class of all finite graphs equipped with arbitrary linear
orders of their nodes.

• Let G = 〈V, E〉 be a finite connected graph. P is a traversal of
G if and only if P is a linear order of V and for every a other
than the P-least element of V , there is a b P-less-than a such
that 〈b, a〉 ∈ E. A traversal of a not necessarily connected
graph G is an ordered sum of traversals of its connected
components.

• T is the class of all finite graphs equipped with arbitrary
traversals of their nodes.

• Note that U, L and T are elementary presentations of the
class of finite graphs.

Structures and Presentations

T is elementary
〈V, E, P〉 is a traversal of G = 〈V, E〉 just in case it satisfies the
conjunction of the following elementary conditions:
• P is a strict linear ordering of V (for which we write <).

• For all a, b, c ∈ V , if a < b < c and Eac and ¬Eab, then
(∃d < b)Edb.

Structures and Presentations

T is elementary
〈V, E, P〉 is a traversal of G = 〈V, E〉 just in case it satisfies the
conjunction of the following elementary conditions:
• P is a strict linear ordering of V (for which we write <).
• For all a, b, c ∈ V , if a < b < c and Eac and ¬Eab, then

(∃d < b)Edb.

Presentation Invariance

Definition
Let G be a class of graphs, let P be a presentation scheme for G,
and let Q be a boolean query (in the signature of P).
• We say that Q is P-invariant if and only if for all G ∈ G and
all presentations H and H ′ of G in P, H ∈ Q if and only if
H ′ ∈ Q. We say that a sentence θ of a logical language is
P-invariant if and only if it defines a P-invariant boolean query.

Presentation Invariance

The Data Independence Principle

• DIP: A database query Q must be L-invariant. (Abiteboul,
Hull, and Vianu)

• “Die Zeit ist allerdings etwas Wirkliches, nämlich die wirkliche
Form der inneren Anschauung.” (Kant)

• Yet there may be computing devices, natural or artificial, with
pure forms of inner intuition other than our own.

• And query processing may exploit information beyond mere
order when it is available.

• All of which provides potential scientific and technological
motivation for the study of invariance with respect to
presentation schemes other than L.

Presentation Invariance

The Data Independence Principle

• DIP: A database query Q must be L-invariant. (Abiteboul,
Hull, and Vianu)

• “Die Zeit ist allerdings etwas Wirkliches, nämlich die wirkliche
Form der inneren Anschauung.” (Kant)

• Yet there may be computing devices, natural or artificial, with
pure forms of inner intuition other than our own.

• And query processing may exploit information beyond mere
order when it is available.

• All of which provides potential scientific and technological
motivation for the study of invariance with respect to
presentation schemes other than L.

Presentation Invariance

The Data Independence Principle

• DIP: A database query Q must be L-invariant. (Abiteboul,
Hull, and Vianu)

• “Die Zeit ist allerdings etwas Wirkliches, nämlich die wirkliche
Form der inneren Anschauung.” (Kant)

• Yet there may be computing devices, natural or artificial, with
pure forms of inner intuition other than our own.

• And query processing may exploit information beyond mere
order when it is available.

• All of which provides potential scientific and technological
motivation for the study of invariance with respect to
presentation schemes other than L.

Presentation Invariance

The Data Independence Principle

• DIP: A database query Q must be L-invariant. (Abiteboul,
Hull, and Vianu)

• “Die Zeit ist allerdings etwas Wirkliches, nämlich die wirkliche
Form der inneren Anschauung.” (Kant)

• Yet there may be computing devices, natural or artificial, with
pure forms of inner intuition other than our own.

• And query processing may exploit information beyond mere
order when it is available.

• All of which provides potential scientific and technological
motivation for the study of invariance with respect to
presentation schemes other than L.

Presentation Invariance

The Data Independence Principle

• DIP: A database query Q must be L-invariant. (Abiteboul,
Hull, and Vianu)

• “Die Zeit ist allerdings etwas Wirkliches, nämlich die wirkliche
Form der inneren Anschauung.” (Kant)

• Yet there may be computing devices, natural or artificial, with
pure forms of inner intuition other than our own.

• And query processing may exploit information beyond mere
order when it is available.

• All of which provides potential scientific and technological
motivation for the study of invariance with respect to
presentation schemes other than L.

Invariant Definability

Definition
Let G be a class of graphs, let K be a subclass of G, and let P and
Q be presentation schemes for G.
• We say that K is P-invariantly elementary over G if and only if
there is a P-invariant first order sentence ϕ such that for all
G ∈ G, G ∈ K if and only if for some presentation H ∈ P of
G, H |= ϕ.

• We write P(G) for the collection of K ⊆ G which are
P-invariantly elementary over G. We say presentation scheme
P is at least as revealing as Q on G if and only if
Q(G) ⊆ P(G), and we say that P and Q are G-equivalent if
and only if P(G) = Q(G).

Invariant Definability

Definition
Let G be a class of graphs, let K be a subclass of G, and let P and
Q be presentation schemes for G.
• We say that K is P-invariantly elementary over G if and only if
there is a P-invariant first order sentence ϕ such that for all
G ∈ G, G ∈ K if and only if for some presentation H ∈ P of
G, H |= ϕ.

• We write P(G) for the collection of K ⊆ G which are
P-invariantly elementary over G. We say presentation scheme
P is at least as revealing as Q on G if and only if
Q(G) ⊆ P(G), and we say that P and Q are G-equivalent if
and only if P(G) = Q(G).

Comparing Presentation Schemes over all
Finite Graphs

• (Gurevich) L is more revealing than U over the class of all
finite graphs.

• T is more revealing than L over the class of all finite graphs.
• Acyclicity and connectivity are T-invariantly elementary, but
not L-invariantly elementary, over the class of all finite graphs.

• G contains a cycle if and only for each traversal of G there is a
vertex with two neighbors prior to it in the traversal.

• G is connected if and only if for each traversal of G, every
vertex other than the first has a neighbor prior to it in the
traversal.

Comparing Presentation Schemes over all
Finite Graphs

• (Gurevich) L is more revealing than U over the class of all
finite graphs.

• T is more revealing than L over the class of all finite graphs.

• Acyclicity and connectivity are T-invariantly elementary, but
not L-invariantly elementary, over the class of all finite graphs.

• G contains a cycle if and only for each traversal of G there is a
vertex with two neighbors prior to it in the traversal.

• G is connected if and only if for each traversal of G, every
vertex other than the first has a neighbor prior to it in the
traversal.

Comparing Presentation Schemes over all
Finite Graphs

• (Gurevich) L is more revealing than U over the class of all
finite graphs.

• T is more revealing than L over the class of all finite graphs.
• Acyclicity and connectivity are T-invariantly elementary, but
not L-invariantly elementary, over the class of all finite graphs.

• G contains a cycle if and only for each traversal of G there is a
vertex with two neighbors prior to it in the traversal.

• G is connected if and only if for each traversal of G, every
vertex other than the first has a neighbor prior to it in the
traversal.

Comparing Presentation Schemes over all
Finite Graphs

• (Gurevich) L is more revealing than U over the class of all
finite graphs.

• T is more revealing than L over the class of all finite graphs.
• Acyclicity and connectivity are T-invariantly elementary, but
not L-invariantly elementary, over the class of all finite graphs.

• G contains a cycle if and only for each traversal of G there is a
vertex with two neighbors prior to it in the traversal.

• G is connected if and only if for each traversal of G, every
vertex other than the first has a neighbor prior to it in the
traversal.

Comparing Presentation Schemes over all
Finite Graphs

• (Gurevich) L is more revealing than U over the class of all
finite graphs.

• T is more revealing than L over the class of all finite graphs.
• Acyclicity and connectivity are T-invariantly elementary, but
not L-invariantly elementary, over the class of all finite graphs.

• G contains a cycle if and only for each traversal of G there is a
vertex with two neighbors prior to it in the traversal.

• G is connected if and only if for each traversal of G, every
vertex other than the first has a neighbor prior to it in the
traversal.

Comparing Presentation Schemes over all
Finite Graphs

• Bipartiteness is not T-invariantly elementary over the class of
all finite graphs.

• The presentation scheme T2 is defined as follows:
〈V, E, P〉 ∈ T2 if and only if P is a traversal of 〈V, E2〉.

• T2 is an elementary presentation of the class of finite graphs.
• Bipartiteness is T2-invariantly elementary over the class of all
finite graphs.

Comparing Presentation Schemes over all
Finite Graphs

• Bipartiteness is not T-invariantly elementary over the class of
all finite graphs.

• The presentation scheme T2 is defined as follows:
〈V, E, P〉 ∈ T2 if and only if P is a traversal of 〈V, E2〉.

• T2 is an elementary presentation of the class of finite graphs.
• Bipartiteness is T2-invariantly elementary over the class of all
finite graphs.

Comparing Presentation Schemes over all
Finite Graphs

• Bipartiteness is not T-invariantly elementary over the class of
all finite graphs.

• The presentation scheme T2 is defined as follows:
〈V, E, P〉 ∈ T2 if and only if P is a traversal of 〈V, E2〉.

• T2 is an elementary presentation of the class of finite graphs.

• Bipartiteness is T2-invariantly elementary over the class of all
finite graphs.

Comparing Presentation Schemes over all
Finite Graphs

• Bipartiteness is not T-invariantly elementary over the class of
all finite graphs.

• The presentation scheme T2 is defined as follows:
〈V, E, P〉 ∈ T2 if and only if P is a traversal of 〈V, E2〉.

• T2 is an elementary presentation of the class of finite graphs.
• Bipartiteness is T2-invariantly elementary over the class of all
finite graphs.

Comparing Presentation Schemes over all
Finite Graphs

Bipartiteness is not T-invariantly elementary

• Let < be the usual linear order on the natural numbers and
define Hn = 〈{1, . . . , n}, En〉 where 〈i, j〉 ∈ En if and only if
i = j+ 1 or j = i+ 1 or (i = 1 and j = n) or (j = 1 and
i = n).

• Note that

• 〈Hn, <〉 is a traversal and
• Hn is bipartite if and only if n is even.

• It follows at once that bipartiteness is not T-invariantly
elementary, for otherwise, the set of even length linear orders
would be elementary over the class of finite linear orders.

Comparing Presentation Schemes over all
Finite Graphs

Bipartiteness is not T-invariantly elementary

• Let < be the usual linear order on the natural numbers and
define Hn = 〈{1, . . . , n}, En〉 where 〈i, j〉 ∈ En if and only if
i = j+ 1 or j = i+ 1 or (i = 1 and j = n) or (j = 1 and
i = n).

• Note that

• 〈Hn, <〉 is a traversal and
• Hn is bipartite if and only if n is even.

• It follows at once that bipartiteness is not T-invariantly
elementary, for otherwise, the set of even length linear orders
would be elementary over the class of finite linear orders.

Comparing Presentation Schemes over all
Finite Graphs

Bipartiteness is not T-invariantly elementary

• Let < be the usual linear order on the natural numbers and
define Hn = 〈{1, . . . , n}, En〉 where 〈i, j〉 ∈ En if and only if
i = j+ 1 or j = i+ 1 or (i = 1 and j = n) or (j = 1 and
i = n).

• Note that
• 〈Hn, <〉 is a traversal and

• Hn is bipartite if and only if n is even.

• It follows at once that bipartiteness is not T-invariantly
elementary, for otherwise, the set of even length linear orders
would be elementary over the class of finite linear orders.

Comparing Presentation Schemes over all
Finite Graphs

Bipartiteness is not T-invariantly elementary

• Let < be the usual linear order on the natural numbers and
define Hn = 〈{1, . . . , n}, En〉 where 〈i, j〉 ∈ En if and only if
i = j+ 1 or j = i+ 1 or (i = 1 and j = n) or (j = 1 and
i = n).

• Note that
• 〈Hn, <〉 is a traversal and
• Hn is bipartite if and only if n is even.

• It follows at once that bipartiteness is not T-invariantly
elementary, for otherwise, the set of even length linear orders
would be elementary over the class of finite linear orders.

Comparing Presentation Schemes over all
Finite Graphs

Bipartiteness is not T-invariantly elementary

• Let < be the usual linear order on the natural numbers and
define Hn = 〈{1, . . . , n}, En〉 where 〈i, j〉 ∈ En if and only if
i = j+ 1 or j = i+ 1 or (i = 1 and j = n) or (j = 1 and
i = n).

• Note that
• 〈Hn, <〉 is a traversal and
• Hn is bipartite if and only if n is even.

• It follows at once that bipartiteness is not T-invariantly
elementary, for otherwise, the set of even length linear orders
would be elementary over the class of finite linear orders.

Comparing Presentation Schemes over all
Finite Graphs

Bipartiteness is T2-invariantly elementary

• Recall that a graph is not bipartite if and only if it has an odd
cycle.

• And recall that a connected graph has an odd cycle if and only
if its square is connected.

• Therefore G is bipartite if and only if every component of G
gives rise to more than one component in G2. But this is an
elementary property of a traversal of G2.

Comparing Presentation Schemes over all
Finite Graphs

Bipartiteness is T2-invariantly elementary

• Recall that a graph is not bipartite if and only if it has an odd
cycle.

• And recall that a connected graph has an odd cycle if and only
if its square is connected.

• Therefore G is bipartite if and only if every component of G
gives rise to more than one component in G2. But this is an
elementary property of a traversal of G2.

Comparing Presentation Schemes over all
Finite Graphs

Bipartiteness is T2-invariantly elementary

• Recall that a graph is not bipartite if and only if it has an odd
cycle.

• And recall that a connected graph has an odd cycle if and only
if its square is connected.

• Therefore G is bipartite if and only if every component of G
gives rise to more than one component in G2. But this is an
elementary property of a traversal of G2.

Presentation via Interpretation

• T2 is a special case of a scheme of presentation via
interpretation.

• Let I : C 7→ D be an interpretation of a class of structures C
into a class of structures D, and let P be a presentation
scheme for D.

• For every A ∈ C and B ∈ P, if I(A) is the reduct of B to the
signature of D we say B is a PI-presentation of A.

• We say the presentation scheme PI = P�I[C] is a presentation
scheme for C via I.

• Thus, T2 = TI, where for all G ∈ G, I(G) = G2.
• In the context of database management systems, an
interpretation amounts to a “view.” Thus, “presentation via
interpretation” encapsulates the notion of presenting a view of
the data.

Presentation via Interpretation

• T2 is a special case of a scheme of presentation via
interpretation.

• Let I : C 7→ D be an interpretation of a class of structures C
into a class of structures D, and let P be a presentation
scheme for D.

• For every A ∈ C and B ∈ P, if I(A) is the reduct of B to the
signature of D we say B is a PI-presentation of A.

• We say the presentation scheme PI = P�I[C] is a presentation
scheme for C via I.

• Thus, T2 = TI, where for all G ∈ G, I(G) = G2.
• In the context of database management systems, an
interpretation amounts to a “view.” Thus, “presentation via
interpretation” encapsulates the notion of presenting a view of
the data.

Presentation via Interpretation

• T2 is a special case of a scheme of presentation via
interpretation.

• Let I : C 7→ D be an interpretation of a class of structures C
into a class of structures D, and let P be a presentation
scheme for D.

• For every A ∈ C and B ∈ P, if I(A) is the reduct of B to the
signature of D we say B is a PI-presentation of A.

• We say the presentation scheme PI = P�I[C] is a presentation
scheme for C via I.

• Thus, T2 = TI, where for all G ∈ G, I(G) = G2.
• In the context of database management systems, an
interpretation amounts to a “view.” Thus, “presentation via
interpretation” encapsulates the notion of presenting a view of
the data.

Presentation via Interpretation

• T2 is a special case of a scheme of presentation via
interpretation.

• Let I : C 7→ D be an interpretation of a class of structures C
into a class of structures D, and let P be a presentation
scheme for D.

• For every A ∈ C and B ∈ P, if I(A) is the reduct of B to the
signature of D we say B is a PI-presentation of A.

• We say the presentation scheme PI = P�I[C] is a presentation
scheme for C via I.

• Thus, T2 = TI, where for all G ∈ G, I(G) = G2.
• In the context of database management systems, an
interpretation amounts to a “view.” Thus, “presentation via
interpretation” encapsulates the notion of presenting a view of
the data.

Presentation via Interpretation

• T2 is a special case of a scheme of presentation via
interpretation.

• Let I : C 7→ D be an interpretation of a class of structures C
into a class of structures D, and let P be a presentation
scheme for D.

• For every A ∈ C and B ∈ P, if I(A) is the reduct of B to the
signature of D we say B is a PI-presentation of A.

• We say the presentation scheme PI = P�I[C] is a presentation
scheme for C via I.

• Thus, T2 = TI, where for all G ∈ G, I(G) = G2.

• In the context of database management systems, an
interpretation amounts to a “view.” Thus, “presentation via
interpretation” encapsulates the notion of presenting a view of
the data.

Presentation via Interpretation

• T2 is a special case of a scheme of presentation via
interpretation.

• Let I : C 7→ D be an interpretation of a class of structures C
into a class of structures D, and let P be a presentation
scheme for D.

• For every A ∈ C and B ∈ P, if I(A) is the reduct of B to the
signature of D we say B is a PI-presentation of A.

• We say the presentation scheme PI = P�I[C] is a presentation
scheme for C via I.

• Thus, T2 = TI, where for all G ∈ G, I(G) = G2.
• In the context of database management systems, an
interpretation amounts to a “view.” Thus, “presentation via
interpretation” encapsulates the notion of presenting a view of
the data.

Presentation Invariance via Intepretations

Definition
Let C be a class of structures and let PI be a presentation scheme
for C via I.
• We say that a boolean query Q ⊆ I[C] is PI-invariant if and
only if for all A ∈ C and all PI-presentations B and B ′ of A,
B ∈ Q if and only if B ′ ∈ Q.

• We say that a sentence θ of a logical language is PI-invariant
if and only if it defines a PI-invariant boolean query.

Presentation Invariance via Intepretations

Definition
Let C be a class of structures and let PI be a presentation scheme
for C via I.
• We say that a boolean query Q ⊆ I[C] is PI-invariant if and
only if for all A ∈ C and all PI-presentations B and B ′ of A,
B ∈ Q if and only if B ′ ∈ Q.

• We say that a sentence θ of a logical language is PI-invariant
if and only if it defines a PI-invariant boolean query.

Elementary Invariant Definability via
Interpretations

Definition
Let C be a class of finite structures and let Q ⊆ C be a boolean
query.
• We say that Q is PE-invariantly elementary over C if and only
if there is a first-order definable interpretation I and
PI-invariant first order sentence ϕ such that for all A ∈ C,
A ∈ Q if and only if for some PI-presentation B of A, B |= ϕ.

• We write PE(C) for the collection of boolean queries Q ⊆ C
which are PE-invariantly elementary over C and PE for the the
collection of boolean queries which are PE-invariantly
elementary over the class of all finite structures (of a fixed
relational signature).

Elementary Invariant Definability via
Interpretations

Definition
Let C be a class of finite structures and let Q ⊆ C be a boolean
query.
• We say that Q is PE-invariantly elementary over C if and only
if there is a first-order definable interpretation I and
PI-invariant first order sentence ϕ such that for all A ∈ C,
A ∈ Q if and only if for some PI-presentation B of A, B |= ϕ.

• We write PE(C) for the collection of boolean queries Q ⊆ C
which are PE-invariantly elementary over C and PE for the the
collection of boolean queries which are PE-invariantly
elementary over the class of all finite structures (of a fixed
relational signature).

A Characterization of Logspace

We say a finite structure A is situated if and only if its universe is
an initial segment of the natural numbers and its signature includes
the distinguished relation symbol BIT with 〈i, j〉 ∈ BITA just in
case the ith bit of j is 1. We write L for the collection of boolean
queries which are computable in logarithmic space.

Theorem
Let Q be a boolean query on the class of situated finite structures.
The following are equivalent.
• Q ∈ L.

• Q ∈ TE.

A Characterization of Logspace

We say a finite structure A is situated if and only if its universe is
an initial segment of the natural numbers and its signature includes
the distinguished relation symbol BIT with 〈i, j〉 ∈ BITA just in
case the ith bit of j is 1. We write L for the collection of boolean
queries which are computable in logarithmic space.

Theorem
Let Q be a boolean query on the class of situated finite structures.
The following are equivalent.
• Q ∈ L.
• Q ∈ TE.

A Characterization of Logspace

Proof Sketch I

• We first show that for every query Q on situated finite graphs,
if Q ∈ TE, then Q ∈ L.

• It is well known that FO ⊆ L.
• Hence, it suffices to show that for every simple graph G a
traversal of G may be computed in logarithmic space in the
size of G.

• Reingold established that there is a “universal traversal
sequence” (UTC) which for every connected simple graph G,
yields a walk covering all the nodes of G, computable in
logarithmic space in the size of G.

• Given a simple graph G (not necessarily connected), we show
how to use such a universal traversal sequence to construct in
logarithmic space, a traversal of G.

A Characterization of Logspace

Proof Sketch I

• We first show that for every query Q on situated finite graphs,
if Q ∈ TE, then Q ∈ L.

• It is well known that FO ⊆ L.

• Hence, it suffices to show that for every simple graph G a
traversal of G may be computed in logarithmic space in the
size of G.

• Reingold established that there is a “universal traversal
sequence” (UTC) which for every connected simple graph G,
yields a walk covering all the nodes of G, computable in
logarithmic space in the size of G.

• Given a simple graph G (not necessarily connected), we show
how to use such a universal traversal sequence to construct in
logarithmic space, a traversal of G.

A Characterization of Logspace

Proof Sketch I

• We first show that for every query Q on situated finite graphs,
if Q ∈ TE, then Q ∈ L.

• It is well known that FO ⊆ L.
• Hence, it suffices to show that for every simple graph G a
traversal of G may be computed in logarithmic space in the
size of G.

• Reingold established that there is a “universal traversal
sequence” (UTC) which for every connected simple graph G,
yields a walk covering all the nodes of G, computable in
logarithmic space in the size of G.

• Given a simple graph G (not necessarily connected), we show
how to use such a universal traversal sequence to construct in
logarithmic space, a traversal of G.

A Characterization of Logspace

Proof Sketch I

• We first show that for every query Q on situated finite graphs,
if Q ∈ TE, then Q ∈ L.

• It is well known that FO ⊆ L.
• Hence, it suffices to show that for every simple graph G a
traversal of G may be computed in logarithmic space in the
size of G.

• Reingold established that there is a “universal traversal
sequence” (UTC) which for every connected simple graph G,
yields a walk covering all the nodes of G, computable in
logarithmic space in the size of G.

• Given a simple graph G (not necessarily connected), we show
how to use such a universal traversal sequence to construct in
logarithmic space, a traversal of G.

A Characterization of Logspace

Proof Sketch I

• We first show that for every query Q on situated finite graphs,
if Q ∈ TE, then Q ∈ L.

• It is well known that FO ⊆ L.
• Hence, it suffices to show that for every simple graph G a
traversal of G may be computed in logarithmic space in the
size of G.

• Reingold established that there is a “universal traversal
sequence” (UTC) which for every connected simple graph G,
yields a walk covering all the nodes of G, computable in
logarithmic space in the size of G.

• Given a simple graph G (not necessarily connected), we show
how to use such a universal traversal sequence to construct in
logarithmic space, a traversal of G.

A Characterization of Logspace
Proof Sketch II

• Suppose G is a situated simple graph and let < be the
canonical order of G which is logspace computable from BIT.

• We compute a traversal of G as follows.
• Note that Reingold’s result implies reachability is logspace
computable for simple graphs.

• As a result, we may compute, in logspace, a preorder of the
connected components of G by the < order of their <-least
members.

• Within each connected component C, we order nodes by their
first occurrence in a UTC of C beginning at the <-least
member of C.

• It is easy to see that the resulting total order is a traversal of
G and that the logspace computability of the UTC implies
that this total order is logspace computable.

A Characterization of Logspace
Proof Sketch II

• Suppose G is a situated simple graph and let < be the
canonical order of G which is logspace computable from BIT.

• We compute a traversal of G as follows.

• Note that Reingold’s result implies reachability is logspace
computable for simple graphs.

• As a result, we may compute, in logspace, a preorder of the
connected components of G by the < order of their <-least
members.

• Within each connected component C, we order nodes by their
first occurrence in a UTC of C beginning at the <-least
member of C.

• It is easy to see that the resulting total order is a traversal of
G and that the logspace computability of the UTC implies
that this total order is logspace computable.

A Characterization of Logspace
Proof Sketch II

• Suppose G is a situated simple graph and let < be the
canonical order of G which is logspace computable from BIT.

• We compute a traversal of G as follows.
• Note that Reingold’s result implies reachability is logspace
computable for simple graphs.

• As a result, we may compute, in logspace, a preorder of the
connected components of G by the < order of their <-least
members.

• Within each connected component C, we order nodes by their
first occurrence in a UTC of C beginning at the <-least
member of C.

• It is easy to see that the resulting total order is a traversal of
G and that the logspace computability of the UTC implies
that this total order is logspace computable.

A Characterization of Logspace
Proof Sketch II

• Suppose G is a situated simple graph and let < be the
canonical order of G which is logspace computable from BIT.

• We compute a traversal of G as follows.
• Note that Reingold’s result implies reachability is logspace
computable for simple graphs.

• As a result, we may compute, in logspace, a preorder of the
connected components of G by the < order of their <-least
members.

• Within each connected component C, we order nodes by their
first occurrence in a UTC of C beginning at the <-least
member of C.

• It is easy to see that the resulting total order is a traversal of
G and that the logspace computability of the UTC implies
that this total order is logspace computable.

A Characterization of Logspace
Proof Sketch II

• Suppose G is a situated simple graph and let < be the
canonical order of G which is logspace computable from BIT.

• We compute a traversal of G as follows.
• Note that Reingold’s result implies reachability is logspace
computable for simple graphs.

• As a result, we may compute, in logspace, a preorder of the
connected components of G by the < order of their <-least
members.

• Within each connected component C, we order nodes by their
first occurrence in a UTC of C beginning at the <-least
member of C.

• It is easy to see that the resulting total order is a traversal of
G and that the logspace computability of the UTC implies
that this total order is logspace computable.

A Characterization of Logspace
Proof Sketch II

• Suppose G is a situated simple graph and let < be the
canonical order of G which is logspace computable from BIT.

• We compute a traversal of G as follows.
• Note that Reingold’s result implies reachability is logspace
computable for simple graphs.

• As a result, we may compute, in logspace, a preorder of the
connected components of G by the < order of their <-least
members.

• Within each connected component C, we order nodes by their
first occurrence in a UTC of C beginning at the <-least
member of C.

• It is easy to see that the resulting total order is a traversal of
G and that the logspace computability of the UTC implies
that this total order is logspace computable.

A Characterization of Logspace

Proof Sketch III

• We next show that for every query Q on situated finite graphs,
if Q ∈ L, then Q ∈ TE.

• We use the result of Lewis and Papadimitriou that L ⊆ SL,
and show that SL ⊆ TE. (SL is symmetric logspace.)

• Let Q be a boolean query on situated structures of signature σ
and suppose M is a Turing machine witnessing the
membership of Q in SL.

A Characterization of Logspace

Proof Sketch III

• We next show that for every query Q on situated finite graphs,
if Q ∈ L, then Q ∈ TE.

• We use the result of Lewis and Papadimitriou that L ⊆ SL,
and show that SL ⊆ TE. (SL is symmetric logspace.)

• Let Q be a boolean query on situated structures of signature σ
and suppose M is a Turing machine witnessing the
membership of Q in SL.

A Characterization of Logspace

Proof Sketch III

• We next show that for every query Q on situated finite graphs,
if Q ∈ L, then Q ∈ TE.

• We use the result of Lewis and Papadimitriou that L ⊆ SL,
and show that SL ⊆ TE. (SL is symmetric logspace.)

• Let Q be a boolean query on situated structures of signature σ
and suppose M is a Turing machine witnessing the
membership of Q in SL.

A Characterization of Logspace

Proof Sketch IV

• With the help of BIT, we construct a formula τM(x, y) so that
for finite structures A of signature σ, τM[A] is the transition
graph of M with input A, which is, by hypothesis, a simple
graph.

• Now, M accepts A if and only if there is a path in τM[A] from
the start state of M to a final state.

• But reachability for undirected graphs is traversal-invariant
first-order definable. Therefore, Q ∈ TE.

A Characterization of Logspace

Proof Sketch IV

• With the help of BIT, we construct a formula τM(x, y) so that
for finite structures A of signature σ, τM[A] is the transition
graph of M with input A, which is, by hypothesis, a simple
graph.

• Now, M accepts A if and only if there is a path in τM[A] from
the start state of M to a final state.

• But reachability for undirected graphs is traversal-invariant
first-order definable. Therefore, Q ∈ TE.

A Characterization of Logspace

Proof Sketch IV

• With the help of BIT, we construct a formula τM(x, y) so that
for finite structures A of signature σ, τM[A] is the transition
graph of M with input A, which is, by hypothesis, a simple
graph.

• Now, M accepts A if and only if there is a path in τM[A] from
the start state of M to a final state.

• But reachability for undirected graphs is traversal-invariant
first-order definable. Therefore, Q ∈ TE.

Partial-order presentations

• We introduce a new combinatorial parameter which naturally
generalizes the notion of vertex separation number from linear
layouts of graphs to layouts which are tree-like partial orders.

• We begin by defining a modest generalization of the notion of
a normal spanning tree.

Partial-order presentations

• We introduce a new combinatorial parameter which naturally
generalizes the notion of vertex separation number from linear
layouts of graphs to layouts which are tree-like partial orders.

• We begin by defining a modest generalization of the notion of
a normal spanning tree.

Partial-order presentations

Normal presentations

Definition

• Let G = 〈V, E〉 be a graph and let H = 〈G,≤〉. We say that H
is a normal presentation of G if and only if

• 〈V,≤〉 is a tree-like partial order, that is, V has a unique
minimal element with respect to ≤ and for every a ∈ V the set
of nodes preceding a is linearly ordered by ≤; and

• G is normal with respect to ≤, that is, for every a, b ∈ V, if
Eab, then a and b are comparable with respect to ≤.

• Let N be the presentation scheme consisting of normal
presentations of finite simple graphs.

• Observe that N is an elementary presentation scheme. We
next exploit normal presentations to introduce the concept of
node separation number.

Partial-order presentations

Normal presentations

Definition

• Let G = 〈V, E〉 be a graph and let H = 〈G,≤〉. We say that H
is a normal presentation of G if and only if

• 〈V,≤〉 is a tree-like partial order, that is, V has a unique
minimal element with respect to ≤ and for every a ∈ V the set
of nodes preceding a is linearly ordered by ≤; and

• G is normal with respect to ≤, that is, for every a, b ∈ V, if
Eab, then a and b are comparable with respect to ≤.

• Let N be the presentation scheme consisting of normal
presentations of finite simple graphs.

• Observe that N is an elementary presentation scheme. We
next exploit normal presentations to introduce the concept of
node separation number.

Partial-order presentations

Normal presentations

Definition

• Let G = 〈V, E〉 be a graph and let H = 〈G,≤〉. We say that H
is a normal presentation of G if and only if

• 〈V,≤〉 is a tree-like partial order, that is, V has a unique
minimal element with respect to ≤ and for every a ∈ V the set
of nodes preceding a is linearly ordered by ≤; and

• G is normal with respect to ≤, that is, for every a, b ∈ V , if
Eab, then a and b are comparable with respect to ≤.

• Let N be the presentation scheme consisting of normal
presentations of finite simple graphs.

• Observe that N is an elementary presentation scheme. We
next exploit normal presentations to introduce the concept of
node separation number.

Partial-order presentations

Normal presentations

Definition

• Let G = 〈V, E〉 be a graph and let H = 〈G,≤〉. We say that H
is a normal presentation of G if and only if

• 〈V,≤〉 is a tree-like partial order, that is, V has a unique
minimal element with respect to ≤ and for every a ∈ V the set
of nodes preceding a is linearly ordered by ≤; and

• G is normal with respect to ≤, that is, for every a, b ∈ V , if
Eab, then a and b are comparable with respect to ≤.

• Let N be the presentation scheme consisting of normal
presentations of finite simple graphs.

• Observe that N is an elementary presentation scheme. We
next exploit normal presentations to introduce the concept of
node separation number.

Partial-order presentations

Normal presentations

Definition

• Let G = 〈V, E〉 be a graph and let H = 〈G,≤〉. We say that H
is a normal presentation of G if and only if

• 〈V,≤〉 is a tree-like partial order, that is, V has a unique
minimal element with respect to ≤ and for every a ∈ V the set
of nodes preceding a is linearly ordered by ≤; and

• G is normal with respect to ≤, that is, for every a, b ∈ V , if
Eab, then a and b are comparable with respect to ≤.

• Let N be the presentation scheme consisting of normal
presentations of finite simple graphs.

• Observe that N is an elementary presentation scheme. We
next exploit normal presentations to introduce the concept of
node separation number.

Partial-order presentations

Node separation number

Definition

• Let G = 〈V, E〉 be a finite simple graph and let H = 〈G,≤〉 be
a normal presentation of G.

• For each a ∈ V , let
Ba = {b ∈ V | b � a∧ (∃c)(a ≤ c∧ Ebc)} ∪ {a}.

• ν(G,H) (the node separation number of G with respect to H)
is max({|Ba| | a ∈ V}) − 1.

• ν(G) (the node separation number of G) is the minimum over
all normal presentations H of G of ν(G,H).

Partial-order presentations

Node separation number

Definition

• Let G = 〈V, E〉 be a finite simple graph and let H = 〈G,≤〉 be
a normal presentation of G.

• For each a ∈ V , let
Ba = {b ∈ V | b � a∧ (∃c)(a ≤ c∧ Ebc)} ∪ {a}.

• ν(G,H) (the node separation number of G with respect to H)
is max({|Ba| | a ∈ V}) − 1.

• ν(G) (the node separation number of G) is the minimum over
all normal presentations H of G of ν(G,H).

Partial-order presentations

Node separation number

Definition

• Let G = 〈V, E〉 be a finite simple graph and let H = 〈G,≤〉 be
a normal presentation of G.

• For each a ∈ V , let
Ba = {b ∈ V | b � a∧ (∃c)(a ≤ c∧ Ebc)} ∪ {a}.

• ν(G,H) (the node separation number of G with respect to H)
is max({|Ba| | a ∈ V}) − 1.

• ν(G) (the node separation number of G) is the minimum over
all normal presentations H of G of ν(G,H).

Partial-order presentations

Node separation number

Definition

• Let G = 〈V, E〉 be a finite simple graph and let H = 〈G,≤〉 be
a normal presentation of G.

• For each a ∈ V , let
Ba = {b ∈ V | b � a∧ (∃c)(a ≤ c∧ Ebc)} ∪ {a}.

• ν(G,H) (the node separation number of G with respect to H)
is max({|Ba| | a ∈ V}) − 1.

• ν(G) (the node separation number of G) is the minimum over
all normal presentations H of G of ν(G,H).

Partial-order presentations

Node separation number and tree-width

• It is easy to verify that if H = 〈G,≤〉 is a normal presentation
of G and T is a tree on node set V with ≤T=≤, then
〈T, {Ba | a ∈ V}〉 is a tree decomposition of G.

• It follows at once that ν(G) ≥ tw(G) (the tree-width of G).
• On the other hand, a straightforward generalization of an
argument due to Nancy Kinnersley, which establishes the
identity of vertex separation number and path-width, yields the
reverse inequality ν(G) ≤ tw(G).

• The proof yields a particularly simple normal form for
minimum width tree decompositions as follows.

Partial-order presentations

Node separation number and tree-width

• It is easy to verify that if H = 〈G,≤〉 is a normal presentation
of G and T is a tree on node set V with ≤T=≤, then
〈T, {Ba | a ∈ V}〉 is a tree decomposition of G.

• It follows at once that ν(G) ≥ tw(G) (the tree-width of G).

• On the other hand, a straightforward generalization of an
argument due to Nancy Kinnersley, which establishes the
identity of vertex separation number and path-width, yields the
reverse inequality ν(G) ≤ tw(G).

• The proof yields a particularly simple normal form for
minimum width tree decompositions as follows.

Partial-order presentations

Node separation number and tree-width

• It is easy to verify that if H = 〈G,≤〉 is a normal presentation
of G and T is a tree on node set V with ≤T=≤, then
〈T, {Ba | a ∈ V}〉 is a tree decomposition of G.

• It follows at once that ν(G) ≥ tw(G) (the tree-width of G).
• On the other hand, a straightforward generalization of an
argument due to Nancy Kinnersley, which establishes the
identity of vertex separation number and path-width, yields the
reverse inequality ν(G) ≤ tw(G).

• The proof yields a particularly simple normal form for
minimum width tree decompositions as follows.

Partial-order presentations

Node separation number and tree-width

• It is easy to verify that if H = 〈G,≤〉 is a normal presentation
of G and T is a tree on node set V with ≤T=≤, then
〈T, {Ba | a ∈ V}〉 is a tree decomposition of G.

• It follows at once that ν(G) ≥ tw(G) (the tree-width of G).
• On the other hand, a straightforward generalization of an
argument due to Nancy Kinnersley, which establishes the
identity of vertex separation number and path-width, yields the
reverse inequality ν(G) ≤ tw(G).

• The proof yields a particularly simple normal form for
minimum width tree decompositions as follows.

Partial-order presentations
Node separation number and tree-width

Theorem
Suppose G = 〈V, E〉 has tree-width k. Then there is tree T with
node set V and root r ∈ V such that H = 〈G,≤r

T 〉 is a normal
presentation of G, and 〈T, {Ba | a ∈ V}〉 is a tree decomposition of
G of width k+ 1.

Corollary
For every finite simple graph G, ν(G) = tw(G).

Definition
Let Sk be the set of graphs G with ν(G) ≤ k and let
Sk = {H ∈ N | ν(G,H) ≤ k}.
Observe that for every k, Sk is an elementary presentation scheme.

Partial-order presentations
Node separation number and tree-width

Theorem
Suppose G = 〈V, E〉 has tree-width k. Then there is tree T with
node set V and root r ∈ V such that H = 〈G,≤r

T 〉 is a normal
presentation of G, and 〈T, {Ba | a ∈ V}〉 is a tree decomposition of
G of width k+ 1.

Corollary
For every finite simple graph G, ν(G) = tw(G).

Definition
Let Sk be the set of graphs G with ν(G) ≤ k and let
Sk = {H ∈ N | ν(G,H) ≤ k}.
Observe that for every k, Sk is an elementary presentation scheme.

Partial-order presentations
Node separation number and tree-width

Theorem
Suppose G = 〈V, E〉 has tree-width k. Then there is tree T with
node set V and root r ∈ V such that H = 〈G,≤r

T 〉 is a normal
presentation of G, and 〈T, {Ba | a ∈ V}〉 is a tree decomposition of
G of width k+ 1.

Corollary
For every finite simple graph G, ν(G) = tw(G).

Definition
Let Sk be the set of graphs G with ν(G) ≤ k and let
Sk = {H ∈ N | ν(G,H) ≤ k}.
Observe that for every k, Sk is an elementary presentation scheme.

Partial-order presentations
Node separation number and tree-width

Theorem
Suppose G = 〈V, E〉 has tree-width k. Then there is tree T with
node set V and root r ∈ V such that H = 〈G,≤r

T 〉 is a normal
presentation of G, and 〈T, {Ba | a ∈ V}〉 is a tree decomposition of
G of width k+ 1.

Corollary
For every finite simple graph G, ν(G) = tw(G).

Definition
Let Sk be the set of graphs G with ν(G) ≤ k and let
Sk = {H ∈ N | ν(G,H) ≤ k}.
Observe that for every k, Sk is an elementary presentation scheme.

Partial-order presentations
Node separation number and tree-width

Theorem
Suppose G = 〈V, E〉 has tree-width k. Then there is tree T with
node set V and root r ∈ V such that H = 〈G,≤r

T 〉 is a normal
presentation of G, and 〈T, {Ba | a ∈ V}〉 is a tree decomposition of
G of width k+ 1.

Corollary
For every finite simple graph G, ν(G) = tw(G).

Definition
Let Sk be the set of graphs G with ν(G) ≤ k and let
Sk = {H ∈ N | ν(G,H) ≤ k}.
Observe that for every k, Sk is an elementary presentation scheme.

Partial-order presentations
Node separation number and tree-width

Theorem
Suppose G = 〈V, E〉 has tree-width k. Then there is tree T with
node set V and root r ∈ V such that H = 〈G,≤r

T 〉 is a normal
presentation of G, and 〈T, {Ba | a ∈ V}〉 is a tree decomposition of
G of width k+ 1.

Corollary
For every finite simple graph G, ν(G) = tw(G).

Definition
Let Sk be the set of graphs G with ν(G) ≤ k and let
Sk = {H ∈ N | ν(G,H) ≤ k}.
Observe that for every k, Sk is an elementary presentation scheme.

Partial-order presentations

Computing normal presentations

Theorem
For every for every k there is a linear time algorithm αk and a
logspace algorithm βk such that for every G ∈ Sk, αk(G) and
βk(G) are normal presentations of G, and αk(G), βk(G) ∈ Sk.

Partial-order presentations
Node separation number and tree-width: Proof sketches

Claim
It is easy to verify that if H = 〈G,≤〉 is a normal presentation of
G = 〈V, E〉 and T is a tree on node set V with ≤T=≤, then
〈T, {Ba | a ∈ V}〉 is a tree decomposition of G.

• It follows immediately from the definition of Ba, that a ∈ Ba

for every a ∈ V ;
• and it follows immediately from normality that for all
E-neighbors a and b, either a ∈ Bb or b ∈ Ba.

• So each node and each edge of G is covered by a bag.
• It only remains to show that for every a ∈ V , the set
Ca = {b ∈ V | a ∈ Bb} is connected in T .

• But note that a is the ≤T minimal element of Ca and for
every b ∈ Ca and a ≤T c ≤T b, c ∈ Ca.

Partial-order presentations
Node separation number and tree-width: Proof sketches

Claim
It is easy to verify that if H = 〈G,≤〉 is a normal presentation of
G = 〈V, E〉 and T is a tree on node set V with ≤T=≤, then
〈T, {Ba | a ∈ V}〉 is a tree decomposition of G.

• It follows immediately from the definition of Ba, that a ∈ Ba

for every a ∈ V ;
• and it follows immediately from normality that for all
E-neighbors a and b, either a ∈ Bb or b ∈ Ba.

• So each node and each edge of G is covered by a bag.
• It only remains to show that for every a ∈ V , the set
Ca = {b ∈ V | a ∈ Bb} is connected in T .

• But note that a is the ≤T minimal element of Ca and for
every b ∈ Ca and a ≤T c ≤T b, c ∈ Ca.

Partial-order presentations
Node separation number and tree-width: Proof sketches

Claim
It is easy to verify that if H = 〈G,≤〉 is a normal presentation of
G = 〈V, E〉 and T is a tree on node set V with ≤T=≤, then
〈T, {Ba | a ∈ V}〉 is a tree decomposition of G.

• It follows immediately from the definition of Ba, that a ∈ Ba

for every a ∈ V ;

• and it follows immediately from normality that for all
E-neighbors a and b, either a ∈ Bb or b ∈ Ba.

• So each node and each edge of G is covered by a bag.
• It only remains to show that for every a ∈ V , the set
Ca = {b ∈ V | a ∈ Bb} is connected in T .

• But note that a is the ≤T minimal element of Ca and for
every b ∈ Ca and a ≤T c ≤T b, c ∈ Ca.

Partial-order presentations
Node separation number and tree-width: Proof sketches

Claim
It is easy to verify that if H = 〈G,≤〉 is a normal presentation of
G = 〈V, E〉 and T is a tree on node set V with ≤T=≤, then
〈T, {Ba | a ∈ V}〉 is a tree decomposition of G.

• It follows immediately from the definition of Ba, that a ∈ Ba

for every a ∈ V ;
• and it follows immediately from normality that for all
E-neighbors a and b, either a ∈ Bb or b ∈ Ba.

• So each node and each edge of G is covered by a bag.
• It only remains to show that for every a ∈ V , the set
Ca = {b ∈ V | a ∈ Bb} is connected in T .

• But note that a is the ≤T minimal element of Ca and for
every b ∈ Ca and a ≤T c ≤T b, c ∈ Ca.

Partial-order presentations
Node separation number and tree-width: Proof sketches

Claim
It is easy to verify that if H = 〈G,≤〉 is a normal presentation of
G = 〈V, E〉 and T is a tree on node set V with ≤T=≤, then
〈T, {Ba | a ∈ V}〉 is a tree decomposition of G.

• It follows immediately from the definition of Ba, that a ∈ Ba

for every a ∈ V ;
• and it follows immediately from normality that for all
E-neighbors a and b, either a ∈ Bb or b ∈ Ba.

• So each node and each edge of G is covered by a bag.

• It only remains to show that for every a ∈ V , the set
Ca = {b ∈ V | a ∈ Bb} is connected in T .

• But note that a is the ≤T minimal element of Ca and for
every b ∈ Ca and a ≤T c ≤T b, c ∈ Ca.

Partial-order presentations
Node separation number and tree-width: Proof sketches

Claim
It is easy to verify that if H = 〈G,≤〉 is a normal presentation of
G = 〈V, E〉 and T is a tree on node set V with ≤T=≤, then
〈T, {Ba | a ∈ V}〉 is a tree decomposition of G.

• It follows immediately from the definition of Ba, that a ∈ Ba

for every a ∈ V ;
• and it follows immediately from normality that for all
E-neighbors a and b, either a ∈ Bb or b ∈ Ba.

• So each node and each edge of G is covered by a bag.
• It only remains to show that for every a ∈ V , the set
Ca = {b ∈ V | a ∈ Bb} is connected in T .

• But note that a is the ≤T minimal element of Ca and for
every b ∈ Ca and a ≤T c ≤T b, c ∈ Ca.

Partial-order presentations
Node separation number and tree-width: Proof sketches

Claim
It is easy to verify that if H = 〈G,≤〉 is a normal presentation of
G = 〈V, E〉 and T is a tree on node set V with ≤T=≤, then
〈T, {Ba | a ∈ V}〉 is a tree decomposition of G.

• It follows immediately from the definition of Ba, that a ∈ Ba

for every a ∈ V ;
• and it follows immediately from normality that for all
E-neighbors a and b, either a ∈ Bb or b ∈ Ba.

• So each node and each edge of G is covered by a bag.
• It only remains to show that for every a ∈ V , the set
Ca = {b ∈ V | a ∈ Bb} is connected in T .

• But note that a is the ≤T minimal element of Ca and for
every b ∈ Ca and a ≤T c ≤T b, c ∈ Ca.

Partial-order presentations

Node separation number and tree-width: Proof sketches

Claim
On the other hand, a straightforward generalization of an argument
due to Nancy Kinnersley, which establishes the identity of vertex
separation number and path-width, yields the reverse inequality
ν(G) ≤ tw(G).

• Let 〈T∗, {B∗t | t ∈ T∗}〉 be a tree decomposition of a simple
graph G = 〈V, E〉.

• Root the tree T∗ at an arbitrarily chosen node r with B∗r 6= ∅;
this induces a tree-like partial-order ≤∗ of T∗.

• For each a ∈ V , let m(a) be the ≤∗-least t ∈ T∗ with a ∈ B∗t .
Note that m(a) is well defined since the set {t ∈ T∗ | a ∈ B∗t }
is connected in T∗.

Partial-order presentations

Node separation number and tree-width: Proof sketches

Claim
On the other hand, a straightforward generalization of an argument
due to Nancy Kinnersley, which establishes the identity of vertex
separation number and path-width, yields the reverse inequality
ν(G) ≤ tw(G).

• Let 〈T∗, {B∗t | t ∈ T∗}〉 be a tree decomposition of a simple
graph G = 〈V, E〉.

• Root the tree T∗ at an arbitrarily chosen node r with B∗r 6= ∅;
this induces a tree-like partial-order ≤∗ of T∗.

• For each a ∈ V , let m(a) be the ≤∗-least t ∈ T∗ with a ∈ B∗t .
Note that m(a) is well defined since the set {t ∈ T∗ | a ∈ B∗t }
is connected in T∗.

Partial-order presentations

Node separation number and tree-width: Proof sketches

Claim
On the other hand, a straightforward generalization of an argument
due to Nancy Kinnersley, which establishes the identity of vertex
separation number and path-width, yields the reverse inequality
ν(G) ≤ tw(G).

• Let 〈T∗, {B∗t | t ∈ T∗}〉 be a tree decomposition of a simple
graph G = 〈V, E〉.

• Root the tree T∗ at an arbitrarily chosen node r with B∗r 6= ∅;
this induces a tree-like partial-order ≤∗ of T∗.

• For each a ∈ V , let m(a) be the ≤∗-least t ∈ T∗ with a ∈ B∗t .
Note that m(a) is well defined since the set {t ∈ T∗ | a ∈ B∗t }
is connected in T∗.

Partial-order presentations

Node separation number and tree-width: Proof sketches

Claim
On the other hand, a straightforward generalization of an argument
due to Nancy Kinnersley, which establishes the identity of vertex
separation number and path-width, yields the reverse inequality
ν(G) ≤ tw(G).

• Let 〈T∗, {B∗t | t ∈ T∗}〉 be a tree decomposition of a simple
graph G = 〈V, E〉.

• Root the tree T∗ at an arbitrarily chosen node r with B∗r 6= ∅;
this induces a tree-like partial-order ≤∗ of T∗.

• For each a ∈ V , let m(a) be the ≤∗-least t ∈ T∗ with a ∈ B∗t .
Note that m(a) is well defined since the set {t ∈ T∗ | a ∈ B∗t }
is connected in T∗.

Partial-order presentations

Node separation number and tree-width: Proof sketches

Claim
On the other hand, a straightforward generalization of an argument
due to Nancy Kinnersley, which establishes the identity of vertex
separation number and path-width, yields the reverse inequality
ν(G) ≤ tw(G).

• Let 〈T∗, {B∗t | t ∈ T∗}〉 be a tree decomposition of a simple
graph G = 〈V, E〉.

• Root the tree T∗ at an arbitrarily chosen node r with B∗r 6= ∅;
this induces a tree-like partial-order ≤∗ of T∗.

• For each a ∈ V , let m(a) be the ≤∗-least t ∈ T∗ with a ∈ B∗t .
Note that m(a) is well defined since the set {t ∈ T∗ | a ∈ B∗t }
is connected in T∗.

Partial-order presentations

Node separation number and tree-width: Proof sketches

• Let ≤ be a tree-like partial-order of V satisfying the condition
that for all a, b ∈ V , if m(a) 6= m(b), then a ≤ b if and only
if m(a) ≤∗ m(b), and for all a ∈ V , the restriction of ≤ to
{b | m(b) = m(a)} is a linear ordering. We show:

(1) H = 〈G,≤〉 is a normal presentation and
(2) the tree decomposition 〈T, {Ba | a ∈ V}〉 induced by H has

width no greater than that of 〈T∗, {B∗t | t ∈ T∗}〉; in particular,
for all a ∈ V , Ba ⊆ B∗m(a).

Partial-order presentations

Node separation number and tree-width: Proof sketches

• Let ≤ be a tree-like partial-order of V satisfying the condition
that for all a, b ∈ V , if m(a) 6= m(b), then a ≤ b if and only
if m(a) ≤∗ m(b), and for all a ∈ V , the restriction of ≤ to
{b | m(b) = m(a)} is a linear ordering. We show:

(1) H = 〈G,≤〉 is a normal presentation and

(2) the tree decomposition 〈T, {Ba | a ∈ V}〉 induced by H has
width no greater than that of 〈T∗, {B∗t | t ∈ T∗}〉; in particular,
for all a ∈ V , Ba ⊆ B∗m(a).

Partial-order presentations

Node separation number and tree-width: Proof sketches

• Let ≤ be a tree-like partial-order of V satisfying the condition
that for all a, b ∈ V , if m(a) 6= m(b), then a ≤ b if and only
if m(a) ≤∗ m(b), and for all a ∈ V , the restriction of ≤ to
{b | m(b) = m(a)} is a linear ordering. We show:

(1) H = 〈G,≤〉 is a normal presentation and
(2) the tree decomposition 〈T, {Ba | a ∈ V}〉 induced by H has

width no greater than that of 〈T∗, {B∗t | t ∈ T∗}〉; in particular,
for all a ∈ V , Ba ⊆ B∗m(a).

Partial-order presentations

Node separation number and tree-width: Proof sketches

(1): We show that ≤ is a normal partial order of G. Let a, b ∈ V
with Eab. If m(a) = m(b), then a and b are ≤-comparable,
by definition.

Suppose, on the other hand, that m(a) 6= m(b). Since T∗ is a
tree decomposition, there is a t ∈ T∗ with a, b ∈ B∗t .
But then, m(a) ≤∗ t and m(b) ≤∗ t.
Since, ≤∗ is tree-like, this implies that a and b are comparable
with respect to ≤∗ and hence, by definition, with respect to ≤
as well.

Partial-order presentations

Node separation number and tree-width: Proof sketches

(1): We show that ≤ is a normal partial order of G. Let a, b ∈ V
with Eab. If m(a) = m(b), then a and b are ≤-comparable,
by definition.
Suppose, on the other hand, that m(a) 6= m(b). Since T∗ is a
tree decomposition, there is a t ∈ T∗ with a, b ∈ B∗t .

But then, m(a) ≤∗ t and m(b) ≤∗ t.
Since, ≤∗ is tree-like, this implies that a and b are comparable
with respect to ≤∗ and hence, by definition, with respect to ≤
as well.

Partial-order presentations

Node separation number and tree-width: Proof sketches

(1): We show that ≤ is a normal partial order of G. Let a, b ∈ V
with Eab. If m(a) = m(b), then a and b are ≤-comparable,
by definition.
Suppose, on the other hand, that m(a) 6= m(b). Since T∗ is a
tree decomposition, there is a t ∈ T∗ with a, b ∈ B∗t .
But then, m(a) ≤∗ t and m(b) ≤∗ t.

Since, ≤∗ is tree-like, this implies that a and b are comparable
with respect to ≤∗ and hence, by definition, with respect to ≤
as well.

Partial-order presentations

Node separation number and tree-width: Proof sketches

(1): We show that ≤ is a normal partial order of G. Let a, b ∈ V
with Eab. If m(a) = m(b), then a and b are ≤-comparable,
by definition.
Suppose, on the other hand, that m(a) 6= m(b). Since T∗ is a
tree decomposition, there is a t ∈ T∗ with a, b ∈ B∗t .
But then, m(a) ≤∗ t and m(b) ≤∗ t.
Since, ≤∗ is tree-like, this implies that a and b are comparable
with respect to ≤∗ and hence, by definition, with respect to ≤
as well.

Partial-order presentations

Node separation number and tree-width: Proof sketches

(2): We show for all a ∈ V , Ba ⊆ B∗m(a).

Let a ∈ V , and suppose that b ∈ Ba. If m(b) = m(a) we are
done, since b ∈ B∗m(b) by definition. So suppose
m(b) 6= m(a).
It follows at once that m(b) ≤∗ m(a), b � a, and there is a c
such that a ≤ c and Ebc.
Let t be ≤∗-least with b, c ∈ B∗t . It follows that
m(b) ≤∗ m(a) ≤∗ t.
Hence, b ∈ B∗m(a), since the set {t ∈ T∗ | b ∈ B∗t } is connected
in T∗.

Partial-order presentations

Node separation number and tree-width: Proof sketches

(2): We show for all a ∈ V , Ba ⊆ B∗m(a).

Let a ∈ V , and suppose that b ∈ Ba. If m(b) = m(a) we are
done, since b ∈ B∗m(b) by definition. So suppose
m(b) 6= m(a).

It follows at once that m(b) ≤∗ m(a), b � a, and there is a c
such that a ≤ c and Ebc.
Let t be ≤∗-least with b, c ∈ B∗t . It follows that
m(b) ≤∗ m(a) ≤∗ t.
Hence, b ∈ B∗m(a), since the set {t ∈ T∗ | b ∈ B∗t } is connected
in T∗.

Partial-order presentations

Node separation number and tree-width: Proof sketches

(2): We show for all a ∈ V , Ba ⊆ B∗m(a).

Let a ∈ V , and suppose that b ∈ Ba. If m(b) = m(a) we are
done, since b ∈ B∗m(b) by definition. So suppose
m(b) 6= m(a).
It follows at once that m(b) ≤∗ m(a), b � a, and there is a c
such that a ≤ c and Ebc.

Let t be ≤∗-least with b, c ∈ B∗t . It follows that
m(b) ≤∗ m(a) ≤∗ t.
Hence, b ∈ B∗m(a), since the set {t ∈ T∗ | b ∈ B∗t } is connected
in T∗.

Partial-order presentations

Node separation number and tree-width: Proof sketches

(2): We show for all a ∈ V , Ba ⊆ B∗m(a).

Let a ∈ V , and suppose that b ∈ Ba. If m(b) = m(a) we are
done, since b ∈ B∗m(b) by definition. So suppose
m(b) 6= m(a).
It follows at once that m(b) ≤∗ m(a), b � a, and there is a c
such that a ≤ c and Ebc.
Let t be ≤∗-least with b, c ∈ B∗t . It follows that
m(b) ≤∗ m(a) ≤∗ t.

Hence, b ∈ B∗m(a), since the set {t ∈ T∗ | b ∈ B∗t } is connected
in T∗.

Partial-order presentations

Node separation number and tree-width: Proof sketches

(2): We show for all a ∈ V , Ba ⊆ B∗m(a).

Let a ∈ V , and suppose that b ∈ Ba. If m(b) = m(a) we are
done, since b ∈ B∗m(b) by definition. So suppose
m(b) 6= m(a).
It follows at once that m(b) ≤∗ m(a), b � a, and there is a c
such that a ≤ c and Ebc.
Let t be ≤∗-least with b, c ∈ B∗t . It follows that
m(b) ≤∗ m(a) ≤∗ t.
Hence, b ∈ B∗m(a), since the set {t ∈ T∗ | b ∈ B∗t } is connected
in T∗.

