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1 Lecture 01.11

We began with the question: Is there a numerically diverse group of Philadel-
phians? (We call a group of people numerically diverse if no two people in the
group have the same number of friends in the group - we assume groups are of
size at least two and that friendship is always mutual.) We demonstrated that
the answer is no by an application of

Principle 1 The Pigeonhole Principle: If you distribute m pigeons into n pi-
geonholes and m ≥ n+ 1, then some hole contains at least two pigeons.

We argued as follows. Suppose we have a group G = {1, . . . , n} of n people (we
use numerals to name the people for privacy concerns). For brevity, let’s write
pij to signify that i is a friend of j. We assume friendship is symmetric, that is,
if pij , then pji, for all i, j ∈ G, and irreflexive, that is, it is not the case that pii,
for all i ∈ G. Let’s write f(i) for the number of friends of i, that is, the number
of j such that pji. Since friendship is irreflexive, the possible values of f are the
n numbers 0, 1, . . . , n − 1. We are thinking of these values as the pigeonholes
for application of the principle 1 and the members of G as being placed in these
holes by f . We want to argue that the value of f must agree on at least two
members of G. But so far, since we have n members of G and n pigeonholes into
which they are sorted by f , we may not yet draw that conclusion via principle
1. But now we consider the question, “can f really take all the values from 0
to n − 1?” In particular, can it take on both the value 0 and the value n − 1.
We argue that the answer is no. Suppose that there is some i with f(i) = 0,
that is, for every j, it is not the case that pji. Then, by symmetry, for every j,
it is not the case that pij . So, if i has no friends, then the maximum number of
friends of any j is n − 2, that is, f cannot take on the value n − 1. Thus, the
possible values of f are the n−1 numbers 0, . . . , n−2. But now, by principle 1,
we can conclude that f takes on the same value for at least two members of G.
This concludes our argument that there cannot be a numerically diverse group
of Philadelphians.

We mentioned that the course will explore relationships and that love differs
from friendship in that there are narcissists (so we can’t assume the relation is
irreflexive) and is not always requited (so we can’t assume the relationship is
symmetric). We observed that this difference between friendship and love allows
the existence of numerically diverse groups of lovers, that is, groups where each
person in the group loves a different number of people in the group. Consider,
for example, a group of four people, call them 1, 2, 3, 4, and suppose that 1
doesn’t love anyone, 2 loves 1, 3 loves both 1 and 2, and 4 loves all of 1, 2, and
3, and that this exhausts all the love among our group of four. We achieve
numerical diversity at the sacrifice of requital.

How many different patterns of love might obtain among a group of four
people, again call them 1, 2, 3, 4. Now, we decided to recycle the sentence letters
and use pij to signify the statement that i loves j; we noted that 16 sentence
letters would be required to record all the relevant statements. Since each
pattern of love among 1, 2, 3, 4 is determined by assigning one of the truth values



PHIL 005 Spring, 2016 Scott Weinstein 2

> or ⊥ to each of these 16 sentence letters, we concluded that the number of
such patterns is 216. Why? Because there are two assignments to p11 and for
each of these, there are two assignments to p12, and thus 2 · 2 = 22 assignments
to them jointly (this observation is given the exalted title, “The Product Rule”).
Thus, by iterating application of the product rule another fourteen times, we
arrive at the conclusion that there are 216 possible truth assignments to the
16 sentence letters. We marveled at the fact that there are as many as 65,536
different potential love-scenarios at a table for four.

On the other hand, we considered how tame friendship is as compared with
love, in terms of the number of possible friendship-scenarios. In virtue of the fact
that friendship is symmetric and irreflexive, a friendship-scenario is determined
by assigning one of the truth values > or ⊥ to each of the 6 sentence letters
pij , for 1 ≤ i < j ≤ 4. Hence, there are only 26 = 64 possible patterns of
friendship among the group of four, less than 1/1000 of the number of potential
love-scenarios.
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2 Lecture 01.181

2.1 Introduction

Today, we began our systematic treatment of truth-functional logic. Throughout
the course we will see a few different systems for formalizing statements. Each
consists of a formal language to represent statements, and a way to interpret the
meaning of statements in that language. Truth-functional logic is the simplest
of these systems we will learn.

2.2 Components of Truth Functional Logic

1. Language

(a) sentence letters

(b) connectives

2. Interpretation

(a) A function that assigns > or ⊥ (true or false) to each sentence letter,
called a truth-assignment

(b) Fixed truth-functional semantics for each connective

Sentence letters such as p, q, r, . . . schematize statements (in natural lan-
guage) which are true or false, and connectives such as ∧,∨,¬,⊃, . . . are used
to combine sentence letters into compound schemata.

2.3 Definitions of some truth-functional connectives

Consider using the sentence letter pij to schematize the statement “i loves j,”
where 1 ≤ i, j,≤ 4. For example, p11 schematizes the statement “1 loves 1”, or
briefly, “1 is a narcissist.”

Suppose we wish to schematize the following statements using those sentence
letters:

1. all of 1, 2, 3, and 4 are narcissists;

2. none of 1, 2, 3, and 4 are narcissists;

3. at least one of 1, 2, 3, and 4 is a narcissist;

4. an odd number of 1, 2, 3, and 4 are narcissists.

In order to do so, we introduce the following truth-functional connectives.
For each connective, we display its truth-functional interpretation via a table
indicating the truth value of the compound schema as a function of the truth
values of its components.

1This lecture was given by Joel McCarthy and Owain West. Grace Zhang wrote these
notes.
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• Conjunction (and):
p q (p ∧ q)
> > >
> ⊥ ⊥
⊥ > ⊥
⊥ ⊥ ⊥

• Negation (not):
p ¬p
> ⊥
⊥ >

• Inclusive Disjunction (or)

p q (p ∨ q)
> > >
> ⊥ >
⊥ > >
⊥ ⊥ ⊥

• Exclusive Disjunction (exclusive or, xor)

p q (p⊕ q)
> > ⊥
> ⊥ >
⊥ > >
⊥ ⊥ ⊥

Note that the truth/falsity of a compound schema is completely deter-
mined by, or purely a function of, the truth/falsity of its components.
Hence, the term “truth-functional logic.”

We can now schematize conditions 1 – 4 in the above example as follows.

S1: ((p11 ∧ p22) ∧ p33) ∧ p44

S2: ((¬p11 ∧ ¬p22) ∧ ¬p33) ∧ ¬p44

S3: ((p11 ∨ p22) ∨ p33) ∨ p44

S4: ((p11 ⊕ p22)⊕ p33)⊕ p44

The first three are quite straightforward to verify; the fourth we will prove
later in Proposition 1.
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2.4 Truth assignments

Given a truth-functional schema like ((p∧ q)∨ r), we cannot determine whether
the schema is true or false unless we know whether p, q, and r are true or false.
That is, any schema requires a truth-assignment to its sentence letters before it
can be evaluated.

Definition 1 (Truth-assignment) Let X be a set of sentence letters. A truth-
assignment A for X is a mapping which associates with each sentence letter
q ∈ X one of the two truth values > or ⊥; we write A(q) for the value that A
associates to q.

Suppose S is a truth-functional schema such that every sentence letter with
an occurrence in S is a member of X. We say a truth assignment A for X
satisfies such a schema S (A |= S) if and only if S receives the value > relative
to the truth assignment A.

Example 1 Take the schema S = ((p ∧ q) ∨ r), with truth assignment A such
that A(p) = >, A(q) = ⊥, and A(r) = ⊥, we have that S receives the value ⊥.
In other words A does not satisfy S. (A 6|= S).

2.5 An Inductive Proof

Proposition 1 For every n ≥ 2 and every set X = {q1, . . . , qn} of n distinct
sentence letters, a truth assignment A for X satisfies the schema

Sn : (. . . (q1 ⊕ q2) . . .⊕ qn)

if and only if A assigns an odd number of the sentence letters in X the value >.

Proof : We proved the proposition by induction on n.

• Basis: Examination of the truth table for ⊕ suffices to establish the propo-
sition for the case n = 2.

• Induction Step: Suppose the proposition holds for a number k ≥ 2, that
is, for every truth assignment A for {q1, . . . , qk}, A |= Sk if and only if A
assigns an odd number of the sentence letters in {q1, . . . , qk} the value >;
this is our induction hypothesis. We proceed to show that the proposition
also holds for k + 1. Let A′ be an assignment to the sentence letters
{q1, . . . , qk+1} and let A be its restriction to {q1, . . . , qk}. We consider
two cases. First, suppose that A′(qk+1) = >. In this case, A′ |= Sk+1 if
and only if A 6|= Sk if and only if (by our induction hypothesis) A assigns
an even number of the sentence letters {q1, . . . , qk} the value >. Hence,
if A′(qk+1) = >, then A′ |= Sk+1 if and only if A′ assigns an odd number
of the sentence letters in {q1, . . . , qk+1} the value >. On the other hand,
suppose that A′(qk+1) = ⊥. In this case, A′ |= Sk+1 if and only if A |= Sk

if and only if (by our induction hypothesis) A assigns an odd number of
the sentence letters {q1, . . . , qk} the value >. Hence, if A′(qk+1) = ⊥,
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then A′ |= Sk+1 if and only if A′ assigns an odd number of the sentence
letters in {q1, . . . , qk+1} the value >. This concludes the proof, since either
A′(qk+1) = > or A′(qk+1) = ⊥.
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3 Lecture 01.23

3.1 The material conditional

We returned to our potential lovers and restricted attention to just two of them,
1 and 2. We asked how we could express the statement that all love is requited
among these two. The natural mode of expression is: if 1 loves 2, then 2 loves
1, and if 2 loves 1, then 1 loves 2. In order to render this directly, we introduced
the

• Material Conditional
p q p ⊃ q
> > >
> ⊥ ⊥
⊥ > >
⊥ ⊥ >

Now, using the sentence letter p11, p12, p21, p22 as earlier interpreted, we can
express the happy state that all love among 1 and 2 is requited by the schema

R : (p12 ⊃ p21) ∧ (p21 ⊃ p12).

We asked in how many of the possible love scenarios among 1 and 2 is all love
requited, and we computed that the answer is eight out of a total of sixteen such
scenarios, by determining how many truth assignments to the sentence letters
p11, p12, p21, p22 satisfy the schema R.

We discussed generalized conditionals as a route to motivating the truth-
functional interpretation of the conditional offered above. We agreed that the
statement “if an integer is divisible by six, then it is divisible by three,” is true,
and thence that each of the following statements, which are instances of this
general statement, are true.

• “If twelve is divisible by six, then twelve is divisible by three.”

• “If three is divisible by six, then three is divisible by three.”

• “If two is divisible by six, then two is divisible by three.”

Therefore, if the conditional involved is to be understood truth-functionally,
then its interpretation must satisfy the conditions imposed by the first, third,
and fourth rows of the truth-table above. On the other hand, the falsity of
the conditional “if twelve is divisible by six, then twelve is divisible by seven,”
mandates the condition imposed by the second row of the truth-table above.

3.2 The centrality of satisfaction

We emphasized that the satisfaction relation is the fundamental semantic rela-
tion, it is where language and the world meet; in the case to hand, language
consists of truth-functional schemata and the possible worlds they describe are
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truth assignments to sentence letters. As the course progresses, we will en-
counter more textured representations of the world (relational structures) and
richer languages to describe them (monadic and polyadic quantification theory).
We now define some of the central notions of truth-functional logic in terms
of satisfaction. These definitions will generalize directly to the more textured
structures and richer languages we encounter later.

Definition 2 For the following definitions, we suppose that S and T are truth-
functional schemata and that A ranges over truth assignments to sets of sentence
letters which include all those that occur in either S or T .

• S implies T if and only if for every truth assignment A, if A |= S, then
A |= T .

• S is equivalent to T if and only if S implies T and T implies S.

• S is satisfiable if and only if for some A, A |= S.

• S is valid if and only if every truth assignment satisfies S.

3.3 Examples of equivalence and the material bicondi-
tional2

We noted various equivalences, for example,

• p⊕ q is equivalent to q ⊕ p (commutativity of exclusive disjunction)

• (p⊕q)⊕r is equivalent to p⊕(q⊕r) (associativity of exclusive disjunction).

We noted that both conjunction and inclusive disjunction are also commutative
and associative, whereas the material conditional is neither. We encouraged the
audience to think of examples of (binary) truth-functional connectives which
are commutative but not associative, and associative but not commutative.

We introduced one further connective ≡, the material biconditional. We
specified its truth-functional interpretation by indicating that p ≡ q is truth-
functionally equivalent to both (p ⊃ q) ∧ (q ⊃ p) and ¬(p⊕ q).

3.4 Propositions as a heuristic

It is sometimes useful to think of a schema S as expressing a proposition, to
whit, the set of truth assignments A that satisfy S; of course, this needs to be
relativized to a collection of sentence letters X which includes all those occurring
in S. We suggested the notation:

PX(S) = {A | A is a truth assignment for X and A |= S}.

When we use this notation without the subscript X, we assume A is a truth
assignment for exactly the set of sentence letters with occurrences in S.

2This section was omitted from Monday’s lecture, but is worth reading nonetheless.
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3.5 Expressive completeness

We explored the expressive power of truth-functional logic. In the last section,
we suggested using the notion of the proposition expressed by a schema as an
intuitive vehicle for pursuing this investigation. Since the semantical correlate
of a truth-functional schema is a set of truth assignments to some finite set of
sentence letters, we can frame the question of the expressive completeness of
truth-functional logic in terms of propositions. Let X be a non-empty finite
set of sentence letters. We deploy the notation: A(X) for the set of truth
assignments to the sentence letters X, and S(X) for the set of truth-functional
schemata compounded from sentence letters all of which are members of X. We
provided the following inductive definition of S(X).

Definition 3 Let X be a nonempty finite set of sentence letters. S(X) is the
smallest set U (in the sense of the subset relation) satisfying the following con-
ditions.

• X ⊆ U.

• If σ and τ are strings over the finite alphabet X ∪ {), (,¬,⊃,≡,∨,∧,⊕},
and σ, τ ∈ U, then each of the strings ¬σ, (σ ⊃ τ), (σ ≡ τ), (σ ∨ τ), (σ ∧
τ), (σ ⊕ τ) belong to U.3

If P ⊆ A(X), we call P a proposition over X. Let X be a non-empty finite
set of sentence letters and let P be a proposition over X. Is there a schema
S ∈ S(X) such that PX(S) = P? In other words, is truth-functional logic
expressively complete? We will answer this question on Wednesday.

We briefly discussed how many propositions there are over a fixed finite set of
sentence letters. Since this, and related questions, will bulk large in Wednesday’s
lecture, I’ve included this discussion in the preview of our next class meeting.

3Here “(σ ⊃ τ)” denotes the string with the initial symbol “(” concatenated with the string
denoted by σ concatenated with the symbol “⊃” concatenated with the string denoted by τ
and with terminal symbol “)”, and likewise in all the other cases.
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4 Lecture 01.25

4.1 The expressive completeness theorem

Theorem 1 (Expressive Completeness of Truth-functional Logic) Let X
be a non-empty finite set of sentence letters and let P be a proposition over X.
There is a schema S ∈ S(X) such that PX(S) = P.

For the proof of Theorem 1, the following terminology and lemma will be useful.

Definition 4 Let X be a non-empty finite set of sentence letters and let S ∈ SX .

• S is a literal over X just in case S = p or S = ¬p, for some p ∈ X.

• S is a term over X just in case S is a conjunction of literals over X (we
allow conjunctions of length 1).

• S is in disjunctive normal form over X if and only if S is a disjunction
of terms over X (we allow disjunctions of length 1).

If Λ is a set of literals over X we write
∧

Λ to abbreviate a term which is formed
as a conjunction of the literals in Λ. Similarly, if Γ is a set of terms over X we
write

∨
Γ to abbreviate a schema in disjunctive normal form which is formed

as a disjunction of the terms in Γ.

Lemma 1 Let X be a non-empty finite set of sentence letters. For every A ∈
A(X) there is a schema TA which is a term over X such that for every A′ ∈
A(X)

A′ |= TA if and only if A′ = A.

Proof : Let X be a finite set of sentence letters and suppose A ∈ A(X). For
each p ∈ X, let lp = p, if A |= p, and let lp = ¬p, if A 6|= p. Let Λ = {lp |
p ∈ X} and let TA =

∧
Λ. It is easy to verify that for every A′ ∈ A(X),

A′ |= TA if and only if A′ = A.
Proof of Theorem 1: Fix a finite non-empty set of sentence letters X and

suppose P is a proposition over X. If P = ∅, then pick p ∈ X and note that
PX(p ∧ ¬p) = P. Otherwise, for each A ∈ P, choose a term TA, as guaranteed to
exist by Lemma 1, such that for every A′ ∈ A(X), A′ |= TA if and only if A′ =
A. Let Γ = {TA | A ∈ P} and let S =

∨
Γ. It is easy to verify that PX(S) = P.

Corollary 1 Every truth-functional schema is equivalent to a schema in dis-
junctive normal form.
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4.2 The power of a truth-functional schema: definition
and examples

We will introduce the following useful terminology.

Definition 5 All schemata are drawn from S(X) for a fixed non-empty finite
set of sentence letters X.

• A list of truth-functional schemata is succinct if and only if no two schemata
on the list are equivalent.

• A truth-functional schema implies a list of schemata if and only if it im-
plies every schema on the list.

• The power of a truth-functional schema is the length of a longest succinct
list of schemata it implies.

Examples For concreteness, we considered X = {p, q, r}. What is the length
of a longest succinct list of truth-functional schemata over X? We arrived at
the answer by proving an upper bound and a lower bound on this length.

• Upper bound: It is easy to verify that schemata S and S′ are equivalent if
and only if P(S) = P(S′). Hence, the length of a succinct list of schemata
cannot exceed the number of propositions over X, that is, the number
of subsets of the set A(X). The size of X is 3, so the size of A(X)
is 23, since determining a truth assignment to X involves three binary
choices. By the same reasoning, the number of propositions over X is
22

3

, since determining a proposition involves deciding, for each of the 23

truth assignments, whether to include or omit it. Hence, the length of the
longest succinct list is no more than 256.

• Lower bound: By Theorem 1, for every proposition over X, there is a
schema expressing it. Since schemata expressing distinct propositions are
not equivalent, it follows at once that there is a succinct list of schemata
of length 256.

We proceeded to compute the power, as defined above, of an exemplary schema;
let’s do p ∧ (q ∨ r) here. Note that a schema S implies a schema S′ if and only
if P(S) ⊆ P(S′). Thus, the power of S is the number of sets Z satisfying the
condition:

P(S) ⊆ Z ⊆ A(X). (1)

The size of P = P(p ∧ (q ∨ r)) is 3, so the size of A(X) −P = 5. It follows at
once that 25 = 32 sets Z satisfy condition (1); hence, the power of p∧ (q ∨ r) is
32.

We went on to list the numbers which are powers of truth-functional schemata
over X = {p, q, r}.
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• First note that for every S, S′ ∈ S(X) the power of S = the power of S′

if and only if |PX(S)| = |PX(S′)|, where we use |U | to denote the number
of members of the finite set U .

• In particular, if P = PX(S), then the power of S = 2(8−|P|).

• It follows at once that for each S ∈ S(X), the power of S = 2i, for some
0 ≤ i ≤ 8.

More generally, suppose Y is a finite set of sentence letters with |Y | = n. In
this case

• |A(Y )| = 2n, and

• for each S ∈ S(Y ), if P = PY (S), then the power of S = 2(2
n−|P|).

4.3 A question to ponder

We ended by posing a question: What is the length of a longest succinct list of
truth-functional schemata over X each of which has power 32?
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5 Lecture 01.30

5.1 Pondering our question

We will take up the question on which we ended Wednesday’s class meeting. Let
X = {p, q, r}. What is the length of a longest succinct list of truth-functional
schemata over X each of which has power 32? It follows from the considerations
we advanced last time that a schema has power 32 if and only if exactly three
truth assignments satisfy it. Hence the length of a longest such succinct list is
exactly the number of subsets of size three contained in a set of size eight.

5.2 Counting Selections

This led to an interlude on permutations and combinations: how many ways
can we select k members of a set of size n? There is an ambiguity here: are we
counting modes of selection, which involve the order of choices, or collections of
members selected, where the order of selection is irrelevant. Once we recognize
the ambiguity, we can proceed to count both. We introduced notation for each:
(n)k for the number of ordered sequences of k distinct elements that can be
drawn from a set of size n and

(
n
k

)
for the number of subsets of size k that are

included in set of size n. To evaluate (n)k we argued as follows. Suppose we
think of counting the ways n students could fill a row of length k in a lecture
hall. Let’s suppose the seats are labelled 1, 2, . . . , k. There are n choices for
the student to fill seat 1; once that seat is filled, there are n− 1 choices for the
student to fill seat 2; and so on until there are (n−k)+1 choices for the student
to fill seat k. Hence, by the product rule, there are n · (n− 1) · · · ((n− k) + 1)
ways of filling all k seats, that is, (n)k = n · (n− 1) · · · ((n− k) + 1). Now that
we have counted the number of ordered sequences, we can see how to count the
number of subsets. By the same reasoning, each subset of size k appears as the
content of k · (k− 1) · · · 2 · 1 ordered sequences of length k; this number is called
k factorial and is often abbreviated as k!. Hence,(

n

k

)
=

(n)k
k!

.

Observe that

(n)k =
n!

(n− k)!

from which it follows that (
n

k

)
=

n!

k! (n− k)!
.

This last formulation makes transparent a symmetry in the values of
(
n
k

)
, namely,

for every k between 0 and n,
(
n
k

)
=
(

n
n−k
)
. This accords nicely with the ob-

servation that complementation induces a one-one correspondence between the
subsets of size k and the subsets of size (n− k) that can be selected from a set
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of size n. Note also that it determines in a non-arbitrary way that the value of
0! is 1.

Let’s not forget how this all began. The length of the longest succinct list
of schemata with power 32 is

(
8
3

)
= 56.

5.3 The length of an “implicational anti-chain”

We actually used our new found ability to count selections to answer a different
question: Is there a sequence of seventy schemata S1, . . . , S70 ∈ S(X) such that
for every 1 ≤ i 6= j ≤ 70, Si does not imply Sj? Such a sequence of schemata is
called an implicational anti-chain (of length 70). As observed earlier, a schema
S ∈ S(X) implies a schema T ∈ S(X) if and only if PX(S) ⊆ PX(T ). It follows
that the answer to our question about an implicational anti-chain of length
seventy will be the same as the answer to the following question about an anti-
chain of length seventy with respect to the subset relation: Is there a list of
seventy subsets of A(X), P1, . . . , Pn, such that for every 1 ≤ i 6= j ≤ 70, Pi is
not a subset of Pj? We noted that if two finite sets, P and Q, have the same
number of members, and P is not equal to Q, then P is not a subset of Q and Q
is not a subset of P . Therefore, is there are seventy distinct subsets of A(X) all
of the same size, then the answer to our question is yes. Since A(X) has eight
members, a positive answer to our question followed immediately by evaluating(

8

4

)
=

8 · 7 · 6 · 5
4 · 3 · 2 · 1

= 70.

Note that our argument merely shows that there is an implicational anti-
chain of length 70; it does not establish that there is no longer implicational
anti-chain consisting of schemata in S(X). This is, indeed, true, but a more
sophisticated argument is required to establish this result. For those interested
in the matter, I will post a suitable reference containing a proof of Sperner’s
Theorem on the Canvas site (Van Lint and Wilson, A course in combinatorics,
Chapter 6: Dilworth’s theorem and extremal set theory).

5.4 Truth-functional Satisfiablity: Is there an efficient de-
cision procedure?

We observed that the finitary character of the semantics for truth-functional
logic immediately yields an algorithm to decide the satisfiability of schemata of
truth-functional logic. In particular, suppose S ∈ S(X) for some finite set of
sentence letters X. Note first that for each truth-assignment A ∈ A(X) there is
a simple and efficient algorithm, call it M , to determine whether A |= S. Thus,
in order to test the satisfiability of S, we need only list A(X) in some canonical
order A1, . . . , A2|X| and use M to test whether the successive Ai satisfy S. Of
course, this algorithm is not efficient, in the sense that it’s running time is
potentially exponential in the length of its input. The question whether there is
an efficient algorithm to decide the satisfiability of truth-functional schemata is
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generally regarded as one of the most significant open mathematical problems
of our time – for further information visit:

http://www.claymath.org/millennium-problems/p-vs-np-problem.
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6 Lecture 02.01

6.1 Monadic Quantification Theory

6.1.1 Sub-sentential logical structure: monadic predicates

We then initiated our study of monadic quantification theory. Statements have
significant logical form beyond the structure that can be exhibited in terms of
truth-functional compounding. For example, the conjunction of the first two
statements below implies, but does not truth-functionally imply, the third.

• All collies are mortal.

• Lassie is a collie.

• Lassie is mortal.

In order to analyze this example, we considered the following statements.

• Lassie is a collie.

• Scout is a collie.

• Rin-Tin-Tin is a collie.

These statements share the monadic predicate “© is a collie.” Monadic pred-
icates, unlike statements, are not true or false; rather, they are true of some
objects and false of other objects. For example, “© is a prime number” is true
of 2,3,5 and 7, and false of all even numbers greater than 2.

6.1.2 The extension of a monadic predicate

The extension of a monadic predicate is the collection of objects of which it is
true. The extension of the monadic predicate “© is an even number” is the set
{2, 4, 6, . . .}. The extension of the monadic predicate “© is an even prime num-
ber” is the set {2}. The extension of the monadic predicate “© is an even prime
number greater than 2” is the empty set. Distinct monadic predicates may have
the same extension. For example, the extension of the predicate “© is a warm–
blooded reptile” is also the empty set as is the extension of the predicate “©
is a collie weighing more than 300 kilograms.” We say that monadic predicates
with the same extension are coextensive. We will focus on statements whose
truth depends only on the extensions of the monadic predicates which occur
in them. We call such sentential contexts in which interchange of coextensive
predicates preserves truth–value extensional. Our focus on extensional contexts
is the natural continuation of our earlier focus on truth–functional contexts.
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6.1.3 Open sentences and the use of variables

Consider again the argument above. Intuitively, the validity of this argument
does not depend on the particular name “Lassie” being used; it would be equally
valid with any name in place of “Lassie.” This generality may be brought out by
the use of variables in place of particular names. We will form new expressions
called open sentences by putting variables “x, y, z, . . . ” for the placeholders in
monadic predicates. Open sentences are not statements. They are true or false
with respect to assignments of values to the variables they contain. For example,
the open sentence “x is an even number” is true with respect to the assignment
of 16 to “x” and false with respect to the assignment of 17 to “x” and false with
respect to the assignment of Lassie to “x.”

6.1.4 Truth-functional compounding of open sentences

We may form compounds of open sentences using truth–functional connectives.
For example, the following open sentences are truth–functionally complex.

• If x is divisible by six, then x is divisible by three.

• x is a collie and it is not the case that x weighs more than 300 kg.

We may use our prior understanding of the truth–functional connectives to
determine the truth–values of such open sentences with respect to particular
assignments of values to their variables.

6.1.5 Existential Quantification

We proceeded to introduce the existential quantifier. Consider the statement,
“there is an even prime number.” We render this statement as the application
of the existential quantifier to the open sentence,

• x is an even number ∧ x is a prime number, thus

• (∃x)(x is an even number ∧ x is a prime number).

This last sentence is true just in case there is an assignment of some object to
the variable x with respect to which the preceding open sentence is true.

6.1.6 Free and bound occurrences of variables

Consider again the example the example above.

• x is an even number ∧ x is a prime number

• (∃x)(x is an even number ∧ x is a prime number)

As noted, the first of these sentences is not simply true or false, it is true or false
with respect to an assignment to the variable “x”; we say in this instance that
the occurrences of the variable “x” are free in this sentence. On the other hand,
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the occurrences of the variable x are bound by the existential quantifier in the
second sentence; this sentence is true or false independent of any assignment to
the variable x. Note that a variable may have both free and bound occurrences
within a single sentence:

• (∃x)(x is an even number) ∧ (x is a prime number);

and may have occurrences bound by distinct quantifiers:

• (∃x)(x is an even number) ∧ (∃x)(x is a prime number).

6.1.7 Universal Quantification

Next we consider the use of the universal quantifier. We can render the state-
ment

• all numbers are even or odd

as

• (∀x) [(x is an even number) or (x is an odd number)].

The last statement is true, just in case whatever integer is assigned to the
variable x satisfies the open statement within the square brackets. Here we
see the contextual determination of a universe of discourse – when we say “all
numbers” in this context, we intend that the variable of quantification range
over all integers and not, for example, all complex numbers.

6.1.8 Monadic Schemata

As we did in the case of truth-functional logic, we will introduce a schematic
language for monadic quantificational logic. We specify the following categories
of monadic schemata.

• A one variable open schema is a truth functional compound of expressions
such as
Fx,Gx,Hx, . . . .

• A simple monadic schema is the existential or universal quantification of
a one variable open schema with variable of quantification x.

• A pure monadic schema is a truth functional compound of simple monadic
schemata.

6.1.9 Structures as interpretations of monadic schemata

We introduce structures as interpretations of monadic schemata. These play
the role that truth-assignments played in the context of truth-functional logic.
In order to specify a structure A for a schema S we need to

• specify a nonempty set UA, the universe of A;
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• specify sets FA, GA, . . . each of which is a subset of UA as the extensions
of the monadic predicate letters which occur in S;

• specify an element a ∈ UA to assign to the variable x, if x occurs free in
S.

When the variable x has no free occurrences in the schema S, we write A |= S
as shorthand for “the schema S is true in the structure A,” alternatively “the
structure A satisfies the schema S.” Otherwise, we write A |= S[a] as shorthand
for “the structure A satisfies the schema S relative to the assignment of a to
the variable x.”

6.1.10 Validity, satisfiability, implication, and equivalence

We extend the notions of validity, satisfiability, implication, and equivalence to
monadic quantificational schemata.

• A monadic schema S is valid if and only if for every structure A,A |= S.

• A monadic schema S is satisiable if and only if for some structureA,A |= S.

• A monadic schema S implies a monadic schema T if and only if for every
structure A, if A |= S, then A |= T.

• Monadic schemata S and T are equivalent if and only if S implies T , and
T implies S.

6.1.11 Counting the number of structures with fixed universe of
discourse that satisfy a schema

We discussed how to count the number of structures with a fixed universe of
discourse that satisfy a given schema. We asked, how many structures with
universe of discourse U = {1, 2, 3, 4, 5, 6} interpreting the monadic predicate
letters F and G satisfy the schema

S : (∀x)(Fx ⊃ Gx).

We observed that a structure A satisfies S if and only if FA ⊆ GA. So we need
to determine the number, call it n, of pairs of subsets Y,Z of U with Y ⊆ Z.
By using what we learned earlier about binomial coefficients, we see that

n =

i=6∑
i=0

(
6

i

)
2i =

i=6∑
i=0

(
6

i

)
2i · 16−i = (2 + 1)6 = 36.

The next to last equality is justified by the celebrated Binomial Theorem. For
those of us with no taste for binomial coefficients, we will discuss a much simpler
and direct combinatorial argument for the conclusion that n = 36.
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6.1.12 Element Types

Consider the following four one variable open schemata; we will call them (ele-
ment) types.

• T1(x) : Fx ∧Gx

• T2(x) : Fx ∧ ¬Gx

• T3(x) : ¬Fx ∧Gx

• T4(x) : ¬Fx ∧ ¬Gx

Note that a structure A satisfies the schema S if and only if it contains no
element satisfying the type T2. Since a structure is determined by the type of
each of its elements, there are as many structures with universe U satisfying S
as there are ways of sorting the members of U into the three remaining types.
For each of the six members of U , there are three types into which it could be
sorted, so by the product rule, the number of structures satisfying S is 36.

6.1.13 Counting counterexamples to an alleged implication

If R and R∗ are monadic schemata we say that a structure A is a counterexample
to the claim that R implies R∗ if and only if A |= R and A 6|= R∗. We continued
with the preceding example and counted the number of counterexamples to the
claim that the schema S implies the schema

T : (∀x)(Gx ⊃ Fx).

Again, we suppose that our structures have universe of discourse U and interpret
exactly the monadic predicate letters F and G. If a structure A satisfies both
S and T , then FA = GA. Hence, of the 36 structures satisfying S, the number
that also satisfy T is 26, that is, the number of subsets of U , assigned within
a single structure to both F and G. So the number of counterexamples to the
claim that S implies T is 36 − 26.
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7 Lecture 02.06

The central occupation of this week’s classes will be an approach to establishing
the decidability of satisfiability of pure monadic schemata complementary to
that developed in sections 25 and 26 of Deductive Logic. Our approach intro-
duces notions that we will elaborate further, when we turn to study polyadic
quantificational logic.

7.1 Three views of structures

As a warm-up to the main event, we noted that we now have three (equivalent)
ways of viewing structures, each of which may contribute a useful perspective,
depending on the problem to hand. These are

• the Canonical View, which consists of specifying the universe of discourse
and extensions for each of the (finitely many) predicate letters in play,

• the Types View, which consists of specifying a universe of discourse and
sorting it into types, that is, maximally specific descriptions that can be
framed in terms of the predicate letters in play, and

• the Venn View, which pictures the extensions of all the predicate letters
in play as intersecting regions contained in a rectangle that represents the
universe of discourse.

7.2 The small model theorem

We will prove the following Small Model Theorem for monadic logic; the decid-
ability of satisfiability of pure monadic schemata is a corollary to this result.

Theorem 2 Let S be a pure monadic schema containing occurrences of at most
n distinct monadic predicate letters. If S is satisfiable then there is a structure
A of size at most 2n such that A |= S.

7.3 Monadic similarity

The proof of Theorem 2 rests on the following lemma. In order to state the
lemma, we need to introduce some new concepts. Suppose without loss of gen-
erality that we restrict our attention to monadic schemata in which only the
predicate letters F and G occur. We say that two structures A and B are
monadically similar if and only if they satisfy exactly the same pure monadic
schemata. We explore a sufficient condition for the monadic similarity of struc-
tures.

7.4 Homomorphisms

A function h is a mapping from one set, called the domain of h to another set (it
may be the same set), called the range of h. For every element a of the domain
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of h we write “h(a)” to denote the element of the range of h to which it is
mapped. We sometimes call h(a) the h image of a or the image of a under h.
We sometiems use the notation

h : X −→ Y

to indicate that h is a function with domain X and range Y. If h : X −→ Y we
say that h is onto if and only if for every b ∈ Y there is an a ∈ X such that
h(a) = b. In this case, we will also say that h is surjective.

Let A and B be structures. We call h a homomorphism from A onto B
just in case h is an onto function with domain UA and range UB satisfying the
following condition: for every monadic predicate letter P and every m ∈ UA,

m ∈ PA if and only if h(m) ∈ PB .

If there is a homomorphism from A onto B, we say that B is a surjective
homomorphic image of A.

7.5 Examples

We illustrated the above notions with some examples. Consider the following
structures.

A : UA = {n | n is a positive integer.}
FA = {n | n is an even positive integer.}
GA = {n | n is a prime positive integer.}

B : UB = {n | n is a positive integer.}
FB = {n | n is an odd positive integer.}
GB = {n | n is a prime positive integer.}

We observed that though A and B have the same regions occupied in their
respective Venn diagrams, and thus realize the same types, there is no homo-
morphism from A onto B, nor is there a homomorphism from B onto A. We
will shortly see that A and B have a common surjective homomorphic image,
that is, there is a structure C such that there is a homomorphism from A onto
C and a homomorphism from B onto C.
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8 Lecture 02.08

8.1 Homomorphisms and monadic similarity: the central
lemma

The next lemma provides a useful sufficient condition for monadic similarity.

Lemma 2 Let A and B be structures. If there is a homomorphism from A onto
B, then A is monadically similar to B.

Proof : Let A and B be structures and suppose that h is a homomorphism of A
onto B. It suffices to show that for every simple monadic schema S,

A |= S if and only if B |= S,

since every pure monadic schema is a truth-functional compound of simple
monadic schemata.

We begin by observing that for every c ∈ UA and every one variable open
schema S, A makes S true with respect to the assignment of c to “x,” if and only
if B makes S true with respect to the assignment of h(c) to “x.” This follows
immediately from the fact that h is a homomorphism.

Consider the simple schema S and suppose that S is the existential quantifi-
cation of the the one variable open schema T (the case of universal quantification
is treated similarly). Suppose A |= S. Then, for some c ∈ UA, A makes T true
with respect to the assignment of c to “x.” It follows that B makes T true with
respect to the assignment of h(c) to “x.” Hence, B |= S.

Conversely, suppose B |= S. Then, for some c ∈ UB , B makes T true with
respect to the assignment of c to “x.” Since h is surjective, there is a d ∈ UA

with h(d) = c. It follows at once that A makes T true with respect to the
assignment of d to “x.” Hence, A |= S.

8.2 Types and monadic similarity

We recall our discussion of element types:

• T1(x) : Fx ∧Gx

• T2(x) : Fx ∧ ¬Gx

• T3(x) : ¬Fx ∧Gx

• T4(x) : ¬Fx ∧ ¬Gx

We say that a structure realizes a given type Ti just in case it makes the exis-
tential simple schema (∃x)Ti true.

Example 2 The following structure realizes all four of the types listed above.

A : UA = {1, 2, 3, 4}, FA = {1, 3}, GA = {1, 2}

Moreover, the 14 proper substructures of A realize exactly the fourteen proper
nonempty subsets of the types listed above.
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Lemma 2 yields a useful necessary and sufficient condition for monadic similar-
ity.

Lemma 3 A and B realize the same types if and only if they are monadically
similar.

Proof : If A and B realize the same types, then there is a single structure C
which is a surjective homomorphic image of both A and B. Therefore, by our
earlier result, A is monadically similar to C and B is monadically similar to C.
It follows at once that A is monadically similar to B. The reverse implication
follows immediately from the fact realization of a type is expressed by a pure
monadic schema.

8.3 The small model theorem and the decidability of sat-
isfiability

Theorem 2 is an immediate corollary to Lemma 3.
Proof (of Theorem 2): It follows at once from Lemma 3 and Example 2, that

there is a collection X of 15 structures each of size ≤ 4 such that for any pure
monadic schema S involving only the predicate letters “F” and “G,” if S is
satisfiable, then there is a structure A ∈ X such that A |= S. More generally,
there is a collection X of 2(2

n)−1 structures each of size ≤ 2n such that for any
pure monadic schema S involving only the predicate letters “F1,”. . . “Fn,” if S
is satisfiable, then there is a structure A ∈ X such that A |= S.

Corollary 2 There is a decision procedure to determine whether a pure monadic
schema is satisfiable.

8.4 The small model theorem and the decidability of sat-
isfiability: an elaboration

We elaborated the proof of the Small Model Theorem. Again, we focused on the
case of schemata involving only the monadic predicate letters F and G. We drew
pictures, in “Types View”, of 15 structures A1, . . . , A15 each with universe of
discourse included in {1, 2, 3, 4} and no two with the same universe of discourse.
Recall the element types:

• T1(x) : Fx ∧Gx

• T2(x) : Fx ∧ ¬Gx

• T3(x) : ¬Fx ∧Gx

• T4(x) : ¬Fx ∧ ¬Gx

We constructed the structures Ai by letting j realize the type Tj(x) for each
j ∈ UAi . Let A be an arbitrary structure. It is clear from our construction that
there is an i such that Ai realizes exactly the same types as A. Moreover, since
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Ai has exactly one element realizing any type that it realizes, Ai is a surjective
homomorphic image of A. It follows at once from the result of our last class that
A is monadically similar to Ai, that is, they satisfy exactly the same set of pure
monadic schemata. Having thus concluded the proof, we turned to deriving a
list of useful corollaries.

Corollary 3 1. For every schema S, if S is satisfiable, then there is an
1 ≤ i ≤ 15 such that Ai |= S.

2. There is an algorithmic decision procedure to determine whether a schema
S is satisfiable.

3. Schema S implies schema T if and only if

{i | Ai |= S and 1 ≤ i ≤ 15} ⊆ {i | Ai |= T and 1 ≤ i ≤ 15}.

4. Schemata S and T are equivalent if and only if

{i | Ai |= S and 1 ≤ i ≤ 15} = {i | Ai |= T and 1 ≤ i ≤ 15}.
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9 Lecture 02.15

9.1 The expressive power of monadic quantification the-
ory

With these results in hand, we proceeded to analyze the expressive power of
monadic schemata. Recall the notions deployed in Problem Set 2, but now
upgraded to apply to monadic schemata.

• A list of pure monadic schemata is succinct if and only if no two schemata
on the list are equivalent.

• A pure monadic schema implies a list of schemata if and only if it implies
every schema on the list.

• The power of a pure monadic schema is the length of a longest succinct
list of pure monadic schemata it implies.

We continued to focus on the vocabulary consisting of the monadic predicate
letters F and G and answered the following questions.

Question 1 What is the length of a longest succinct list of pure monadic schemata
(in the vocabulary consisting of just the monadic predicate letters F and G)?

Answer : It follows immediately from Corollary 3, part (4) that the length of
a longest such list is 215, since a schema is determined, up to equivalence, by
which of the structures A1, . . . , A15 satisfy it.

Question 2 For which numbers n is there a schema S whose power is n?

Answer : It follows from Corollary 3, parts (3) and (4), that the power of a
schema S is determined by the size j of {i | Ai |= S and 1 ≤ i ≤ 15}, in
particular, the power of S is 215−j ; for pure schemata S, j may be any number
between 0 and 15. This answers Question 2.

Definition 6 • If X is a finite set, we write |X| for the number of members
of X.

• If S is a schema, we write mod(S, n) for the set of structures A such that
A |= S and UA = {1, . . . , n}.

Question 3 What is the length of a longest succinct list of pure schemata S
such that mod(S, 4) = 4?

Answer : Let V = {A | UA = {1, 2, 3, 4}}. Recall that A ≈M B if and only
if for all pure monadic schemata S, A |= S if and only B |= S. For A ∈ V,
let Â = {B ∈ V | B ≈M A}. In order to answer the question, it suffices
to determine the size of Â for each A ∈ V. First, note that the size of Â is
determined by the number of types realized by A. We computed these sizes:
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• If A realizes exactly 1 type, then the size of Â is 1. There are
(
4
1

)
structures

in V satisfying exactly 1 type.

• If A realizes exactly 2 types, then the size of Â is 24 − 2. There are
(
4
2

)
structures in V satisfying exactly 2 types.

• If A realizes exactly 3 types, then the size of Â is
(
4
2

)
· 3!. There are

(
4
3

)
structures in V satisfying exactly 3 types.

• If A realizes exactly 4 types, then the size of Â is 4!. There are
(
4
4

)
structures in V satisfying exactly 4 types.

It is now easy to see that the answer to Question 3 is 1; in particular, one such
list consists of the single schema

(∀x)(Fx ∧Gx) ∨ (∀x)(Fx ∧ ¬Gx) ∨ (∀x)(¬Fx ∧Gx) ∨ (∀x)(¬Fx ∧ ¬Gx).
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10 Lecture 02.20

10.1 Polyadic predicates and their extensions

We will commence our study of polyadic quantification theory. This topic will
remain our focus through the end of the Term. As opposed to truth-functional
and monadic logic which, as we’ve seen, are of limited expressive power, polyadic
quantification theory allows for faithful schematization of vast tracts of scientific
discourse. But we begin, not with science, but with literature.

Consider the sentences

• Romeo loves Juliet.

• Someone loves Juliet.

• Romeo loves someone.

The first sentence implies the second and the third sentence. We can schematize
the second, by making use of the monadic predicate “© loves Juliet” thus

(∃x)(x loves Juliet).

And we can schematize the third, by making use of the monadic predicate
“Romeo loves ©” thus

(∃x)(Romeo loves x).

But if we wish to schematize the sentence “someone loves someone,” which is
also implied by the first sentence above, we need to expand our resources to
include dyadic predicates.

• 1 loves 2

• 〈Romeo, Juliet〉 is in the extension of “ 1 loves 2 .”

• (∃x)(∃y)(x loves y)

The extension of a dyadic predicate is a set of ordered pairs.

• 〈45, 47〉 is in the extension of “ 1 ≤ 2 .”

• 〈45, 47〉 is not in the extension of “ 2 ≤ 1 .”

• 〈47, 45〉 is in the extension of “ 2 ≤ 1 .”

Similarly, the extension of a triadic predicate, such as

“ 1 is further from 2 than it is from 3 ,”

is a set of ordered triples.
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10.2 Quantifier alternation

Consider the following statements involving alternation of quantifiers.

• Everyone loves someone (or other).

S1 : (∀x)(∃y)(x loves y).

• There is someone whom everyone loves.

S2 : (∃y)(∀x)(x loves y).

• Everyone is loved by someone.

S3 : (∀y)(∃x)(x loves y).

• Someone loves everyone.

S4 : (∃x)(∀y)(x loves y).

The second statement implies the first, and the fourth implies the third. We
gave counterexamples to show that no other implications obtain. Consider the
following three structures A,B,C.

Structure Universe Extension of L
A {a, b} {〈a, a〉, 〈b, b〉}
B {a, b} {〈b, b〉, 〈a, b〉}
C {a, b} {〈b, b〉, 〈b, a〉}

Note that A |= S1 and A |= S3, while A 6|= S2 and A 6|= S4, from which
it follows, by definition, that S1 does not imply S2, nor does S3 imply S4.
Moreover B |= S2, but B 6|= S3, and C |= S4, but C 6|= S1; thus S2 does not
imply S3, and S4 does not imply S1. Failure of the remaining (non-trivial)
implications now follows. For example, S1 does not imply S4, for otherwise,
since S2 implies S1, and S4 implies S3, it would follow that S2 implies S3, to
which B is a counterexample. We summarize the results of this discussion in
the following matrix 〈aij | 1 ≤ i, j ≤ 4〉, where aij = 1 if and only if the schema
in the i-th row implies the schema in the j-th column.

Si implies Sj S1 S2 S3 S4

S1 1 0 0 0
S2 1 1 0 0
S3 0 0 1 0
S4 0 0 1 1
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10.3 Scope ambiguity

We proceeded to explore “scope ambiguities.” Consider the statement, “ev-
erybody loves a lover.” We observed that “x is a lover” can be schematized
as (∃y)Lxy, and corresponding to the two readings, “everybody loves someone
who is a lover”, and “if someone is a lover, then everybody loves her” we have
the respective schematizations:

•
(∀z)(∃x)((∃y)Lxy ∧ Lzx), versus

•
(∀x)((∃y)Lxy ⊃ (∀z)Lzx).

We observed that a structure A satisfies the second schema if and only if either
LA is empty or LA = UA×UA, the cartesian product of the universe of A with
itself. On the other hand, if a structure B satisfies the first schema, then LB

is non-empty; moreover, if B consists of a pair of requiting lovers at least one
of whom is not a narcissist, B satisfies the first, but not the second, schema.
Thus, neither disambiguation of the original sentence implies the other.
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11 Lecture 02.22

11.1 Some properties of binary relations

We went on to discuss several important properties of relations.

• LA is reflexive if and only if

A |= (∀x)Lxx.

• LA is irreflexive if and only if

A |= (∀x)¬Lxx.

• LA is symmetric if and only if

A |= (∀x)(∀y)(Lxy ⊃ Lyx).

• LA is asymmetric if and only if

A |= (∀x)(∀y)(Lxy ⊃ ¬Lyx).

• LA is transitive if and only if

A |= (∀x)(∀y)(∀z)(Lxy ⊃ (Lyz ⊃ Lxz)).

• A is a simple graph if and only if LA is irreflexive and symmetric.

11.2 Identity

We continued our discussion of the expressive power of polyadic quantification
theory. We started by introducing a new logical dyadic predicate, identity,
which allows us to “put the quant into quantification.” The identity relation
“=” has a uniform interpretation over all structures A namely =A is equal to
{〈a, a〉 | a ∈ UA}. Since the interpretation of the identity relation is uniform,
we omit mention of it when we specify structures.

11.3 Numerical quantifiers

By making use of the identity relation, we can introduce, for each integer k ≥ 1,
the quantifiers “there are at least k x’s such that S(x)”, “there are at most k
x’s such that S(x)”, and “there are exactly k x’s such that S(x)” as follows.

(∃k≤x)S(x) : (∃x1) . . . (∃xk)(
∧

1≤i<j≤k xi 6= xj ∧
∧

1≤i≤k S(xi))

(∃≤kx)S(x) : ¬(∃k+1≤x)S(x)
(∃=kx)S(x) : (∃≤kx)S(x) ∧ (∃k≤x)S(x)
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Let’s use |X| to denote the number of members of a set X. In order to clarify
the import of these quantifiers we introduced the notion of the set defined by a
one variable open schema S(x) in a structure A (written S[A]):

S[A] = {a ∈ UA | A |= S[x|a]}.

That is, S[A] is the set of members of UA that satisfy S(x) in A. Observe that
A |= (∃k≤x)S(x) if and only if k ≤ |S[A]|, and similarly for the other two newly
introduced quantifiers. We proceeded to explore the use of these quantifiers to
define regular simple graphs.

11.4 Regular graphs

Recall that a graph is structure that interprets a single dyadic predicate letter
“L” (these are sometimes also called directed graphs to emphasize that the edges
have directionality), and we declared that, unless otherwise clearly stated, we
will restrict our attention for (at least) this lecture and the next to structures
that are graphs. A graph A is simple if and only if LA is both irreflexive
and symmetric. We introduced the abbreviation SG for the conjunction of the
schemata expressing irreflexivity and symmetry, which we abbreviated as Irr and
Sym, respectively.

Suppose A is a simple graph and a ∈ UA. The neighborhood of a in A is
{b ∈ UA | 〈a, b〉 ∈ LA} and the degree of a is |{b ∈ UA | 〈a, b〉 ∈ LA}|. That is,
the degree of a node a in a simple graph A is the number of neighbors of a in
A, equivalently, the number of edges incident with a in A. A simple graph is
k-regular if and only if all nodes of the graph have degree k. We can schematize
this condition, using the dyadic predicate L for the edge relation, as

(∀y)(∃=kx)Lyx.

We discussed the collections of 1-regular and 2-regular simple graphs. We
noted that every 1-regular graph consists of a set of independent edges, and that
a finite 2-regular graph consists of a collection of independent simple cycles, that
is, graphs that may be drawn in the plane as a disjoint finite collection of disjoint
polygons. We observed that the bi-infinite simple chain is also 2-regular and
that polygons and bi-infinite chains exhaust the possible connected components
of 2-regular graphs.

11.5 Counting graphs

We proceeded to count graphs with a fixed universe of discourse. We defined

mod(S, n) = {A | A |= S and UA = {1, . . . , n}}.

Note that for every structure A, A |= (∀x)x = x, thus mod((∀x)x = x, n) is the
set of all graphs with universe of discourse {1, . . . , n}. We counted the number
of graphs A with UA = {1, 2, 3, 4} (= |mod((∀x)x = x, 4)|) as follows. We noted
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that any such graph is determined by choosing which of the sixteen possible
edges from i to j to draw, where 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4; that is, a graph with
this universe of discourse is determined by 16 binary choices, so, by the product
rule, there are 216 such graphs. We noted that analogous reasoning leads to the
conclusion that there are 2n

2

graphs with universe of discourse {1, . . . , n}. And
similarly, since a simple graph with universe of discourse {1, . . . , n} is determined
by making a choice from a collection of

(
n
2

)
possible undirected edges, there are

2(n
2) simple graphs A with UA = {1, . . . , n}.

We left it as a stimulating recreational activity to calculate the number of
1-regular simple graphs with universe of discourse {1, . . . , n}.
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12 Lecture 02.27

12.1 Functional relations

You may already have encountered functions, such as the mapping f that sends a
real number x to its square x2. If so, you probably saw this function represented
in cartesian coordinates via a graph, that is, the set of all ordered pairs of real
numbers 〈x, x2〉 for x ∈ R. For our purposes, we consider this as a structure, in
particular, a directed graph A with UA = R and LA = {〈x, x2〉 | x ∈ R}. This
structure satisfies the following schemata.

• Tot: (∀x)(∃y)Lxy

• SV: (∀x)(∀y)(∀z)((Lxy ∧ Lxz) ⊃ y = z)

The first of these says that the L is total, that is, everything is related (here think
“mapped to”) at least one thing, and the second says that L is single-valued,
that is, everything is mapped to at most one thing. Their conjunction, which
we abbreviate to Fun, says that L is a total function, that is, if A |= Fun, then
LA is the graph of a total function with domain UA and range (contained in)
UA. We went on to consider some special types of function, namely injections,
surjections, and bijections. An injection is a 1-1 function; you may be familiar
with the idea in terms of the “horizontal line rule”; we applied this rule to verify
that the squaring function mentioned above is not an injection. We schematize
the property that “L” is the graph of an injection as follows.

• Inj: (∀x)(∀y)(∀z)((Lxz ∧ Lyz) ⊃ x = y)

A surjection is an onto function, that is, every member of the universe is the
image of some input to the function, schematically:

• Sur: (∀x)(∃y)Lyx

We noted that the squaring function is not a surjection on R: no negative
number is the square of a real number. We observed that the function which
maps a real number to its cube is both an injection and a surjection on R; we call
such functions bijections and we introduced Bij to abbreviate the conjunction
of Inj and Sur.

Since the only examples of functions we considered so far were either bi-
jections (the cubing function) or neither injections nor surjections (the squar-
ing function) we sought for examples of functions which are one but not the
other. This led us to Dedekind’s definition of “infinite”, via the following
route. We first observed that for any structure A with a finite universe of
discourse, A |= Fun ∧ Inj if and only if A |= Fun ∧ Sur (and hence, if and only
if A |= Fun ∧ Bij). We then noted that there are functions which are injections
but not surjections. For example, consider the structure B where UB = N and
LB = {〈n, n+ 1〉 | n ∈ N} and observe that B |= Fun ∧ Inj ∧ ¬Sur. It is sim-
ilarly easy to construct functions which are surjections but not injections, for
example, the function on N that maps a number n to dn/2e. A set X is said to
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be Dedekind infinite if and only if there is a function with domain X and range
contained in X which is injective but not surjective.

Next, we touched briefly on the topic of multivariate functions; we restricted
our attention to binary functions whose graphs we represent as the interpretation
of a triadic predicate symbol R. The following schema Bfun expresses both
totality and single-valuedness, that is, a structure A satisfies Bfun if and only if
RA is the graph of a total binary function on UA..

• Bfun: (∀x)(∀y)(∃z)(∀w)(Rxyw ≡ w = z)

The next schema Binj schematizes the notion of injection for binary functions,
that is, a structure A satisfies the conjunction of Bfun and Binj if and only if
RA is the graph of an injective binary function.

• Binj: (∀v)(∀w)(∀x)(∀y)(∀z)((Rvwz ∧Rxyz) ⊃ (v = x ∧ w = y))

We observed that if A is a finite structure and A |= Bfun ∧ Binj, then |UA| = 1.
On the other hand, we noted that the binary function which maps a pair of
positive integers m and n to 2m · 3n is an injection. This shows that there are
at least as many positive integers as there are positive rational numbers, since
every positive rational number can be represented by a pair of integers. This
may seem odd, since, in their usual order, between any two positive integers
there are infinitely many rational numbers.

12.2 Tournaments and orderings

We went on to consider (all-play-all, no-ties) tournaments. We say a directed
graph is a tournament if and only if it satisfies the conjunction of the following
two conditions, called asymmetry and comparability.

• Asy: (∀x)(∀y)(Lxy ⊃ ¬Lyx)

• Comp: (∀x)(∀y)((x 6= y ⊃ (Lxy ∨ Lyx)

We abbreviate the conjunction of Asy and Comp to Tour. Finally, we picked
out a particularly important class of tournaments, those without cycles. We
characterized these as the transitive tournaments, that is, those satisfying the
following schema.

• Trans: (∀x)(∀y)(∀z)(Lxy ⊃ (Lyz ⊃ Lxz))

Transitive tournaments are called strict linear orders; we abbreviate the con-
junction of Tour and Trans to SLO.

12.3 Counting functions and tournaments

We counted the number of finite structures with universe of discourse {1, . . . , n}
that satisfy various conditions. We’d already noted that there are 2n

2

graphs

and 2(n
2) simple graphs with universe of discourse {1, . . . , n}. We began by

showing that
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• |mod(Fun, n)| = nn;

• |mod((Fun ∧ Inj), n)| = n!;

• |mod(Asy, n)| = 3(n
2);

• |mod(Tour, n)| = 2(n
2);

• |mod(SLO, n)| = n!;

• |mod(Bfun, n)| = n(n
2).

In each case, clear thinking and the product rule sufficed for the calculation.
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13 Lecture 03.01

We counted the number of labelled (colored) simple graphs that satisfy various
conditions that can be expressed by quantificational schemata.

Recall that a simple graph is 2-regualr if and only if it satisfies the schema:

• 2reg: (∀x)(∃=2y)Lxy, which is equivalent to

• (∀x)(∃y)(∃z)(y 6= z ∧ (∀w)(Lxw ≡ (w = y ∨ w = z))).

Let S be the conjunction of 2reg and SG. We calculated |mod(S, 6)|. We began
by reminding ourselves that if A is finite and A |= S then A is a disjoint union
of cycles. This led immediately to the observation that if A ∈ mod(S, 6) then
A must consist of two disjoint triangles, or a single hexagon. So in order to
complete our calculation, we just need to determine how many distinct ways we
can label a structure of one or the other of these shapes. Suppose the unlabeled
structure T consists of two triangles, call them the top triangle and the bottom
triangle. We can label the top triangle with any set X ⊆ [6] of size three, leaving
[6]−X to label the bottom triangle. At first blush, this suggests that there are(
6
3

)
distinct labelings of T. But notice that we get the same labeled structure,

if we use [6]−X to label the top triangle, and X to label the bottom triangle,
so there are

(
6
3

)
/2 = 10 distinct labelings of T. Next, suppose the unlabeled

structure H consists of a single hexagon. We used our prior calculation that there
are 6! strict linear orders of [n] to calculate the number of distinct labelings of
H. For each such linear order, we can “wrap it around” the hexagon starting
from a fixed position to arrive at a labeling. It is clear that the reverse of any
order gives the same labeling as the order itself, as do each of the orders that
arise by starting at the i-th position of the given order, for i > 1, and continuing
on beyond the sixth position with the first i − 1 elements of the given order.
Thus, the total number of labelings of H is 6!/(6 · 2) = 60. It follows that
|mod(S, 6)| = 10 + 60 = 70.

Next, we introduced a monadic predicate letter “F” to “color” the nodes of
our graphs. We introduced a further condition, distinguished end :

• DE : (∀x)(∀y)(Lxy ⊃ (Fx⊕ Fy)).

We considered the schema T : the conjunction of SG, 2reg, and DE. We noted
that the connected graphs that satisfy T are exactly the even length cycles. It
follows at once that |mod(T, n)| > 0 if and only if n is an even number greater
than 2. We introduced the notion of the spectrum of a schema to describe this.

Definition 7 Let S be a schema. Spec(S) = {n | |mod(S, n)| > 0}.

Thus, Spec(T ) = {2i | i > 1}.
We calculated |mod(T, 6)|. The only shape allowed in this case is the hexagon,

and each hexagon admits two possible colorings that satisfy DE. Hence, it fol-
lows from our earlier calculation that |mod(T, 6)| = 2 · 6!/(6 · 2) = 120.
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14 Lecture 03.13

14.1 The Spectrum of a Schema

We began to discuss another interesting aspect of the expressive power of
polyadic quantification theory. We write Z+ for the set of positive integers
{1, 2, 3, . . .}. The spectrum of a schema S (written Spec(S)) is defined as fol-
lows.

Spec(S) = {n ∈ Z+ | mod(S, n) 6= ∅}.

We can restate the definition in slightly different terms. Say that a schema S
admits a positive integer n if and only if there is a structure A such that A |= S
and |UA| = n. Then Spec(S) is exactly the set of positive integers n such that
S admits n.

14.2 Finite Sets and Co-finite Sets are Spectra

Let F be a finite set of positive integers. We asked, “Is there a schema S
such that Spec(S) = F?” We began with singletons and showed that for every
positive integer n, there is a schema, call it Sn such that Spec(Sn) = {n}. We
may take Sn to be the following schema.

(∃x1) . . . (∃xn)
∧

1≤i<j≤n

xi 6= xj ∧ ¬(∃x1) . . . (∃xn+1)
∧

1≤i<j≤n+1

xi 6= xj

It follows at once that for any finite set of positive integers F = {n1, . . . , nk},

Spec(Sn1
∨ . . . ∨ Snk

) = F.

Moreover, we noted that

Spec(¬(Sn1 ∨ . . . ∨ Snk
)) = Z+ − F.

Thus, every finite set of positive integers and the complement of every finite set
of positive integers is a spectrum (the latter sets are called co-finite).

14.3 Complementation and the Spectrum Problem

It is actually quite unusual that the spectrum of the negation of a schema
S is equal to the complement of the spectrum of S. We considered the fol-
lowing example. Recall the schema SG ∧ 1reg which defines the collection of
1-regular simple graphs. We reminded ourselves that we’d already noticed that
Spec(SG ∧ 1reg) is the set of even numbers, that is, Spec(SG ∧ 1reg) = {2i | i ∈
Z+}. On the other hand, Spec(¬(SG ∧ 1reg)) = Z+. This behavior is actually
typical. Later in the course we may be in a position to prove the following im-
portant fact: if the spectrum of a schema S is neither finite nor cofinite, then the
spectrum of the negation of S is not equal to the complement of the spectrum
of S. This led to a brief discussion of the question, “Is there a schema S such
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that the complement of the spectrum of S is not the spectrum of any schema
whatsoever?” Nobody knows the answer to this question. It is known that a
set of positive integers is a spectrum if and only if it is in the complexity class
NE, the set of problems solvable in non-deterministic (linear) exponential time
on a Turing machine. For those of you who might like to learn more about this
open problem, I’ve uploaded a paper “Fifty Years of the Spectrum Problem” to
the course Canvas site.

14.4 Further Examples of Infinite, Co-infinite Spectra

We went on to modify the schema SG ∧ 1reg to give an example of a schema
whose spectrum is the set of odd numbers. The modified schema states the
condition that there is an isolated node w, and every node other than w has
degree one, in addition to ensuring that any satisfying structure is a simple
graph.

We presented a more substantial example, a schema S with Spec(S) = {k2 |
k ∈ Z}. The schema involved a triadic predicate letter H and a monadic
predicate F . S is the conjunction of the following schemata.

• (∀x)(∀y)((Fx ∧ Fy) ⊃ (∃z)(∀w)(Hxyw ≡ w = z))

• (∀x)(∀y)(∀z)(Hxyz ⊃ (Fx ∧ Fy))

• (∀x)(∃y)(∃z)Hyzx

• (∀x)(∀y)(∀z)(∀w)(∀v)((Hxyv ∧Hzwv) ⊃ (x = z ∧ y = w))

Suppose A |= S. The conjunction of the first two schemata guarantee that HA is
the graph of a binary function mapping FA×FA to UA. Further conjoining the
third and fourth schemata guarantee that this function is a bijection, thereby
insuring that |UA| is a perfect square.
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15 Lecture 03.15

Today, we looked at another important class of graphs, namely, equivalence
relations, and saw how they can be put to use in generating schemata with a
wide range of spectra. A graph A is an equivalence relation if and only if LA is
reflexive, symmetric, and transitive, that is, if and only if A |= Eq, where Eq is
the conjunction of the following schemata.

• Refl: (∀x)Lxx

• Sym: (∀x)(∀y)(Lxy ⊃ Lyx)

• Trans: (∀x)(∀y)(∀z)(Lxy ⊃ (Lyz ⊃ Lxz))

Now suppose we’d like to construct a schema S such that

• S implies Eq, and

• Spec(S) = {3i+ 2 | i ∈ Z+ ∪ {0}}.

The easiest way to meet the first condition is to formulate S as a conjunction,
one conjunct of which is Eq itself. But what more should we say? Well, the
universe UA of an equivalence relation A is partitioned into mutually disjoint
equivalence classes by the relation LA; for each a ∈ UA, the equivalence class
â of a, is {b ∈ UA | 〈a, b〉 ∈ LA}. Now if we can construct a schema T that
says every equivalence class but one is of size three, and that the exceptional
equivalence class is of size two, then we may take S to be the conjunction of Eq
and T . The following schema T does the job.

(∃x1)(∃x2)(x1 6= x2 ∧ (∀w)(Lwx1 ≡ (w = x1 ∨ w = x2))∧
(∀y1)((y1 6= x1 ∧ y1 6= x2) ⊃ (∃y2)(∃y3)(y1 6= y2 ∧ y1 6= y3 ∧ y2 6= y3∧
(∀v)(Lvy1 ≡ (v = y1 ∨ v = y2 ∨ v = y3)))))

We generalized this to show that for every j and 0 ≤ k < j, there is a schema
S such that S implies Eq, and Spec(S) = {nj + k | n ∈ Z+ ∪ {0}}.
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16 Lecture 03.20

16.1 Isomorphisms and automorphisms

We began with the following example. Consider the structures

• A: UA = [3], LA = {〈1, 2〉, 〈1, 3〉}, and

• B: UB = [3], LB = {〈2, 1〉, 〈2, 3〉}.

A and B look very similar. We can bring out their similarity by considering the
the function f : [3] 7→ [3] with f(1) = 2, f(2) = 1, and f(3) = 3. The function
f is a bijection and is edge-preserving, that is, for every i, j ∈ [3], 〈i, j〉 ∈ LA

if and only if 〈f(i), f(j)〉 ∈ LB . We say f is an isomorphism of A onto B, and
that A and B are isomorphic (written A ∼= B). These notions are so important
that we pause to enshrine them in a definition.

Definition 8 A function h is an isomorphism from A onto B if and only if h
is a bijection from UA onto UB such that for all a, b ∈ UA, 〈a, b〉 ∈ LA if and
only if 〈h(a), h(b)〉 ∈ LB.

A is isomorphic to B (A ∼= B) if and only if there is an isomorphism h from
A onto B.

Consider again the structure A described above, but now consider the func-
tion g with g(1) = 1, g(2) = 3, and g(3) = 2. The function g is an automorphism
of A, that is, an isomorphism of A onto itself. Again, a definition is in order.

Definition 9 A function h is an automorphism of A if and only if h is an
isomorphism of A onto A. Aut(A) = {h | h is an automorphism of A}.

Note that if A ∼= B, then for every schema S, A |= S if and only if B |= S.

16.2 The image of a structure

We continued to consider the structure A. We listed all the bijections of [3] onto
[3].

1 2 3
f1 1 2 3
f2 2 1 3
f3 3 2 1
f4 1 3 2
f5 2 3 1
f6 3 1 2

We called this set of bijections S3 (more on this notation below) and introduced
the notion of the image of a structure C with UC = [3] (h[C]) under h ∈ S3:
Uh[C] = UC and Lh[C] = {〈h(i), h(j)〉 | 〈i, j〉 ∈ LC}. It follows that for every
such C and h, h is an isomorphism of C onto h[C]. We next observed, with
respect to the examples A and B above, that B = f2[A] and that Aut(A) =
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{f1, f4}. We also noted that f5[A] = B and that f3[A] = f6[A] is a third
isomorphic copy of A distinct from both A and B. That is, there are three
labeled structures with universe [3] that are isomorphic to A. We marveled at
the identity

|S3| = |Aut(A)| · (the number of labeled copies of A). (2)

The next section contains a more substantial explanation of this identity than
we had time for in class.

16.3 A new way of counting labeled structures: the Orbit-
Stabilizer Theorem

For every positive integer k we write [k] for {1, . . . , k} and Sk for the set of bijec-
tions from [k] onto [k] (also called the permutation group on or the symmetric
group on [k]). These latter terms emphasize the following algebraic aspect: we
may think of Sk as an algebra with a binary operation ◦, a unary operation
−1, and a distinguished element e, where, for permutations f, g ∈ Sk, f ◦ g is
the permutation resulting from the composition of f and g, that is, f ◦ g = h
if and only if for every i ∈ [k], h(i) = f(g(i)); f−1 is the permutation which
is the inverse of f ; and e stands for the identity function on [k]. With these
understandings, you can verify that Sk is a group:

• ◦ is an associative operation, that is, (f ◦g)◦h = f ◦(g◦h), for all f, g ∈ Sk;

• e is an identity with respect to ◦, that is, e ◦ f = f ◦ e = f , for all f ∈ Sk;
and

• f ◦ f−1 = f−1 ◦ f = e, for all f ∈ Sk.

We write Gk for the set of simple graphs A with UA = [k]. For each f ∈ Sk
and A ∈ Gk, we define f [A] to be the graph with universe [k] such that for all
i, j ∈ [n], 〈f(i), f(j)〉 ∈ Lf([A]) if and only if 〈i, j〉 ∈ LA. Note that f is an
isomorphism of A onto f [A]. This is an example of a group action – the group
Sk acts on the set Gk via the assignment of f [A] to A. Verify that for all A ∈ Gk

and f, g ∈ Sk,

• (f ◦ g)[A] = f [g[A]], and

• e[A] = A.

Recall that Aut(A) is the set of automorphisms of A. In the current context,
for A ∈ Gk, Aut(A) is often called the stabilizer of A, since f ∈ Aut(A) if and
only if f [A] = A. The orbit of A under the action of Sk (written orb(A,Sk))
is {h[A] | h ∈ Sk}. The following result is a special case of the Orbit-Stabilizer
Theorem.

Theorem 3 For all A ∈ Gn,

|Sn| = |orb(A,Sn)| · |Aut(A)|.
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Proof : Let A ∈ Gk. We define an equivalence relation ∼ on Sk: for all f, g ∈
Sk, f ∼ g if and only if (f−1 ◦ g) ∈ Aut(A). (You should verify that ∼ is
an equivalence relation, for example, it is reflexive, that is, f ∼ f , because
f−1 ◦ f = e and e ∈ Aut(A); continue and show ∼ is symmetric and transitive.)
We establish the following two claims about ∼ from which the Theorem follows
immediately.

1. each equivalence class of ∼ has size |Aut(A)|, and

2. the number of equivalence classes of ∼ is |orb(A,Sk)|.

Ad claim 1: Fix f ∈ Sk. For each h ∈ Aut(A) there is a unique g ∈ Sk such
that f−1 ◦ g = h. (Verify!) It follows at once that there is a bijection between
{g | f ∼ g} and Aut(A).
Ad claim 2: We show that for every f, g ∈ Sk f [A] = g[A] if and only if
f ∼ g. We prove each direction of the bi-conditional. So suppose f ∼ g. Then
f−1 ◦ g ∈ Aut(A). Hence, (f−1 ◦ g)[A] = A. Hence, f [(f−1 ◦ g)[A]] = f [A].
Hence, (f ◦ (f−1 ◦ g))[A] = f [A]. Hence, ((f ◦ f−1) ◦ g)[A] = f [A]. Hence,
(e ◦ g)[A] = f [A]. Hence, g[A] = f [A]. In the other direction, suppose f [A] =
g[A]. Then, f−1[f [A]] = f−1[g[A]]. Hence, (f−1 ◦ f)[A] = (f−1 ◦ g)[A]. Hence,
(f−1 ◦ g)[A] = e[A] = A. Hence, f−1 ◦ g ∈ Aut(A), that is, f ∼ g. Thus, there
is a bijection between the equivalence classes of ∼ and orb(A,Sk).

We now have the explanation of identity (2), since

|orb(A,Sk)| = the number of labeled copies of A.
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17 Lecture 03.22

17.1 Counting labeled 1-regular graphs

Let S be the conjunction of SG and 1reg, that is, a graph A satisfies S if and
only if A is a 1-regular, simple graph. As we discussed earlier, every such finite
graph A has an even number, say 2n, of nodes; moreover, if A,B |= S and
|UA| = |UB |, then A is isomorphic to B. We calculate the value of mod(S, 2n)
in two ways, both for the intrinsic interest of each, and for the opportunity to
“check our work.”

17.1.1 Via the Orbit-Stabilizer Theorem

Let A ∈ mod(S, 2n). As we’ve just noted above, if B ∈ mod(S, 2n), then A ∼= B.
It follows at once that

mod(S, 2n) = orb(A,S2n). (3)

Let’s calculate |Aut(A)|, since Theorem 3 will then allow us to calculate |mod(S, 2n)|.
Observe that A consists of n independent edges. Imagine them standing upright
and lined up horizontally in some order. Now any permutation of the edges gen-
erates an automorphism of A. Moreover, in the process of permuting the edges,
we may choose to “flip” any subset of them having those land on the edge to
which they are permuted “head to foot” and “foot to head”. Since there are n!
permutations of the n edges, and 2n choices of which set of edges to flip, there
are a total of n! · 2n automorphisms of A. Hence, by Theorem 3 and equation
(3),

|mod(S, 2n)| = (2n)!/n! · 2n.

17.1.2 Directly

Here is a second direct method of calculating |mod(S, 2n)| which, thankfully,
yields the same result. We construct a member A of mod(S, 2n) as follows. We
successively choose the n independent edges that constitute A. So for the first
edge, we have

(
2n
2

)
choices of a pair of nodes between which to place an edge,

and for the second edge, we have
(
2n−2

2

)
choices, .... So the number of ways we

can choose a sequence of n independent edges is(
2n

2

)
·
(

2n− 2

2

)
· · ·
(

4

2

)
·
(

2

2

)
=

(2n)!

2n
.

Now any set of n edges chosen via this process will appear as the result of n!
such sequences of choices; thus, the total number of members of mod(S, 2n) we
can construct is

(2n)!

n! · 2n
.
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17.2 Definability

Up to this point we have neglected schemata containing free variables. Today
we will correct this oversight. Recall the structure A we discussed last time: A:
UA = [3], LA = {〈1, 2〉, 〈1, 3〉}. We considered the schema

S(x) : ¬(∃y)Lyx.

We observed that S(x) picks out 1 uniquely from the structure A. That is

{a ∈ UA | A |= S[x|a]} = {1}.

S(x) expresses the property of having in-degree zero. Since we only consider
properties extensionally, we can also say that, in a given structure, S(x) defines
the set of nodes of in-degree zero. The concept of definability is central in logic
(and many other disciplines). We enshrine it in a definition.

Definition 10 Let S(x) be a schema with one free variable x and let A be a
structure. We define S[A] = {a ∈ UA | A |= S[x|a]}, that is, S[A] is the set of
nodes of A that satisfy the schema S(x) in A when assigned to the variable x.
We call S[A] the set defined by S(x) in A. We say a set V ⊆ UA is a definable
subset of A if and only if there is a schema S(x) such that S[A] = V .

We pursued the example of the particular structure A described above a bit
further and noted that the set {2, 3} is defined by the schema

S′(x) : ¬(∃y)Lxy.

We asked whether either of the sets {2} or {3} is a definable subset of A.
We despaired of finding a schema which defined either of these sets. We noticed
that the nodes labelled 2 and 3 appear to be “indistinguishable from a structural
point of view” which is borne out by the fact that the function h mapping 1 to
1, 2 to 3, and 3 to 2, is an automorphism of A. The relevance of this to the
question of definability is the content of the following fundamental theorem.

17.2.1 The Automorphism Theorem, Orbits, and Definability over
finite structures

Theorem 4 Let A be a graph and h ∈ Aut(A). For every a ∈ UA and every
schema S(x),

A |= S[x|a] if and only if A |= S[x|h(a)].

Theorem 4 enables us to give a characterization of the definable subsets
of finite structures. If f is a function with domain U and V ⊆ U , we define
f [V ] = {f(a) | a ∈ V } (the f image of V ). With this notation in hand, we can
now state a corollary to Theorem 4 which bears on definability.

Corollary 4 Let A be a graph and h ∈ Aut(A). If V is a definable subset of A,
then h[V ] = V .
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Thus, in order to show that V is not a definable subset of A it suffices to exhibit
an h ∈ Aut(A) and a ∈ V such that h(a) 6∈ V . Moreover, in the case of finite
structures, the converse of Corollary 4 is true.

Theorem 5 Let A be a finite graph and V ⊆ UA. V is a definable subset of A,
if for every h ∈ Aut(A), h[V ] = V .
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18 Lecture 03.29

18.1 Orbits and Definability over finite structures

In order to prove Theorem 5, and to apply it to questions of counting definable
sets, it will be useful to introduce the notion of the orbit of a node a ∈ UA

under the action of Aut(A):

orb(a,Aut(A)) = {h(a) | h ∈ Aut(A)}.

We define Orbs(A,Aut(A)) = {orb(a,Aut(A)) | a ∈ UA}. As a corollary to
Corollary 4 and Theorem 5 we have:

Corollary 5 Let A be a finite graph and V ⊆ UA. V is a definable subset of A
if and only if either V = ∅ or there is a sequence of sets O1, . . . , Ok, where each
Oi ∈ Orbs(A), and V = O1 ∪ . . . ∪Ok.

It follows at once from Corollary 5, that if A is a finite graph, then the number

of definable subsets of A is 2|Orbs(A,Aut(A))|.



PHIL 005 Spring, 2016 Scott Weinstein 48

19 Lecture 04.03

19.1 An example: definable subsets of simple graphs with
four nodes

We proceeded to give a complete analysis of the definable subsets of simple
graphs with four nodes. First, we classified all the members of mod(SG, 4)
up to isomorphism. We discovered that any maximal collection of pairwise
non-isomorphic graphs in mod(SG, 4) has exactly 11 members. We listed such a
collection A1, . . . , A11 and calculated |orb(Ai,S4)| and |Aut(Ai)| for each 1 ≤ i ≤
11. See the tables below. The complement Ac of a simple graph A is defined as
follows: UAc

= UA; for a 6= b, 〈a, b〉 ∈ LAc

if and only if 〈a, b〉 6∈ LA. In the table
of graphs below, each Ai with i odd, is drawn in red, and Ai+1 = Ac

i is drawn
in blue. The exceptional graph A11 is drawn in purple since it is isomorphic to
its own complement.

1 2

34

A1

1 2

34

A2

1 2

34

A3

1 2

34

A4

1 2

34

A5

1 2

34

A6

1 2

34

A7

1 2

34

A8

1 2

34

A9

1 2

34

A10

1 2

34

A11

Note that Aut(A) = Aut(Ac), for every simple graph A. This made it quick
work to complete the following table.



PHIL 005 Spring, 2016 Scott Weinstein 49

Ai |orb(Ai,S4)| |Aut(Ai)|
A1 1 24
A2 1 24
A3 6 4
A4 6 4
A5 12 2
A6 12 2
A7 3 8
A8 3 8
A9 4 6
A10 4 6
A11 12 2

Note the “verification” of the result predicted by the Orbit-Stabilizer Theorem:
|orb(Ai,S4)| · |Aut(Ai)| = |S4|(= 24).

We gave a systematic account of which sets are definable in the structures
A1, . . . , A11. The following table, together with Corollary 5, suffices. We write
Orbs(A,Aut(A)) to denote the collection of orbits of Aut(A) acting on UA. We
list only the odd numbered structures, since, as already observed, Aut(A) =
Aut(Ac).

Ai Orbs(Ai,Aut(Ai))
A1 {[4]}
A3 {{1, 2}, {3, 4}}
A5 {{2}, {4}, {1, 3}}
A7 {[4]}
A9 {{1, 2, 3}, {4}}
A11 {{1, 4}, {2, 3}}

19.2 Additional topics not covered fully in class

19.2.1 Automorphisms preserve degree

Let A be a graph and a ∈ UA. the neighborhood of a in A (written nbh(a,A))
is {b ∈ UA | 〈a, b〉 ∈ LA}. The degree of a in A (written deg(a,A)) is
|{b ∈ UA | 〈a, b〉 ∈ LA}|. The next proposition follows directly from the defi-
nition of an automorphism.

Proposition 2 For every graph A, a ∈ UA, and h ∈ Aut(A),

h[nbh(a,A)] = nbh(h(a), A).

Hence,
deg(a,A) = deg(h(a), A).
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19.2.2 Rigidity

We introduced the notion of rigidity: a graph A is rigid if and only if Aut(A) =
{e}, that is, A has no non-trivial automorphisms. It follows at once from The-
orem 5 that if A is a finite rigid structure and V ⊆ UA, then V ∈ Def(A). We
noted that no member of mod(SG, 4), is rigid, and mused about the question:
“what is the least n such that mod(SG, n) contains a rigid graph?”

19.2.3 Proof Sketch of Theorem 5

We give the argument for graphs; the generalization to structures interpreting
multiple polyadic predicates is straightforward.

Suppose A is a finite graph, a ∈ UA, and V = orb(A,Aut(A)). We construct
a schema S(x) such that S[A] = V . We may suppose without loss of generality
that UA = [k] for some k ∈ Z+ and that a = 1. For each 1 ≤ i, j ≤ k, let the
schema Si,j be Lxixj if 〈i, j〉 ∈ LA, and ¬Lxixj otherwise. Let S(x) be the
schema

(∃x2) . . . (∃xk)(
∧

1≤i,j≤k

Si,j ∧
∧

1≤i<j≤k

xi 6= xj ∧ (∀y)
∨

1≤i≤k

y = xi).

Let a1, . . . , ak be a sequence of nodes from UA and observe that

A |= (
∧

1≤i,j≤k

Si,j ∧
∧

1≤i<j≤k

xi 6= xj ∧ (∀y)
∨

1≤i≤k

y = xi)[(x1|a1), . . . , (xk|ak)]

if and only if the function mapping i to ai is an automorphism of A.

19.2.4 Proof Sketch of Theorem 4

Theorem 4 is a corollary of the following more general result concerning isomor-
phisms of structures.

Theorem 6 Suppose A and B are structures and f is an isomorphism of A onto
B. Then for every schema S(x1, . . . , xk) and sequence of elements a1, . . . , ak ∈
UA,

A |= S[(x1|a1), . . . , (xk|ak)] iff B |= S[(x1|f(a1)), . . . , (xk|f(ak))]. (4)

Proof sketch of Theorem 6: We give the argument for graphs; the gen-
eralization to structures interpreting multiple polyadic predicates is straight-
forward. The argument proceeds by induction on the syntactic structure of
schemata. The base case verifies (4) for atomic schemata, that is, schemata
of the form Lxixj or xi = xj , for some i, j. In this case, the verification fol-
lows directly from the hypothesis that f is an isomorphism from A onto B, in
particular, that it is edge-preserving and injective.

Suppose S is a truth-functional combination, for example the conjunction,
of schemata S′ and S′′, where, as hypothesis of induction, (4) holds for both S′
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and S′′. Then,

A |= S[(x1|a1), . . . , (xk|ak)] iff
A |= S′[(x1|a1), . . . , (xk|ak)] and A |= S′′[(x1|a1), . . . , (xk|ak)] iff
B |= S′[(x1|f(a1)), . . . , (xk|f(ak))] and B |= S′′[(x1|f(a1)), . . . , (xk|f(ak))] iff
B |= S[(x1|f(a1)), . . . , (xk|f(ak))].

The first and third biconditionals follow from the truth-functional semantics of
conjunction, while the second follows from the induction hypothesis.

Finally, suppose that S is (∃y)S′(x1, . . . , xk, y) and (4) holds for S′ (the
universal quantifier is handled similarly). Then,

A |= S[(x1|a1), . . . , (xk|ak)] iff
for some a ∈ UA A |= S′[(x1|a1), . . . , (xk|ak), (y|a)] iff
for some a ∈ UA B |= S′[(x1|f(a1)), . . . , (xk|f(ak)), (y|f(a))] iff
for some b ∈ UB B |= S′[(x1|f(a1)), . . . , (xk|f(ak)), (y|b)] iff
B |= S[(x1|f(a1)), . . . , (xk|f(ak))].

The first and fourth biconditionals follow from the semantics for the existential
quantifier, the second from the induction hypothesis, and the third from the
hypothesis that f is an isomorphism from A onto B, in particular, that it is
surjective.
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20 Lecture 04.05

20.1 Definability in Infinite Structures: Two Examples

We began to look at definability in infinite structures.

20.1.1 The integers with the absolute value relation - a structure
with many automorphisms

We first analyzed definability in the infinite graph A described as follows:

• UA = Z, the set of all integers, {. . .− 2,−1, 0, 1, 2, . . .};

• LA = {〈i, j〉 | j is the absolute value of i}. (Recall that the absolute value
of an integer i is i, if i ≥ 0, and is −i, if i < 0.)

We observed that every permutation g of Z+ can be extended to an automor-
phism h of A by setting h(i) = g(i), for i ∈ Z+; h(0) = 0; and h(i) = −g(−i), for
i < 0. Let’s write Z− for the set of negative integers. Thus, Orbs(A,Aut(A)) =
{Z+, {0},Z−}. Each orbit of Aut(A) acting on UA is definable:

• S1[A] = Z+, where S1(x) is (∃y)(y 6= x ∧ Lyx);

• S2[A] = Z−, where S2(x) is (∀y)¬Lyx;

• S3[A] = {0}, where S3(x) is ¬S1(x) ∧ ¬S2(x).

Hence, there are exactly eight sets definable in A:

1. ∅,

2. {0},

3. Z+,

4. Z−,

5. Z+ ∪ Z−,

6. Z+ ∪ {0},

7. Z− ∪ {0},

8. Z.

20.1.2 The non-negative integers with the successor relation - a rigid
structure

We next looked at another infinite structure B where definability behaves very
differently. B is described as follows:

• UB = Z+ ∪ {0};
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• LB = {〈i, j〉 | j = i+ 1}.

We first observed that Aut(B) = {e}, that is, B is a rigid structure. This
can be established by mathematical induction. Suppose h is an automorphism
of B. Since 0 is the only node of B with in-degree 0, we must have h(0) = 0.
Now suppose, as induction hypothesis, that h(n) = n. Since n + 1 is the only
member of UB to which n is related, it follows from the hypothesis that h is an
automorphism that h(n + 1) = n + 1. This completes the induction; thus, for
all k ∈ UB , h(k) = k. Hence, Aut(B) = {e}.

This argument suggests that for every k ∈ UB , {k} is definable over B. Let’s
show this, again by induction. First, the schema S0(x) : (∀y)¬Lyx defines {0}
over B. Next, as induction hypothesis, suppose that Sn(x) defines {n} over B.
Let z be a variable which does not occur anywhere in Sn(x) and let Sn(z) be
the result of replacing x with z at all its occurrences in Sn(x). then the schema
(∃z)(Sn(z) ∧ Lzx) defines {n + 1} over B. this completes the induction and
establishes that for every k ∈ UB , {k} is definable over B. It follows at once
that every finite subset of UB and every co-finite subset of UB is definable over
B.

What other subsets of UB are definable over B? Note that since B is rigid,
there is no possibility of exhibiting an automorphism h of B with h[X] 6= X,
that is, the “automorphism method” is powerless to establish the undefinability
of any subset of UB in B. Could it be that every subset of UB is definable over
B? We will answer this question next time.
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21 Lecture 04.10

21.1 Undefinability in Infinite Structures: Two Techniques

21.1.1 Cantor’s Theorem and Cardinality Arguments

We show that for every infinite structure C there is a subset X ⊆ UC which
is not definable over C. This result is a corollary to the celebrated Cantor
Diagonal Theorem.

Theorem 7 (Cantor) Let U be an infinite set and let V1, V2, . . . be a sequence
of subsets of U . There is subset W of U such that for all i ≥ 1, W 6= Vi.

Proof : Suppose U is an infinite set. Let U∗ = {a1, a2, . . .} be a countably
infinite subset of U and let V1, V2, . . . be a sequence of subsets of U . Let W =
{i | ai 6∈ Vi}. Note that for every i ai ∈W if and only if ai 6∈ Vi. It follows that
for all i, W 6= Vi.

In order to apply Theorem 7 to questions about definable sets we require
the following result.

Theorem 8 For every structure C, there is a sequence V1, V2, . . . of subsets of
UC such that for every set X definable over C, there is an i such that X = Vi.

Proof : Every schema is a finite sequence of symbols drawn from a finite alpha-
bet. Thus, we may arrange all schemata S(x) in a list S1(x), S2(x), . . ., first
ordered by length, and then within length, alphabetically. We obtain a list
V1, V2, . . . of all the sets definable over C by setting Vi = Si[C] for all i.

The following result is an immediate consequence of Theorems 7 and 8.

Corollary 6 For every infinite structure C there is a subset X ⊆ UC which is
not definable over C.

21.1.2 The Compactness Theorem and Automorphisms of “Non-
standard Models”

Of course, this gives us no idea which particular sets are not definable over
a given infinite structure. In the case of the graph B introduced above, we
will show that if a set is neither finite nor co-finite, it is not definable over B.
In order to establish this, we will deploy one of the fundamental properties of
polyadic quantification theory: compactness. First, some definitions requisite
to the Compactness Theorem for Polyadic Quantification Theory.

• A schema S is satisfiable if and only if for some structure A, A |= S.

• A set of schemata Γ is satisfiable if and only if there is structure A such
that for every schema S ∈ Γ, A |= S.

• A set of schemata Γ is finitely satisfiable if and only if for every finite set
∆ ⊆ Γ, ∆ is satisfiable.
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Theorem 9 (Compactness Theorem) For every set Γ of schemata of polyadic
quantification theory, if Γ is finitely satisfiable, then Γ is satisfiable.

Though the Compactness Theorem makes no mention of the notion of a
derivation, one of its well-known proofs proceeds via the elaboration of a sound
and complete formal system for logical deduction. This development will occupy
our attention for much of the remainder of the Term. But for the moment, let’s
see how we can apply the Compactness Theorem to complete the analysis of
the definable subsets of the structure B specified above.

Theorem 10 If V ⊆ UB is definable over B, then V is finite or V is co-finite.

Proof : Suppose to the contrary, that there is a set V , definable over B, which
is neither finite nor co-finite, and suppose that the schema S(x) defines V over
B. We derive a contradiction from this hypothesis. Let Λ = {S | B |= S}; Λ is
the set of all schemata true in the structure B and is often called the complete
theory of B. Let y and z be fresh variables which occur nowhere in Λ, S(x), or
any of the schemata Sn(x) for n ≥ 0 defined above. Define the set of schemata
Γ as follows.

Γ = Λ ∪ {y 6= z, S(y),¬S(z)} ∪ {¬Sn(y),¬Sn(z) | n ≥ 0}.

Let ∆ be a finite subset of Γ. It follows from the fact that both S[B] and ¬S[B]
are infinite, that ∆ is satisfied by B with suitable assignments from UB to the
variables y and z. Hence, by the Compactness Theorem, Γ itself is satisfiable.
Of course, if the structure C satisfies Γ, then C is not isomorphic to B since the
the elements of UC assigned to y and z in C (call them a and b respectively)
are not reachable in C from the unique element of C with no predecessor. We
will show that there is an automorphism h of C with h(a) = b. This will yield
the desired contradiction, since C |= S(y|a) and C |= ¬S(z|b). Note that B,
and hence C, satisfy the following schemata.

• (∃x)(∀y)((∀z)¬Lzy ≡ x = y)

• (∀x)(∃y)(∀z)(Lxz ≡ z = y)

• (∀x)(∀y)(∀z)((Lxz ∧ Lyz) ⊃ x = y)

• (∀x)¬Lxx
...
(∀x)(∀y1) . . . (∀yn)¬Lxy1 ∧ Ly1y2 . . . ∧ Lynx
...

The first three schemata guarantee that LC is an injective functional relation
which is “almost” surjective – there is a unique element of UC which lacks a
pre-image under the function whose graph is LC . Note that this guarantees
that UC is infinite. The final infinite list of schemata guarantee that the the
function whose graph is LC contains no finite cycles. Since C is not isomorphic
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to B all this implies that C consists of an LC chain that is isomorphic to B
and a non-empty set of LC chains each of which is isomorphic to Z (the set of
all integers) equipped with its usual successor relation. But, since a and b must
lie on one or two of these “Z-chains,” there is an automorphism h of C with
h(a) = b.
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22 Lecture 04.12

Up to this point, we have focussed primarily on questions surrounding the ex-
pressive power of polyadic quantification: which classes of structures can be
characterized by (sets of) schemata of polyadic quantification theory; which
sets of numbers are the spectra of schemata; what subsets of the universe of dis-
course of a structure can be defined by schemata. Today we begin our study of
implication in the context of polyadic quantification theory. As emphasized ear-
lier, the mechanical decidability of validity of schemata (over a fixed, effectively
presented vocabulary of sentence letters) in the case of truth-functional logic,
follows immediately from the definition of validity, since there are only finitely
many truth assignments to a finite collection of sentence letters, and since the
truth-value of a schema under any such assignment can be mechanically (even
efficiently) evaluated. (As we discussed, it remains an open problem whether
validity itself can be decided efficiently.) In the case of monadic quantification
theory, though there are infinitely many structures interpreting the vocabulary
of a fixed schema S, we were able to establish that we could effectively deter-
mine from S a finite collection of finite structures such that S is valid if and
only if satisfied by every structure in this collection. Again, the satisfaction
relation itself is mechanically decidable for finite structures, and thus validity
of monadic schemata is mechanically decidable.

When we come to polyadic quantification theory, the situation is dramat-
ically different. We will later see that the set of valid schemata of polyadic
quantification theory, even restricted to the language of directed graphs, is not
decidable (the Church-Turing Theorem), though it is semi-decidable (the Gödel
Completeness Theorem). Today, we begin a detailed study of systematic tech-
niques to establish that a schema of polyadic quantification theory is valid.
These techniques are embodied in the deductive apparatus for polyadic quantifi-
cation theory expounded in Warren Golfarb’s text Deductive Logic. We started
with an example of a deduction using the rules described on pages 183 – 185 of
the text which shows that if a relation is asymmetric, then it is irreflexive.

{(∀x)(∀y)(Lxy ⊃ ¬Lyx)} implies (∀x)¬Lxx.

{1} (1) (∀x)(∀y)(Lxy ⊃ ¬Lyx) P
{1} (2) (∀y)(Lxy ⊃ ¬Lyx) (1) UI
{1} (3) Lxx ⊃ ¬Lxx (2) UI
{1} (4) ¬Lxx (3) TF
{1} (5) (∀x)¬Lxx (4) UG
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23 Lecture 04.17

We continued our study of deduction, and began by showing that if a relation
is transitive and irreflexive, then it’s asymmetric.

{(∀x)(∀y)(∀z)(Lxy ⊃ (Lyz ⊃ Lxz)), (∀x)¬Lxx} implies
(∀x)(∀y)(Lxy ⊃ ¬Lyx).

{1} (1) (∀x)(∀y)(∀z)(Lxy ⊃ (Lyz ⊃ Lxz)) P
{1} (2) (∀y)(∀z)(Lxy ⊃ (Lyz ⊃ Lxz)) (1) UI
{1} (3) (∀z)(Lxy ⊃ (Lyz ⊃ Lxz)) (2) UI
{1} (4) Lxy ⊃ (Lyx ⊃ Lxx) (3) UI
{5} (5) (∀x)¬Lxx P
{5} (6) ¬Lxx (5) UI
{1, 5} (7) (Lxy ⊃ ¬Lyx) (4, 6) TF
{1, 5} (8) (∀y)(Lxy ⊃ ¬Lyx) (7) UG
{1, 5} (9) (∀x)(∀y)(Lxy ⊃ ¬Lyx) (8) UG

We next gave a classic “argument by cases.”

{(∀x)Fx ∨ (∀x)Gx} implies (∀x)(Fx ∨Gx).

{1} (1) (∀x)Fx ∨ (∀x)Gx P
{2} (2) (∀x)Fx P
{2} (3) Fx (2) UI
{2} (4) Fx ∨Gx (3) TF
{2} (5) (∀x)(Fx ∨Gx) (4) UG
{} (6) (∀x)Fx ⊃ (∀x)(Fx ∨Gx) {2}(5) D
{7} (7) (∀x)Gx P
{7} (8) Gx (7) UI
{7} (9) Fx ∨Gx (8) TF
{7} (10) (∀x)(Fx ∨Gx) (9) UG
{} (11) (∀x)Gx ⊃ (∀x)(Fx ∨Gx) {7}(10) D
{1} (12) (∀x)(Fx ∨Gx) (1, 6, 11) TF

We followed with an example (to be concluded next time) of argument by
reductio ad absurdum, that, in addition, illustrated use of the “conversion of
quantifiers” rule, also known as “driving a negation across a quantifier.”

(∃y)(Py ⊃ (∀x)Px) is valid

{1} (1) ¬(∃y)(Py ⊃ (∀x)Px) P
{1} (2) (∀y)¬(Py ⊃ (∀x)Px) (1) CQ
{1} (3) ¬(Py ⊃ (∀x)Px) (2) UI
{1} (4) Py (3) TF
{1} (5) (∀x)Px (4) UG
{1} (6) ¬(∀x)Px ∧ (∀x)Px (3)(5) TF
{} (7) ¬(∃y)(Py ⊃ (∀x)Px) ⊃ {1}(6) D

(¬(∀x)Px ∧ (∀x)Px)
{} (8) (∃y)(Py ⊃ (∀x)Px) (7) TF
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Here are a pair of deductions that legitimate extending the “conversion of
quantifiers rule” to allow passing directly from ¬(∀x)S to (∃x)¬S and vice versa.
They provide further illustration of argument by reductio ad absurdum. I include
them here, though we will not cover them in class.

{¬(∀x)Fx} implies (∃x)¬Fx.

{1} (1) ¬(∀x)Fx P
{2} (2) ¬(∃x)¬Fx (1) P
{2} (3) (∀x)¬¬Fx (2) CQ
{2} (4) ¬¬Fx (3) UI
{2} (5) Fx (4) TF
{2} (6) (∀x)Fx (5) UG
{1, 2} (7) (∀x)Fx ∧ ¬(∀x)Fx (6) TF
{1} (8) ¬(∃x)¬Fx ⊃ ((∀x)Fx ∧ ¬(∀x)Fx) {2}(7) D
{1} (9) (∃x)¬Fx (8) TF

{(∃x)¬Fx} implies ¬(∀x)Fx.

{1} (1) (∀x)Fx P
{2} (2) (∃x)¬Fx (1) P
{1} (3) Fx (1) UI
{1} (4) ¬¬Fx (3) TF
{1} (5) (∀x)¬¬Fx (4) UG
{1} (6) ¬(∃x)¬Fx (5) CQ
{1, 2} (7) ¬(∃x)¬Fx ∧ (∃x)¬Fx (6) TF
{2} (8) (∀x)Fx ⊃ (¬(∃x)¬Fx ∧ (∃x)¬Fx) {1}(7) D
{1} (9) ¬(∀x)Fx (8) TF
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24 Lecture 04.19

We then extended the rules to include existential generalization and existential
instantiation which allow us to mirror common informal forms of argument
involving the existential quantifier. The following gives an example of their use.

{(∀x)((∃y)Lxy ⊃ (∀z)Lzx), (∃x)(∃y)Lxy} implies (∀v)(∀z)Lzv.

{1} (1) (∃x)(∃y)Lxy P
{1, 2} (2) (∃y)Lwy (1)w EII
{3} (3) (∀x)((∃y)Lxy ⊃ P

(∀z)Lzx)
{3} (4) (∃y)Lwy ⊃ (3) UI

(∀z)Lzw
{1, 2, 3} (5) (∀z)Lzw (2)(4) TF
{1, 2, 3} (6) Lvw (5) UI
{1, 6 2, 3} (7) (∃y)Lvy (5) EG; {2} EIE
{3} (8) (∃y)Lvy ⊃ (∀z)Lzv (3) UI
{1, 3} (9) (∀z)Lzv (7)(8) TF
{1, 3} (10) (∀v)(∀z)Lzv (9) UG
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25 Lecture 04.24

Finally, we added rules for deriving schemata involving the identity predicate
and illustrated their use with the following deduction.

{(∀x)Rxx,¬(∀x)(∀y)Rxy} implies ¬(∃x)(∀y)x = y.

{1} (1) (∀x)Rxx P
{2} (2) ¬(∀x)(∀y)Rxy P
{3} (3) (∃x)(∀y)x = y P
{3, 4} (4) (∀y)u = y (3)u EII
{1} (5) Ruu (1) UI
{3, 4} (6) u = y (4) UI
{} (7) u = y ⊃ (Ruu ≡ Ruy) III
{3, 4} (8) u = x (4) UI
{} (9) u = x ⊃ (Ruy ≡ Rxy) III
{1, 3, (10) Rxy (5)(6) TF;
6 4} (7)(8) {4} EIE

(9)
{1, 3} (11) (∀y)Rxy (10) UG
{1, 3} (12) (∀x)(∀y)Rxy (11) UG
{1, 2, 3} (13) p ∧ ¬p (2)(12) TF
{1, 2} (14) (∃x)(∀y)x = y ⊃ {3}(13) D

(p ∧ ¬p)
{1, 2} (15) ¬(∃x)(∀y)x = y (14) TF
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26 Lecture 04.26

We considered the problem of establishing that a schema S is not implied by a
set of schemata X, or equivalently, that the set of schemata X ∪ {¬S} is not
satisfiable. As we noted last time, there is no uniform approach to this problem,
that is, the collection of satisfiable schemata is not semi-decidable.

Let X be the conjunction of the following schemata.

• (∀x)(∀y)(∀z)((Lxy ∧ Lyz) ⊃ Lxz)

• (∀x)(∀y)(x 6= y ⊃ (Lxy ∨ Lyx))

• (∀x)¬Lxx

• (∀x)(∃y)(Lxy ∧ (∀z)¬(Lxz ∧ Lzy))

• (∀x)(∃y)(Lyx ∧ (∀z)¬(Lyz ∧ Lzx))

• (∀x)(∃y)(Lyx ∧ Fy)

• (∀x)(∃y)(Lxy ∧ Fy)

• (∀x)(∀y)((Fx ∧ Fy ∧ Lxy) ⊃ (∃z)(Fz ∧ Lxz ∧ Lzy))

We showed that X 6|= (∀x)Lxx, that is, we showed X is satisfiable by con-
structing a structure A with A |= X. The structure A is defined as follows.
Recall that Z is the set of integers and Q+ is the set of positive rational num-
bers.

• UA = Q+ × Z = {〈r, i〉 | r ∈ Q+ and i ∈ Z} (the cartesian product of Q+

and Z).

• LA = {〈〈r, i〉, 〈s, j〉〉 | r < s} ∪ {〈〈r, i〉, 〈s, j〉〉 | r = s and i < j}.

We gave another example of demonstrating satisfiability, this time for an infi-
nite collection of schemata. Let S be the conjunction of the following schemata.

• (∀x)(∀y)(∀z)((Lxy ∧ Lyz) ⊃ Lxz)

• (∀x)(∀y)(x 6= y ⊃ (Lxy ∨ Lyx))

• (∀x)¬Lxx

• (∀x)((∃y)Lxy ⊃ (∃y)(Lxy ∧ (∀z)¬(Lxz ∧ Lzy)))

• (∀x)((∃y)Lyx ⊃ (∃y)(Lyx ∧ (∀z)¬(Lyz ∧ Lzx)))

• ¬(∀x)(∃y)Lyx

• ¬(∀x)(∃y)Lxy
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For each n ≥ 2, let Rn be the schema,

(∃x1) . . . (∃xn)
∧

1≤i<j≤n

Lxixj .

Finally, let X = {S} ∪ {Rn | n ≥ 2}. We gave two proofs that X is satisfiable.
The first appealed to the

Theorem 11 (Compactness Theorem) Let Σ be a set of schemata of polyadic
quantification theory. If every finite ∆ ⊆ Σ is satisfiable, then Σ is satisfiable.

First Proof : Observe that for every n ≥ 2, {S}∪{Rm | m ≤ n} is satisfied by
a linear order of length n. Hence, by the Compactness Theorem, X is satisfiable.

Second Proof : Define the structure B as follows.

• UB = Z.

• LB = {〈i, j〉 | (0 ≤ i and j < 0) or (i < j and (0 ≤ i, j or i, j < 0))}.

Observe that B |= X.


