
Logic and Probability, EPFL, Fall 2011
Lecture Notes 7

Val Tannen

14.2 Unions of Conjunctive Queries

The next step in making query formalisms more expressive is to consider several conjunctive queries
(CQs) whose bodies uses relation symbols from the same vocabulary (schema) and such that all
their heads have the same arity. For example

ans(x, d) :− R(x, z), S(x, d, z)
ans(c, y) :− R(c, z), S(c, y, z)
ans(x, x) :− R(x, z), S(x, e, z)

The semantics of such a query is the union of the semantics of each individual CQ hence such queries
are called unions of conjunctive queries (UCQs). A characterization analogous to Proposition 14.1
can be given except we now have “such that there exists a rule and a valuation for the body of that
rule”.

As the CQs correspond to the SPC fragment of relational algebra, the UCQs correspond to the
SPCU fragment. There is, however, a new twist. While the translation from CQs and UCQs to
the relational algebra is linear in the size of the query the converse translation has this property
only for CQs. Translating an SPCU query may result in an exponential blow-up as the following
example shows:

(R1 ∪ S1)× · · ·× (Rk ∪ Sk)

CQs and UCQs also correspond precisely to certain syntactically restricted classes of FO queries.
Namely CQs corrrespond to the fragment that built from atomic formulae, conjunction and existen-
tial quantification while for UCQs we add disjunction. Notice that we omit negation and universal
quantification. The translations from rules to logical formulae are straightforward (existentially
quantify the variables that appear in the body but not in the head). In the other direction put the
formulae in prenex and disjunctive normal form. Again the translation to UCQs may involve an
exponential blow-up because of the disjunctive normal form.

Equivalence of UCQs is also decidable and like equivalence of CQs it is NP-complete. However,
equivalence of SPCU relational algebras expressions is Πp

2-complete showing that the exponen-
tial blow-up in the translation we mentioned above cannot be avoided (assuming, of course, that
PTIME �= ΠP

2 ).

UCQs (SPCU queries) are sometimes called positive FO queries because they miss negation (equiv-
alently, the difference operator in relational algebra). They are also sometimes call monotone.
Indeed, assume that the vocabulary is R1, . . . , Rk. Abusing notation by blurring the distinction
between syntax and semantics, and FO query q defines a function q(R1, . . . , Rk). It is easy to see
that if if q is an UCQ and if R1 ⊆ S1, . . . , Rk ⊆ Sk then q(R1, . . . , Rk) ⊆ q(S1, . . . , Sk).

14.3 Datalog

We now allow predicate symbols in the heads of the rules. That is, in addition to the original vo-
cabulary Σe, whose symbols we will call extensional we use a disjoint vocabulary Σi whose symbols
we call intensional and allow both extensional and intensional predicates in the rule bodies but

29



only intensional predicates in the rules heads. For example, here a tortuous and highly redundant
way to compute transitive closure:

R(x, y) :− E(x, y)
S(x, y) :− E(x, y)
T (x, y) :− E(x, y)
R(x, y) :− E(x, z), S(z, y)
S(x, y) :− R(x, z), E(z, y)
T (x, y) :− R(x, z), S(z, y)

Here we have one extensional symbol, E and three intensional ones R,S, T . We specify a Datalog
query by additionally identifying one of the intensional predicates as the intended output.

It should be clear that we can associate a system of fixpoint equations in which each equation is
defined as an UCQ (or an SPCU query) with every Datalog program. For example, for the program
above, abusing notation we have:

R = E ∪ E ◦ S

S = R ∪R ◦ E

T = E ∪R ◦ S

or alternatively, in FO syntax:

R(x, y) = E(x, y) ∨ ∃z E(x, z) ∧ S(z, y)
S(x, y) = E(x, y) ∨ ∃z R(x, z) ∧ E(z, y)
T (x, y) = E(x, y) ∨ ∃z R(x, z) ∧ S(z, y)

Since the functions defined by UCQs are monotone, the last formulation shows that Datalog is a
fragment of FO(LFP) 9 .(Actually, our definition of FO(FP) does not allow for systems of equations
but there exist standard tricks to encode these as single equations.) In particular, the 0-1 Law holds
for Datalog. However, Datalog is strictly less expressive than FO(LFP). We can express in Datalog
that two specific nodes are connected by a path (transitive closure) but we cannot express that
they are not connected. More subtly, we cannot express that all pairs of nodes are connected! To
prove these inexpressibility results it suffices to show that Datalog defines only monotone queries
(i.e., the least fixpoint depends monotonically on the extensional predicates).

15 Probabilistic Databases

See the paper “Models for Incomplete and Probabilistic Information” by Green and Tannen, EDBT
Workshops 2006, LNCS 4254, pp.278-296 which will be posted on the course wiki.

9The semantics that we get for Datalog via this embedding in FO(LFP) can also be show to be equivalent to
a model-theoretic semantics (least Herbrand model) and two different proof-theoretic semantics, one by derivation
trees and one by SLD resolution (see Abiteboul, Hull, and Vianu “Foundations of Databases”).

30


