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13 Beyond First-Order Logic

We have shown earlier that even certain properties that are not definable in FOL, such as connec-
tivity and acyclicity are in fact subject to 0-1 laws while other properties such as parity (for graphs,
that’s even number of edges) are not. It is natural to ask what is the more general situation beyond
FOL-definable properties.

Second-order logic (SOL) is a natural extension of FOL: the vocabulary and the structures (mod-
els) remain the same as in FOL but we extend the formulas by adding (and quantifying over)
variables that range over predicates and functions in addition to the FOL variables which range
only over “individuals”, i.e., elements of the domain. This formalizes a very common aspect of usual
mathematical reasoning. For example, the (full) principle of mathematical induction is inherently
second-order:

∀P P (0) ∧ (∀k P (k) ⇒ P (s(k))) ⇒ ∀n P (n)

This principle is one of Peano’s axioms for arithmetic, while the other axioms say that the successor
function s is injective and that 0 is not the successor of any element. The resulting mathematical
theory is called second-order Peano arithmetic and is usually denoted PA2. This theory is categorical
and all its models are isomorphic to the standard model N. Practically all the results of number
theory can be formalized in PA2.

Except for induction, Peano’s other two axioms are first-order therefore logicians have considered
the FO restriction of induction, namely the axiom schema

ϕ(0) ∧ (∀k ϕ(k) ⇒ ϕ(s(k))) ⇒ ∀n ϕ(n)

where ϕ(x) ranges over all FO formulas with a free variable over the FO vocabulary consisting of
the constant 0 and the unary function s. The resulting theory is called first-order Peano arithmetic
and is usually denoted PA1.

This machinery (even FO induction) suffices to justify the inductive definitions of the usual arith-
metic functions (addition, multiplication, exponentiation) therefore PA2 and even PA1 are afflicted
by Gödel and Church’s fundamental results. Neither theory is complete, both are undecidable, and
there exist number-theoretical statements true in N that not provable in PA2 (and hence neither
in PA1)

In addition, PA1 is not categorical (not even ω-categorical). For example it has non-standard
countable models that can be described as N “followed” by a sequence of copies of Z.

Back to the “pure” SOL. By Gödel’s Completeness Theorem, FO-VALID is r.e., but it turns out
that SO-VALID is not even that “friendly” because we can reduce FO-FIN-VALID to it. Indeed,
there exists an SOL sentence σfin such that for any model A:

A |= σfin iff A is finite

(To write such a sentence observe that a set X is finite iff any function f : X → X that is injective
is also surjective.) The reduction is ϕ ∈ FO-FIN-VALID iff ϕ ∧ σfin ∈ SO-VALID. By a corollary
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to Trakhtenbrot’s Theorem FIN-VALID is not r.e. hence SO-VALID is not r.e. 6 In particular,
there exists no complete recursive axiomatization of SOL.

After all these bad news it’s not surprising that the 0-1 Law fails for SOL. We have already observed
that parity fails the law and it’s a relatively simple matter to encode it in SOL (this will be assigned
as homework). In fact even existential monadic SOL fails the 0-1 law (see Spencer’s textbook).
On the other hand, there are (perhaps) interesting fragments of SOL that do have 0-1 laws, for
example, ∃SO(∃∗∀∗), whose sentences are of the form, ∃Z1, ...Zn. ∃x1...xm. ∀y1...yp. α, where α is
quantifier-free and the Zi are relations, has 0-1 laws (see Libkin’s textbook).

Connectivity and acyclicity are expressible in SOL (this will be assigned as homework) and the
they obey the 0-1 law. It is natural to ask if there is a logic “in-between” FOL and SOL that
contains these two and obeys the 0-1 Law. Indeed there is, it’s FOL extended with fixed points,
denoted FO(FP).

We add the following recursion construct to FOL:

let R(x1, . . . , xn) = σ(R, x1, . . . , xn) in ρ(R)

where σ is a formula in which the only second-order variable that may occur free is R and R is
bound by this construct while x1, . . . , xn are bound in the let part of this construct.

For example, with our graph vocabulary the formula

∃xy ¬let P (u, v) = E(u, v) ∨ ∃w E(u, w) ∧ P (w, v) in P (x, y)

asserts that the graph is not connected, because P (u, v) captures the fact there is a path between
u and v.

There are several ways to give semantics to the recursion construct: partial fixed point (PFP)
and inflationary fixed point (IFP) can be defined for arbitrary formulas but they make good sense
mainly on finite models while a third, least fixed point (LFP), requires that R occurs positively in
σ, i.e., R is under the scope of an even number of negations. We give some intuition about the
differences between the three definitions.

Fix an FO structure with universe A Let R be the set of n-relations on A and let f : R → R be
the function λR.σ(R) defined by the semantics of σ above. Consider the sequence of sets

S0 = ∅
Sn+1 = f(Sn)

The partial fixpoint is the first Sn such that Sn = Sn+1 if such exists and ∅ otherwise. When A is
finite this is (expensively) computable.

When f is monotone we have an ω-chain, S0 ⊆ S1 ⊆ · · ·. It can be shown that monotone functions
defined by formulas are also ω-continuous so (by Kleene’s Fixpoint Theorem) they have a least
fixpoint which is in fact

�
n≥0 Sn. This is the least fixpoint semantics and it would only be defined

when f is monotone. The trouble with using monotonicity as criterion is that it is undecidable
whether the formula σ defines a monotone function f . To make sure that the set of formulas is
decidable we make the restriction to positive occurrences of R in σ

For IFP we replace f with f �(R) = f(R) ∪ R. This function is inflationary i.e., R ⊆ f �(R) and
therefore the analogous sequence of relations is also an ω-chain S�0 ⊆ S�1 ⊆ · · ·. Consider the union
of these relations. When A is finite the union must equal S�p for some p and this must be a fixpoint
of f � which is defined as the inflationary fixpoint of f Beware, this may not be an actual fixpoint
of f , and it does in fact correspond to σ� = σ ∨R(x1, . . . , xn)!

6In fact, it’s even worse: one can encode that any true sentence of arithmetic in SO-VALID but this is beyond the
scope of what we are doing.
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It can be shown that when f is monotone all three definitions agree with each other.

The status of their expressive power is complicated. Gurevich-Shelah have shown that FO(IFP)
= FO(LFP) over any finite model. Over ordered structures Immerman/Vardi/Livchak have shown
that FO(LFP) captures PTIME while Vardi has shown that FO(PFP) captures PSPACE (see
Libkin’s textbook). Over arbitrary structures Abiteboul-Vianu have shown that FO(LFP)=FO(PFP)
iff PTIME=PSPACE.

Theorem 13.1 Each of FO(LFP), FO(IFP), and FO(PFP) obeys the 0-1 Law.

For FO(LFP) this was shown by Blass-Gurevich-Kozen/Talanov-Knyazev. More generally, Kolaitis-
Vardi proved that a certain infinitary logic that subsumes all three fixpoint extensions of FO obeys
the 0-1 Law. Infinitary logics are weird from our computational perspective because they have
formulas of infinite size. But they make perfect sense as a tool for subsuming fixpoint logics into a
formalism that is presumably easier to handle (you trade one kind of complications for another!).
We briefly explain this.

We consider the logic Lω
∞ω whose main innovation compared to FOL is that it allows formulas

with disjunctions and conjunctions of families of formulas indexed by sets of any cardinality (that’s
what the ∞ in the subscript is for) but, like in FOL, the formulas still use quantifier prefixes of
finite size (that’s what the ω in the subscript is for) and only finitely many variables in the whole
formula (that’s what the ∞ in the superscript is for) 7.

Limiting the formulas to finitely many variables is essential otherwise the logic is too powerful for
finite models. Indeed, for any class CC of finite models, if SS is closed under isomorphism then
there is a sentence ϕ (a conjunction of length CC) such that M ∈ CC iff M |= ϕ. If there is no a
priori bound on the size of the models in CC then in general there is now way to limit ϕ to finitely
many variables. This also provides a counterexample for the 0-1 law for this too-powerful logic.

For finitely many variables the story is different. Essentially the same proof as the first one we
presented for FOL (now using a generalization of the Ehrenfeucht-Fraisse Theorem) shows that:

Theorem 13.2 (Kolaitis-Vardi) Lω
∞ω obeys the 0-1 Law.

(See Libkin’s textbook.)

This is relevant to us because FOL with fixpoints can be simulated by Lω
∞ω. For example recall

from above the formula

ϕ(x, y) ≡ let P (u, v) = E(u, v) ∨ ∃w E(u, w) ∧ P (w, v) in P (x, y)

which captures the fact that graph has a path from x to y. Define inductively

ϕ0(u, v) ≡ E(u, v)
ϕn+1(u, v) ≡ ∃wn E(u, wn) ∧ ϕn(wn, v)

Then the infinite formula
�

n≥0 ϕn(u, v) also captures the existence of a path. Unfortunately, this
formula has infinitely many variables! But we can also do it with just finitely many variables
because by quantifier scope rules we can reuse the same variable in a nested fashion (not a good
practice for readability though!):

ϕ0(u, v) ≡ E(u, v)
ϕn+1(u, v) ≡ ∃w(E(u, w) ∧ ∃u(w = u ∧ ϕn(u, v)

Now
�

n≥0 ϕn(u, v) has exactly three (free or bound) variables.
7FOL itself is Lωω (no superscript is necessary since the subscripts already limit the formulas to finite size).
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