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11 A Second Proof for the 0-1 Law for FOL

Relying on the Ehrenfeucht-Fraisse Theorem we gave in the previous lectures a first proof of the
0-1 Law (for the case of the random graph of constant probability). Here we will present a second
proof of the 0-1 Law which allows us to derive a very nice additional fact: given an FO sentence,
it is decidable whether it holds almost surely or almost never!

The strategy of the second proof starts from an observation about the set of sentences that hold
almost surely:

Sp(n) = {ϕ in FO | µp(n)(ϕ) = 1}

Again we omit the subscript p(n) when clear from the context. The main observation is that the
0-1 Law would follow if we can show that for any FO sentence ϕ, either ϕ ∈ S, or ¬ϕ ∈ S. This is
a common issue in logic and it is usually asked of theories.

Definition 11.1 (Theory, consistent, complete) We say that a set of sentences T is a theory
if it is closed under proof, i.e., for any ϕ, if T � ϕ then ϕ ∈ T . We say that a theory T is consistent
when there is no ϕ such that both ϕ and ¬ϕ are in T . This is equivalent to false �∈ T , and further
equivalent to T �= FO (an inconsistent theory contains all sentences!). We say that a theory is
complete if for any sentence ϕ, either ϕ ∈ T , or ¬ϕ ∈ T �.

For example, if Γ is a set of sentences then Th(Γ) = {ϕ | Γ � ϕ} is a theory (“generated” by
Γ). By the way, we say that Γ is consistent whenever Th(Γ) is consistent. For another example,
if CC is a class of models then Th(CC) = {ϕ | ∀A ∈ CC A |= ϕ} is a theory (“of” CC). An
important particular case is when CC consists of a single model because such a theory is consistent
and complete!

A simple but fundamental property of theories is the following:

Proposition 11.1 A consistent and complete theory that is recursively axiomatizable is decidable.

Proof Proofs from a recursive (decidable) set of axioms are recursively enumerable. To decide if
ϕ is in the theory we enumerate all such proofs. Eventually, a proof of each sentence in the theory
shows up. We stop when either a proof of ϕ or a proof of ¬ϕ shows up. By completeness, one of
these must happen and by consistency if a proof of ¬ϕ shows up then ϕ is not in the theory. ✷

Now look at S defined above.

Proposition 11.2 S is a consistent theory (called the almost sure theory).

Proof We need to show that S is closed under proof. If S � ϕ then there is a finite subset
Γ0 ⊂ S such that Γ0 � ϕ. The conjunction of the sentences in Γ0 must then also hold almost surely
and since this implies ϕ the latter must too, hence it belongs to S. For consistency notice that
µ(false) = 0 hence false �∈ S. ✷
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We see now that if we show that S is complete and recursively axiomatizable then the 0-1 Law
follows and we also have the desired decidability property.

To prove that S is complete it would suffice to show that it is the theory of a single model. Getting
to this is more complicated and it involves the following general result.

Proposition 11.3 Assume that the vocabulary (signature) is at most countable. Let T be a theory
that is consistent, has no finite models and is ω−categorical (i.e., any two countable models of the
theory are isomophic). Then T is complete.

The proof of this proposition will require a sharpened form of Gödel’s Completeness, which, you
will recall, we stated as follows:

Theorem 11.4 (Godel’s Completeness Theorem) Γ � ϕ iff Γ |= ϕ.

The ”if” direction is completeness. The ”only if” direction is soundness. The theorem is also
often stated equivalently as follows: for any set Ω of sentences, Ω is consistent iff it is satisfiable.
Assuming soundness, the completeness part is often stated equivalently in terms of properties of
theories: any consistent theory is satisfiable. (Might as well state an important corollary known as
the Compactness Theorem: if any finite subset of Γ is satisfiable then Γ is satisfiable. This leads
to an easy proof that connectivity is not definable in FOL over all models, try to prove this! This
proof does not show that connectivity is not definable in FOL over finite models, which can be
shown as a consequence of the Ehrenfeucht-Fraisse Theorem.)

We will need the following more precise form of the completeness implication:

Theorem 11.5 (Sharpened Completeness Theorem) Assume that the vocabulary (signature)
is at most countable. If a theory T is consistent, then T is satisfiable in a model that is at most
countable.

This is shown in all logic textbooks but a particularly clear proof appears in Enderton. Now:

Proof (of Proposition 11.3). We prove this by contradiction. Suppose that T is not complete,
then there exists ϕ such that both ϕ and ¬ϕ are not in T . Consider T1 = Th(T ∪ {ϕ}) and
T2 = Th(T ∪ {¬ϕ}). We argue that T1 is consistent. Suppose not, then we have

false ∈ T1

⇒ T,ϕ � false

⇒ T � (ϕ → false) (deduction property)
⇒ T � ¬ϕ

⇒ ¬ϕ ∈ T,

which is a contradiction. Similarly, T2 is also consistent. By the Sharpened Completeness Theorem
they have models, say Mi for Ti, that are at most countable. Hence, M1 and M2 are both at
most countable models for T . Since T has no finite models, the two models are countable and by
ω−categoricity they are isomorphic. They must therefore satisfy the same sentences, hence they
satisfy both ϕ and ¬ϕ which is impossible. ✷

With this result, our strategy now leaves us to prove that S does not have finite models at that
it is ω−categorical. Enter the extension axioms. By Lemma8.1 the extension axioms hold almost
always when p(n) is constant. When p(n) is not constant this property does hold in general so we
continue under the following assumption:
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Assumption p(n) is such that every extension axiom is almost surely true. That is, EA =
{EAr,s | r, s ≥ 0} ⊂ S

We have immediately

Proposition 11.6 S has no finite models (because EA doesn’t).

But more importantly

Proposition 11.7 Th(EA) (and therefore S) is ω−categorical.

Proof Let G1 and G2 bet two countable graphs that satisfy EA. Without loss of generality we
assume that the nodes of each graph are actually the natural numbers. We play an Ehrenfeuch-
Fraisse game with countably many rounds in which the Spoiler uses the following special strategy.
He will play the smallest unplayed node of G1 in each even-numbered round and the smallest un-
played node of G2 in each odd-numbered round. Like in the proof of Lemma 10.2 the validity of the
extension axioms give the Duplicator a winning strategy, one in which, we note, she always chooses
an unplayed node. When the game is played with these two strategies for Spoiler, respectively
Duplicator, each graph node, for both G1 and G2, is eventually played, and is played exactly once.
After round k the game establishes a partial isomorphism between k nodes of G1 and k nodes of G2.
This partial isomorphism is a subset of the partial isomorphism established after round k +1. Take
the (countable) union of these partial isomorphisms and this must be an isomorphism between G1

and G2. ✷

Therefore S is complete and we have the second proof of the 0-1 Law. Note that it also uses the
Ehrenfeucht-Fraisse games, but not the Ehrenfeucht-Fraisse theorem. For decidablity we need an
extra feature: a recursive axiomatization. This is now obvious:

Proposition 11.8 S = Th(EA)

Proof From EA ⊂ S and since S is a theory it follows that Th(EA) ⊆ S. The same propositions
that we used to prove that S is complete also imply that Th(EA) is complete. Now S = Th(EA)
follows from the following simple general observation: if T1 ⊆ T2 are theories such that T2 is
consistent and T1 is complete then T1 = T2. ✷

In conclusion, given an FO sentence ϕ it is decidable whether ϕ ∈ S and therefore µ(ϕ) = 1 or
ϕ �∈ S and therefore µ(ϕ) = 0. The decision procedure given by this proof consists of enumerating
all FO proofs with axioms from EA until either ϕ or ¬ϕ results. A careful analysis of the problem
has shown that it is PSPACE-complete (Grandjean, 1983).

Remark Since it is consistent S has a countable model which, by ω−categoricity, is unique up
to isomorphism. Call this model R. (It is known under the name Rado Graph, sometimes as
the Random Graph or the Erdös-Rényi Graph.) Since S ⊆ Th(R), S is complete and Th((R) is
consistent we have S = Th(R). Thus, the sentences true in R aer exactly the sentences which
hold almost always. This is therefore a very interesting model and it is remarkable that it has an
(apparently) simple alternative definition (discovered by Rado): The nodes are the natural numbers
and we have an edge between i and j iff the j’th bit in the binary expansion of i is 1. By the results
above, to check that this is the unique model of S it suffices to show that it satisfies the extension
axioms. Given r + s distinct natural numbers the existential in EAr,s will be satisfied by any
natural number whose binary expansion has 1’s in the positions designated by the r numbers, 0’s
in the positions designated by the s numbers and arbitrary bits elsewhere.
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12 0-1 or not? Threshold Functions

Both proofs of the 0-1 Law that we have given rely on just one feature of the probability distribution:
that it will make the extension axioms hold almost surely. In fact, for certain p(n) this fails and
the 0-1 Law for FOL also fails. However, a fascinating discovery of Erdös and Rényi was that
the functions for which the 0-1 Law fails in such a way that probabilities “move” from 0 to 1 are
“discrete occurrences” and that different graph properties (FO and beyond) have different such
functions, which they were able to identify precisely. Developing this material is beyond the scope
of this course. However, we can illustrate the basic ideas for structures with a very simple FO
vocabulary.

Let U be a unary predicate symbol and for each n consider the random structure SU [n, p(n)] with
the universe {1, . . . , n} and such that U holds of each of its elements independently with probability
p(n). As in the case of random graphs we denote

µ(ϕ) = lim
n→∞

Pr(SU [n, p(n)] |= ϕ)

whenever it exists. Now consider the following simple sentence YES = ∃x U (x ). It is easy to see
that

Pr(SU [n, p(n)] |= YES ) = 1 − (1 − p(n))n

Observe that for p(n) = 1/2 (or any constant probability) µ(YES ) = 1 , for p(n) = 1
n2 we have

µ(YES ) = 0 , but for p(n) = 1
n we have µ(YES ) = 1 − 1

e and therefore there exist probability
functions for which the 0-1 Law fails! This leads us to Erdös-rényi’s seminal concept of a “threshold”
probability function:

Definition 12.1 (Threshold Function) p(n) is a threshold function for a property P if

1. Whenever p�(n) � p(n), in other words, p�(n) = O(p(n)) but p(n) �= O(p�(n)), we have
µp�(n)(P ) = 0, and

2. Whenever p(n) � p�(n), we have µp�(n)(P ) = 1.

A extra bit of calculus in the example above with the random unary structure shows that p(n) = 1
n

is a threshold function for the property YES . The need for ordering the probability functions
asymptotically is easy to see: if p(n) = 1

2n we have µ(YES ) = 1 − 1√
e

and 1
2n is also a threshold

function.

It can be shown that in the of the unary random structure p(n) = 1
n is a threshold function for all

properties expressible in FOL not just YES , and it is the (asymptotically) only threshold function.
For example, the following can be shown:

Theorem 12.1 For the random unary structure and for p(n) such that p(n) � 1
n , 1 − p(n) � 1

n
the 0-1 Law holds for FO sentences.

The proof of this theorem follows exactly the strategy of the second proof we gave for random
graphs while using the following sentences in the role previously played by the extension axioms:

For each r ≥ 0 define

Ar = ∃x1 . . . xr Distinct(x1, . . . , xr) ∧ U(x1) ∧ · · · ∧ U(xr)

and
Br = ∃x1 . . . xr Distinct(x1, . . . , xr) ∧ ¬U(x1) ∧ · · · ∧ ¬U(xr).
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Let
UEA = {Ar | r ≥ 0} ∪ {Br | r ≥ 0}

Proving that Th(UEA) is ω−categorical and that with the assumptions we made about p(n) the
sentences in UEA hold almost surely will be assigned as homework.

Now back to the random graph. A useful intuition is to think of G[n, p(n)] as “evolving from empty
to full” as the probability p(n) varies from from 0 to 1. When p(n) is a threshold function for a
property P we say that P “appears” at p(n) as the random graph fills up. Dually, we can define
threshold functions for those properties that “disappear”as the random graph fills up.

We list without proof some of the fascinating results that were shown about the random graph.

Already in their seminal paper that started the subject Erdös and Rényi found threshold functions
for some graph properties. Most of these properties are formulated in terms of containing certain
kinds of subgraphs. Some of these properties are FO definable, some not.

• At p(n) = 1
n2 , edges appear (FO definable).

• At p(n) = 1
n
√

n
, hinges (pairs of edges with one common vertex) appear (FO definable).

• At p(n) = 1
n k√n

, where k is fixed, trees on k + 1 vertices appear (FO definable).

• At p(n) = 1
n , triangles (in fact, cycles of any fixed size) appear (FO definable) and planarity

disappears (not FO definable).

• At p(n) = ln n
n , connectivity appears (not FO definable)

Moreover, it was shown that (asymptotically) below 1
n2 and (asymptotically) in-between the thresh-

old functions listed above the 0-1 law for FO definable properties holds.

Finally, we mention that Shelah and Spencer have shown that for any p(n) = 1
nα where α ∈ (0, 1)

is irrational the 0-1 law holds for all FOL sentences.

But if α is rational, then 1
nα is a threshold function for some FO definable property. An example

is α = 2
3 , p(n) = 1

3√
n2

when cliques of size 4 appear (Cliques of fixed size k ≥ 3 appear at 1
n2/k−1 .)
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