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10 Ehrenfeucht-Fräıssé Games and the First Proof of the 0-1 Law

We consider FO models over a signature (vocabulary) σ which has only relational and constant
symbols. If A is a σ-structure and s ∈ σ is a constant or relation symbol we denote by sA the
interpretation of s in A.

The Ehrenfeucht-Fräıssé game is as follows. There are two players, called Spoiler and the Duplica-
tor. The board of the game consists of two structures A and B. The goal of Spoiler is to show that
these two structures are different; the goal of Duplicator is to show that they are the same.

In the classical Ehrenfeucht-Fräıssé game, the players play a certain number of rounds. Each round
consists of the following steps:

1. Spoiler picks a structure (A or B) and makes a move by picking an element of that structure:
either a ∈ A or b ∈ B.

2. Duplicator responds by picking an element in the other structure.

Suppose that Spoiler and Duplicator play n rounds and let −→a = (a1, . . . , an) and −→b = (b1, . . . , bn)
be the (not necessarily distinct!) moves made by the players on A, respectively B. Who has won?
To define this, we need a crucial definition: that of a partial isomorphism.

Definition 10.1 (Partial isomorphism). Let A, B be two σ-structures, and −→a = (a1, . . . , an)
and −→b = (b1, . . . , bn) be two tuples of elements from A and B respectively. Then (−→a ,

−→
b ) defines a

partial isomorphism between A and B if the following conditions hold:

• For every i, j ≤ n,
ai = aj iff bi = bj .

• For every constant symbol c from σ, and every i ≤ n,

ai = c
A iff bi = c

B
.

• For every m-ary relation symbol R from σ and every sequence (i1, . . . , im) of (not necessarily
distinct) numbers 1 ≤ i1, . . . , im ≤ n,

(ai1 , . . . , aim) ∈ R
A iff (bi1 , . . . , bim) ∈ R

B
.

Definition 10.2 (Who wins) The game run (−→a ,
−→
b ) has been won by Duplicator if it defines a

partial isomorphism. Otherwise, this game run was won by Spoiler.

Definition 10.3 We write A ∼n B if Duplicator has a winning strategy for A and B that works
in any n-round game.
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Observe that A ∼n B implies A ∼k B for every k ≤ n.

Although this is not at all obvious, ∼n is an equivalence relation on structures. This can be shown
directly, or it can be seen to follow from Theorem 10.1 below.

Definition 10.4 (Quantifier Rank). The quantifier rank of a formula qr(ϕ) is its depth of
quantifier nesting. That is:

• If ϕ is atomic, then qr(ϕ) = 0.

• qr(ϕ1 ∨ ϕ2) = qr(ϕ1 ∧ ϕ2) = max(qr(ϕ1), qr(ϕ2)).

• qr(¬ϕ) = qr(ϕ).

• qr(∃xϕ) = qr(∀xϕ) = qr(ϕ) + 1.

Theorem 10.1 (Ehrenfeucht-Fräıssé). Let A and B be two structures in a relational/constants
vocabulary σ. Then the following are equivalent:

1. For any ϕ, qr(ϕ) ≤ k, A |= ϕ iff B |= ϕ.

2. A ∼k B.

For the proof of this fundamental theorem you can consult Libkin’s book (see course bibliography)
or Kolaitis’s chapter in “Finite Model Theory and Its Applications”, Grädel et al., eds., Springer
2007.

Lemma 10.2 For any k, G1, G2 (finite or not!) if G1, G2 |= EAr,s for all r + s ≤ k, then
G1 ∼k G2. In other words, if G1, G2 satisfy enough extension axioms then Duplicator has a winning
strategy for any Ehrenfeuch-Fraisse game played on G1 and G2.

Proof. Duplicator’s strategy is given quite directly by the extension axioms. Indeed, if at round
n+1 Spoiler plays (say) u ∈ G1 then let A1 be the subset of the vertices already played on G1 which
are adjacent to u and let N1 be the set of the other vertices already played, those not adjacent
to u. Let Y2 and N2 be the sets of moves played on G2 corresponding to Y1 and N1. Duplicator
has a move to answer u ∈ G1 by Spoiler because G2 |= EAr,s where r = |Y2| and s = |N2| with
r + s ≤ n. ✷

Now we prove the 0-1 Law for FOL.

Theorem 10.3 (0-1 Law) Suppose p(n) = p �= 0, 1 is constant (does not depend on n) i.e.,
assume the case of the random graph of constant probability. Then, for any ϕ in FOL µ(ϕ) exists
and is either 0 or 1.

Proof. Fix an arbitrary ϕ and let k = qr(ϕ). Consider

EAk =
�

r+s≤k

EAr,s

It follows from Lemmas 8.1 and 7.1 that µ(EAk) = 1.

Now we consider the following two cases:
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Case 1 EAk ∧ ϕ is satisfiable.
Let the graph G0 be a model for this sentence. Then, for any graph G such that G |= EAk,
we have G0 ∼k G by Lemma 10.2. Then G |= ϕ by Theorem ??. Therefore EAk implies ϕ

and by Lemma 7.1(d) µ(ϕ) exists and is 1.

Case 2 EAk ∧ ϕ is unsatisfiable.
Then any graph G that satisfies EAk cannot also satisfy ϕ and must therefore satisfy ¬varphi.
Therefore EAk implies ¬ϕ, and by Lemma 7.1(d) µ(¬ϕ) exists and is 1. By Lemma 7.1(a)
this means that µ(ϕ) exists and is 0.

✷

In the next lecture we will provide another proof of the 0-1 law, a proof that will allow us to also
derive the nice additional fact that given ϕ it is decidable which one of µ(ϕ) = 1 or µ(ϕ) = 0
holds. (But probably not efficiently decidable: it was also shown that the problem is in fact
PSPACE-complete.)
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