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6 Warm-Up on 0-1 Properties

Consider graphs constructed randomly on the set of vertices {1, . . . , n}. At first, we assume that
each (unordered) pair of vertices is connected by an edge with probability 1/2. It follows that
the underlying (finite) probability space consists of 2(n

2) equiprobable graphs. We denote by Gn a
random graph on n vertices.

A triangle in such a graph is a clique of size three, i.e., three distinct nodes each two of which are
connected by an edge. What is the probability that a random graph on n vertices contains at least
one triangle? Because the possible worlds are equiprobable Pr(Gn has triangles) can be computed
by counting all graphs that have at least one triangle and dividing by 2(n

2). This counting may be
a hard combinatorial task but it turns out that we can easily obtain some interesting information
about these probabilities:

Proposition 6.1 lim
n→∞

Pr(Gn has triangles) = 1

Proof For each 1 ≤ i �= j �= k �= i ≤ n let Tijk denote the event that in the random graph the
vertices i, j, k form a triangle, obviously an event of probability 1/8. Using the monotonicity of
probability:

Pr(Gn has a triangle) = Pr(
�

i,j,k

Tijk) ≥ Pr(T123 ∪ T456 ∪ · · ·)

The events T123, T456, . . . are not disjoint but they are independent. Hence

Pr(T123 ∪ T456 ∪ · · ·) =
�

1−
�

1− 1
8

��n/3�
�

The proposition follows by taking limits. ✷

The terminology for this case, when the limit is 1, is that “almost all graphs have triangles” or
“there is almost surely a triangle”. Let us now show that “almost no graphs have isolated nodes”
or “there is almost never an isolated node”.

Proposition 6.2 lim
n→∞

Pr(Gn has isolated nodes) = 0

Proof For each 1 ≤ i ≤ n denote by Ii the event that node i is isolated. There are 2(n−1
2 ) graphs

in which i is isolated hence

Pr(Ii) =
2(n−1

2 )

2(n
2)

Now

Pr(Gn has isolated nodes) = Pr(I1 ∪ · · · ∪ In) ≤ Pr(I1) + · · · + Pr(In) =
n2(n−1

2 )

2(n
2)

=
n

2n−1
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Again the proposition follows by taking limits. ✷

Now, for any graph property P let us introduce the notation

µ(P ) = lim
n→∞

Pr(Gn has P )

provided, of course, that the limit exists. When the property P is expressible in FOL this limit
behaves quite remarkably as the following interesting theorem due to Glebskii, Kogan, Liogonki,
and Talanov (1969), and independently to Fagin (1976) states.

Theorem 6.3 (0-1 Law for FOL) For any FO sentence ϕ, µ(ϕ) exists and is either 0 or 1.

Although we provided separate proofs, the results about “has triangle” and “has isolated node” fall
under the purview of this more general theorem because they can be expressed in FOL. Indeed, we
can use for example a binary predicate E(i, j) that holds exactly when the undirected edge between
i and j is in the graph (hence E(j, i) holds also). Then

has triangles : ∃x, y, z x �= y �= z �= x ∧ E(x, y) ∧ E(y, z) ∧ E(z, x)

has isolated nodes : ∃x.∀y ¬E(x, y)

On the other hand, it is easy to see that for the “parity” property µ(has even number of edges) =
1/2 so Theorem 6.3 can be used to conclude that parity cannot be expressed in FOL or in any logic
that admits a 0-1 law.

Note also that the limit µ(has even number of vertices) does not even exist.

Finally, we shall see that µ(connectivity) = 1 and µ(acyclicity) = 0 even though these properties
are not in FOL. Indeed it turns out out that 0-1 laws still hold for logics that are stronger than
FOL (in particular logics with “fixpoints”).

Another issue is that Theorem 6.3 tells us that µ( has triangles) exists and is either 0 or 1 but
it does not tell us which! Same for µ( has isolated nodes). Can it be determined from the FO
sentence that expresses the property whether the limit is 0 or 1?

7 Generalized Random Graphs

It turns out also that it is worthwhile considering random graphs where the probability that each
edge occurs is not necessarily 1/2, but any constant probability in [0, 1] and it may even be a
function of the number n of nodes of the graph, for example, p(n) = 1

n , p(n) = 1
n2 , p(n) = ln n

n .

Definition 7.1 Denote by G[n, p(n)] the random graph with nodes {1, . . . , n} where for any two
distinct nodes there is an edge between them with probability p(n), independently of any other pairs
of nodes. This yields a discrete probability space whose possible worlds are graphs on the same set
of nodes and where the probability of each possible world is p(n)m(1 − p(n))(

n
2)−m where m is its

number of edges. (Thus, the possible worlds are not equiprobable anymore.)

For a given property P of graphs we are interested in the behavior of Pr(G[n, p(n)] has P ) for large
n that is, in

µp(n)(P ) = lim
n→∞

Pr(G[n, p(n)] has P )

when this limit exists. We will often write µ(P ) when the probability space is clear from the
context. And we will be especially interested in those properties P which can be expressed by FO
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sentences. As we explained in the equiprobable case, when µ(P ) = 1 we say that P holds (or is
true) almost always (or almost surely) and when µ(P ) = 0 we say that P holds (or is true) almost
never.

Lemma 7.1 Let P and Q be any properties of graphs (not necessarily just FO sentences). We
have

(a) µ(P ) = 1 iff µ(¬P ) = 0. (P holds almost surely iff its negation holds almost never.)

(b) If µ(P ) = µ(Q) = 1, then µ(P ∧ Q) = 1. (If P and Q both hold almost always then so does
their conjunction.)

(c) If µ(P ) = µ(Q) = 0, then µ(P ∨ Q) = 0. (If P and Q both hold almost never then so does
their disjunction.)

(d) Suppose P implies Q, then µ(P ) = 1 ⇒ µ(Q) = 1 (if P holds almost surely then so does Q)
and µ(Q) = 0 ⇒ µ(P ) = 0 (if Q holds almost never then so does P ).

The proofs use just the basic laws of probability and will be assigned as homework exercises.
We will frequently use these facts.

8 The Extension Axioms

Definition 8.1 (Extension Axioms). Let r and s be natural numbers. Then the extension axiom
EAr,s says that for any distinct x1, . . . , xr, y1, . . . , ys, there exists z distinct from x’s and y’s such
that for all i (i = 1, . . . , r), there is an edge between z and xi, and for all j (j = 1, . . . , s), there is
no edge between z and yj. In FOL EAr,s is given by the following sentence:

∀x1, . . . , xr∀y1, . . . , ys Distinct(x1, . . . , xr, y1, . . . , ys)

→ ∃z Distinct(z, x1, . . . , xr, y1, . . . , ys) ∧
r�

i=1

E(z, xi) ∧
s�

j=1

¬E(z, yj)

where
Distinct(u, v, w, . . .) stands for u �= v ∧ v �= w ∧ u �= w ∧ · · ·

Lemma 8.1 Suppose p(n) = p �= 0, 1 is constant (does not depend on n). (call this the random
graph of constant probability). Then, for any fixed r, s we have µ(EAr,s) = 1, i.e., EAr,s holds
almost surely.

Proof For fixed x1, . . . , xr, y1, . . . , ys we can compute the probability that there is no z such that

Distinct(z, x1, . . . , xr, y1, . . . , ys) ∧
r
E

i=1
(z, xi) ∧ ¬

s
E

j=1
(z, yj)

Indeed
Pr(no z) = (1− p

r(1− p)s)n−r−s

Now let W1, . . . ,Wm where m =
�n
r

��n−r
s

�
be all the events corresponding to there is no z as above

for all the possible choices of r distinct x’s and s’s distinct y’s, also distinct from the x’s. These
events may not be disjoint but we can still apply a standard inequality, and moreover all these
events have the same probability, computed above. Therefore

Pr(G[n, p] |= ¬EAr,s) = Pr(W1∪· · ·∪Wm) ≤ Pr(W1)+· · ·Pr(Wm) =
�

n

r

��
n− r

s

�

(1−p
r(1−p)s)n−r−s

Taking limits we get µ(EAr,s) = 0 and by Lemma 7.1(a) µ(EAr,s) = 1. ✷
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9 Connectivity, acyclicity, “treeness”

It is known that connectivity and acyclicity are not expressible in FOL. Nonetheless, we shall see
that we can use the 0-1 status of some extension axioms to derive a 0-1 status for them!

Example 9.1 In the random graph of constant probability the property ”is connected” holds almost
surely.

Proof Consider the extension axiom EA2,0, which states that ∀x �= y,∃z different from x and y,
such that E(x, z) ∧ E(y, z). Therefore, any graph with at least three nodes that satisfies EA2,0 is
such any two of its nodes are connected by a path of length 2, hence the graph is connected. Since
the extension axioms hold almost surely by Lemma 8.1 Lemma 7.1(d) that “is connected” is also
almost surely true.

Remark Our argument seems to require that the graphs have at least three nodes (actually two,
can you see this?)... but there are two ways out of this “problem”. One is to observe that one
can strengthen Lemma 7.1(d) by asking that there be some N such that “P implies Q” holds just
for all graphs with more than N nodes, rather than all graphs. Another way out is to take the
conjunction between EA2,0 and the property that the graph has at least three nodes. The latter is
obviously almost surely true and therefore their conjunction is too, by Lemma 7.1 (b).✷

Example 9.2 The properties “is acyclic” and ”is a tree” hold almost never.

Proof Notice that EA1,0∧EA2,0 implies that there exists a triangle and hence a cycle. As before,
it follows that “has a cycle” holds almost surely and by Lemma 7.1(a) “is acyclic” holds almost
never. Since “is a tree” implies “is acyclic” it follows by Lemma 7.1(d) that “is a tree” holds almost
never. ✷.
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