
Logic and Probability, EPFL, Fall 2011

Lecture Notes 1

Val Tannen

1 How Mathematical Logic Gave Birth to Computer Science

Cantor’s set theory: infinite objects in proofs. Mathematicians worry and argue. Paradoxes.

The formalization of mathematical proofs from Leibniz to Boole to Frege. Frege formalizes the
predicate calculus and a form of set theory. Russell’s Paradox.

Hilbert’s interest in the foundations of mathematics. His Second Problem.

Russell and Whitehead’s “Principia Mathematica”, a ramified theory of types. Zermelo-Fraenkel
set theory.

Hilbert’s Program. Relative consistency results. Gödel’s Completeness Theorem. The Decision
Problem (Entscheidungsproblem).

Schönfinkel and later Curry invent a “functional”formalism, combinatory logic. Church invents the
lambda calculus as a skeleton for an alternative to the Principia system and to ZF set theory.

Gödel shatters Hilbert’s Program with his Incompleteness Theorems.

Kleene encodes arithmetic in the lambda calculus. He and Rosser show that the Church and Curry
proposals for logics based on functional formalisms are inconsistent.

Church proposes lambda definability as a formal definition of computability/decidability (Church’s
Thesis). He shows that there exist undecidable problems in arithmetic and that the Entschei-
dungsproblem is undecidable.

Kleene shows that lambda definability is equivalent to Gödel’s proposal for computability based on
an idea of Herbrand (definability by systems of arithmetic equations).

Independently of Church, Turing shows that the Entscheidungsproblem is undecidable. His proposal
for computability relies, of course, on what we call now Turing Machines and, critically, on the
Universal Turing Machine. After he becomes aware of the work by Church and Kleene he shows
that his notion of computability is equivalent to lambda definability.

Inspired by his work on lambda calculus Kleene develops recursion theory, out of which complexity
theory emerges later.

Church develops the simply typed lambda calculus as the foundation of “a simple theory of types”.
This leads eventually to modern proof assistants based on type theory.

Large-scale vacuum tube technology enables the construction of the building-size decimal calculator
ENIAC by Eckert and Mauchly. Von Neumann is a consultant to the project.

Eckert and Mauchly design ENIAC’s successor, the binary machine EDVAC. Inspired by the Uni-
versal Turing Machine, von Neumann designs for EDVAC the stored program architecture that

1

today bears his name.

2 Friendly and Unfriendly Aspects of First-Order Logic, in Gen-
eral

Our starting point is the semantics of first-order logic(FOL), specifically logical consequence
assertions. These have the form Γ |= ϕ where ϕ is an FO sentence and Γ is set of FO sentences.
For example, we can think of Γ as an “axiomatization” of a mathematical theory or as part of
a “modelization” of a physical or informatic system. So our initial question is: what kind of
computing can we do with logical consequence assertions?

Some theories are axiomatized by finite sets of axioms but most make use of so-called axiom
schemes, which are finite descriptions of infinite sets of axioms. Thus, we will consider so-called
recursively axiomatized theories, given by a Γ that is decidable. 1

Starting with the work of Frege, several equivalent proof systems for FOL were formalized by
Hilbert and others. Answering a question of Hilbert, Gödel showed that the intuition captured by
the proof systems was correct:

Theorem 2.1 (Gödel’s Completeness Theorem) Γ |= ϕ iff Γ ` ϕ.

The FOL proof systems and, in fact, any reasonable proof system has a nice computational nature:
proofs are finite objects, it is decidable whether a finite object is a correct proof and the sentence
proven by a proof can be computed from it. This implies that {(Γ, ϕ) | Γ ` ϕ} is r.e. By Gödel’s
Completeness Theorem and defining

VALID def= {ϕ | |= ϕ }

we have in particular:

Corollary 2.2 VALID is r.e.

This is good, but even better would be if we could actually decide first-order provability (hence
logical consequence). This question, known as the Entscheidungsproblem 2, and again asked by
Hilbert, has a negative answer:

Theorem 2.3 (Church/Turing’s Undecidability Theorem) VALID is undecidable.

A proof of Theorem 2.3 can be found in section 5 of my lecture notes on computability.

We still wish to find cases in which logical consequence is decidable. and there are two strategies we
use in what follows: to restrict ourselves to FO sentences of a special form and to restrict ourselves
to special classes of models.

An obvious restriction of the second kind is to look at validity over finite models. In fact, in
computer science we are concerned mostly with finite structures so this is very natural. Define

FIN-VALID def= {ϕ | A |= ϕ for all finite A}
1Note that when Γ is finite Γ |= ϕ is equivalent to |= Γ → ϕ (interpreting Γ as the conjunction of its elements).
2“Decision problem” in German. At the beginning of the 20th century most papers on mathematical logic were

in German.

2

Exercise 2.1 Give an example of an FO sentence that is finitely valid but not valid.

Unfortunately, finite validity is even worse than validity! We have:

Theorem 2.4 (Trakhtenbrot’s Theorem) FIN-VALID is undecidable.

In Libkin’s “Elements of Finite Model Theory”, pp 165–168, it is shown how to compute from the
description of a Turing Machine M a FO sentence ϕM such that M halts on the empty string input
iff ϕM is finitely satisfiable. Like the Halting Problem, this problem is also undecidable (in fact, it
is also r.e.-complete). It follows that

FIN-SAT def= {ϕ | there exists a finite A such that A |= ϕ}

is undecidable. Using the reduction ϕ 7−→ ¬ϕ we conclude that FIN-VALID and therefore
FIN-VALID are also undecidable.

Exercise 2.2 Show how to modify the proof of Trakhtenbrot’s Theorem in Libkin’s book in order
to prove the Church-Turing Theorem.

In fact FIN-VALID is not even r.e.! This is easy to see if we look at the satisfiability property.
Recall that a sentence ϕ is (finitely) satisfiable if there exists a (finite) model A such that A |= ϕ.
Note that ϕ is satisfiable iff ¬ϕ is invalid and ϕ is valid iff ¬ϕ is unsatisfiable. Hence, it follows
from the Church/Turing and Trakhtenbrot theorems that satisfiability and finite satisfiability are
both undecidable. Moreover, it follows from Gödel’s Completeness Theorem that

Corollary 2.5 The set of satisfiable FO sentences is co-r.e.

The situation with finite satisfiability is quite different:

Proposition 2.6 The set of finitely satisfiable FO sentences is r.e.

Proof Isomorphic models satisfy the same sentences so it’s sufficient to consider finite models
whose universe (domain) is of the form {1, 2, . . . , n}. We can enumerate all pairs consisting of such
a finite model and an FO sentence, and output the sentence if it holds in the model. (This assumes
that for finite models A |= ϕ is decidable; see Theorem 5.2.) 2

Note that although finite satisfiability is r.e., it is nonetheless undecidable, as follows from Trakht-
enbrot’s Theorem. Moreover,

Corollary 2.7 FIN-VALID is not r.e.

Proof If FIN-VALID was r.e. then finite satisfiability would be co-r.e., hence also decidable,
by Proposition 2.6. This would make FIN-VALID decidable which contradicts Trakhtenbrot’s
Theorem. 2

Therefore, FOL “ in finite models” is worse than standard FOL: it does not even admit a complete
proof system!

Exercise 2.3 VALID and FIN-SAT are both r.e.-complete hence many-one reducible to each other.
Describe as best you can two total computable functions that realize these two many-one reductions.

3

3 Reduction Classes

Let us now look at the other strategy for finding decidable cases of logical consequence: restricting
the class of sentences.

Unfortunately, we begin with a disappointment: even for (apparently) simple classes of sentences
validity is undecidable.

Definition 3.1 A class C of FO sentences is called a reduction class if there is a computable
function f that maps arbitrary FO sentences into C-sentences such that ϕ is valid iff f(ϕ) is valid.
It follows from the Church/Turing Theorem that the validity problem for C is also undecidable.

Intuitively, reduction classes have a validity problem that is “as hard as” the validity problem for
all of FOL. Even before the Church/Turing result, various reduction classes were exhibited (note
that you don’t really need a formalized definition of computability for such results). We give an
example in what follows.

Definition 3.2 A formula of the form ϕ
def= Q1x1 · · ·Qnxn ψ where each Qi is either ∀ or ∃ and

ψ is quantifier-free is called a prenex formula. If the quantifiers are all ∀ (all ∃) then ϕ is called a
universal formula (an existential formula).

In what follows, by equivalent sentences we mean two sentences that are logical consequences of
each other. This is denoted ϕ |==| ψ and it holds iff |= ϕ↔ ψ.

Lemma 3.1 For each sentence we can compute (in PTIME) an equivalent prenex sentence.

Proof “Pull out” the quantifiers by repeatedly using transformations like

¬∃xϕ 7−→ ∀x¬ϕ ϕ ∧ (∀xψ) 7−→ ∀x(ϕ ∧ ψ) (∀xϕ)→ ψ 7−→ ∃x(ϕ→ ψ)

etc., while renaming bound variables to avoid unintended scope capture. 2

Exercise 3.1 Analyze the complexity of the algorithm sketched above; for any FO sentence it
computes an equivalent prenex FO sentence. You can choose the data structure used to represent
sentences.

Lemma 3.2 (Skolem) Let V be a vocabulary and let V̄ be its extension with countably many fresh
function symbols of each arity (including nullary functions i.e. constants). For each prenex sentence
ϕ over V we can compute (in PTIME) a sentence Sk(ϕ) over V̄ such that

• Sk(ϕ) is a universal sentence.

• ϕ is true in the V-restriction of any model of Sk(ϕ).

• Any model of ϕ can be extended, keeping the same universe (domain), to a V̄-structure that
satisfies Sk(ϕ). (Hence, ϕ is satisfiable iff Sk(ϕ) is satisfiable.)

Proof Eliminate the existential quantifiers from left to right in the prenex sentence repeating the
transformation

∀x1 · · · ∀xn∃y ϕ(y) 7−→ ∀x1 · · · ∀xn ϕ(f(x1, . . . , xn))

4

where f is a fresh functions symbol.

For example:

Sk(∃u ∀x ∃v ∀y ∃wR(u, v) ∧ f(x,w) = g(v)) def= ∀x ∀y R(r, s(x)) ∧ f(x, t(x, y)) = g(s(x))

2

Sk(ϕ) is unique up to some renaming so it is called the Skolem Normal Form of ϕ. The transfor-
mation ϕ 7−→ Sk(ϕ) is called skolemization. Symbols like r, s and t in the proof example are called
Skolem functions.

Exercise 3.2 Analyze the complexity of the algorithm sketched above; for any prenex FO sentence
it computes an equivalent Skolem normal form FO sentence. Again, you can choose the data
structure used to represent sentences.

Theorem 3.3 The existential sentences form a reduction class.

Proof Given an FO sentence ϕ and assuming that the transformations to prenex form are implicit,
observe that ¬Sk(¬ϕ) is an existential sentence that is valid iff ϕ is valid. 2

Warning! Our definition of reduction class is for the validity decision problem. It is more common
to define reduction classes for the satisfiability decision problem. If the class is closed under negation
the two coincide. But classes defined by the quantifier structure of prenex formula are typically not
closed under negation! For example, the theorem above is often stated as “the universal sentences
form a reduction class (wrt decidability of satisfiability)”.

4 The Finite Model Property

Although finite validity has bad computational properties for the class of all FO sentences, the
r.e.-ness of finite satisfiability can be exploited for classes of restricted FO sentences.

Definition 4.1 A class of sentences has the finite model property if any satisfiable sentence in
the class is also finitely satisfiable.

The class of all FO sentences does not have the finite model property. Indeed, it is fairly easy to
concoct sentences that are satisfiable but not finitely satisfiable . Such sentences are called infinity
axioms. In fact, if the class of all FO sentences would have the finite model property then the next
result would contradict the undecidability results shown earlier!

Proposition 4.1 Let C be a class of sentences that is decidable (i.e., it is decidable whether an
FO sentence ϕ is in C). If C has the finite model property then (finite or general) satisfiability of
C-sentences is decidable.

Proof Recall that for the class of all FO sentences satisfiability is co-r.e. and finite satisfiability
is r.e. Since C is decidable it enjoys the same properties. But for the sentences in C satisfiability
and finite satisfiability coincide! Hence they are both r.e. and co-r.e. and thus decidable. 2

The decision procedure provided by the previous proof is very inconvenient: it consists of trying,
in parallel, to finitely satisfy the sentence and to prove its negation (if the sentence is satisfiable
then the first thread succeeds; if not then the second thread does). A better procedure is given by
the following.

5

Definition 4.2 A class of sentences has the small model property if there is a total recursive
function u such that any satisfiable sentence in the class has a model with less than u(| ϕ |) elements.
(Here | ϕ | denotes the size of ϕ.)

The small model property implies the finite model property. However, a decidable class of sentences
with the small model property has a decision procedure for satisfiability that is potentially simpler.
There is no need for the annoying attempt to prove the negation of a sentence ϕ; it suffices to check
all models with less than u(| ϕ |) elements.

Note that we only said potentially simpler: it all depends on how easy to compute u is. Indeed,
if C is decidable then the finite model property implies the small model property! Consider the
following algorithm for u:

On input n, generate the (finitely many) sentences in C of size n. For each of them, in
parallel, check for finite satisfiabilty and try to prove the negation, and thus compute
either the size of a model or 0 (if unsatisfiable). Return as u(n) the largest of these.

Using this u the small model property gives a decision procedure that is just as inconvenient as the
one given by the finite model property. If we consider classes C that are not decidable a general
observation is that there exist such classes that have the finite model property but do not have the
small model property: simply take the class of all finitely satisfiable sentences. Indeed, suppose
there is a total recursive function u such that any satisfiable sentence ϕ in this class has a model
with less than u(| ϕ |) elements. But all the sentences in this class are satisfiable! Hence ϕ is finitely
satisfiable iff it has a model with less than u(| ϕ |) elements. This would make finite satisfiability
decidable.

Anyway, what happens for concrete classes of sentences is that a better and more specific u is
derived which moreover gives a useful complexity upper bound for the decision procedure. Here is
an example:

Theorem 4.2 The existential FO sentences have the small model property. In fact, any satisfiable
existential sentence ϕ has a model with at most | ϕ | elements.

Proof Let ϕ def= ∃x1 · · · ∃xm ψ be an existential sentence where ψ is quantifier-free. We replace
each non-variable functional term occurring in ψ with a fresh existentially quantified variable and
an additional equality atom. We do this bottom-up for all subterms, including constants, so if
t ≡ f(t1, . . . , tk) is such a term and t1, . . . , tk are replaced by y1, . . . , yk then t is replaced by a
fresh variable y and we add the equality atom f(y1, . . . , yk) = y. Therefore, ϕ is transformed into
a sentence ϕ̄ of the form

ϕ̄
def= ∃x1 · · · ∃xm ∃y1 · · · ∃yn ψ̄ ∧ f1(. . .) = y1 ∧ · · · ∧ fn(. . .) = yn

where f1, . . . , fn are the functional symbol occurrences in ψ (we treat constants as nullary functions).

For example, ∃xR(x, f(c, x)) is transformed into ∃x ∃y1∃y2R(x, y2) ∧ c = y1 ∧ f(y1, x) = y2.

It is not hard to see that ϕ and ϕ̄ hold in the same models and that if ϕ̄ is satisfiable then it has a
model with at most m+ n elements. Since n ≤| ψ | we conclude that if ϕ is satisfiable then it has
a model with at most | ϕ | elements. 2

Corollary 4.3 Satisfiability of existential sentences is NP-complete.

6

Proof For membership in NP, let the sentence be ϕ def= ∃x1 · · · ∃xm ψ(x1, . . . , xm). We guess a
model A with less then | ϕ | elements, we also guess a valuation v that maps each of x1, . . . , xm to
some element of A, and then we check A, v |= ψ. Checking the truth of a quantifier-free formula
can be done in PTIME in the size of the formula, see Theorem 5.1.

For NP-hardness we provide a reduction from boolean satisfiability. Given a boolean formula β

with propositional variables p1, . . . , pn we construct the existential sentence ϕ def= ∃x1 · · · ∃xn β̄ over
a vocabulary with one unary predicate symbol R where β̄ is obtained by replacing each pi with
R(xi). Now consider the “binary” model B whose universe is {0, 1} and where R is interpreted as
{1}. Clearly β is satisfiable iff B |= ϕ. It is also easy to see that if ϕ is satisfiable then it holds true
in B. Therefore, β is satisfiable iff ϕ is. 2

And this finally gives a class of sentences for which the validity problem is decidable:

Corollary 4.4 Validity of universal sentences is decidable and coNP-complete.

This means that the satisfiability of existential sentences is also decidable and in fact NP-complete.
(Note that Theorem 3.3 says that validity is undecidable for this same class.)

For certain simple existential sentences satisfiability is trivially decidable: they are in fact all
satisfiable!

Exercise 4.1 An existential-conjunctive sentence is a sentence of the form ∃x1 · · · ∃xn ϕ where ϕ
is a conjunction of atomic formulas (equalities are allowed). Prove that any existential-conjunctive
sentence is satisfiable in a model with one element.

5 Model Checking for FOL

Given a vocabulary V, the model checking 3 problem consists of deciding if A |= ϕ for an FOL
V-sentence ϕ and a finite V-structure A.

We shall be interested in the complexity of the model checking problem, in fact in three different
situations:

Combined complexity The input is (A, ϕ), its size is | A | + | ϕ |.

Expression complexity A is fixed, the input is just ϕ.

Data complexity ϕ is fixed, the input is just A.

We must be clear about what is meant by | A |. This is the size of the complete description of
A. But how do we give such a description as input to a Turing machine? We fix an enumeration
of the elements of the (non-empty) universe of A: a1, a2, . . . an then we represent (encode) the
model on Turing machine tapes with respect to this enumeration. Specifically, we represent ak

by the number k, in binary, therefore by using log k bits. We encode tuples and then relations
using some separating symbols. The tuples in a relation will be ordered lexicographically, based on
the ordering of domain elements given by the enumeration. For example, consider the enumerated
domain a, b, c. Then R = {(c, b), (a, c), (a, b)} S = {(c, a, c), (a, a, b)} can be encoded by the
string R/0-1/0-10/10-1/S/0-0-1/10-0-10/. The interpretation of function symbols of arity m

3This name comes from automated verification. We shall see later that model checking for many verification logics
is a particular case of FOL model checking.

7

is represented as m + 1-relations in which the tuples group the arguments and the corresponding
result of the function. Finally, we make the size of the universe, in unary (to avoid pathologies)
part of the representation.

If the universe of A has n elements and if the vocabulary contains an m-ary relation symbol R
then the model description contains the encoding of as many as nm tuples. In general, for a fixed
vocabulary | A | is no more than polynomial in the size of the universe of A.

We begin with with the quantifier-free case and it will be useful to consider a slightly more general
problem, involving formulas and valuations rather than just sentences: decide if A, v |= ψ where
ψ is a quantifier-free formula and v is a valuation defined for a set of variables that includes the
free variables of ψ. In this case, we consider v, together with ψ, to be the input for expression
complexity.

Theorem 5.1 The data complexity of quantifier-free formula checking is in LOGSPACE. The
expression and combined complexities of the same problem are in PTIME.

Proof The procedure relies on evaluating the functional terms in the formula, determining the
truth value of the atoms, and evaluating the resulting boolean expression. Term evaluation is done
akin to arithmetic expression evaluation, using a stack. This gives us the PTIME expression and
combined complexities. For the data complexity note that the size of the stacks does not depend
on | A |. We just need to lookup tuples in the description of A and this can be done with pointers
of size log | A |. This gives the LOGSPACE bound on data complexity. 2

Remark It has been shown that boolean expressions can be evaluated in LOGSPACE. (Indeed,
to evaluate, e.g., a ∨ b we do not need to record both the value of a and b.) We would not be
evaluating b at all if a resulted in true. Therefore, in the absence of function symbols, i.e., when the
vocabulary consists only of relation symbols and constants, the expression and combined complexity
of quantifier-free model checking are also in LOGSPACE 4

Theorem 5.2 The data complexity of FOL model checking is in LOGSPACE. The expression and
combined complexities of FOL model checking are PSPACE-complete.

Proof First we put the sentence in prenex form 5. Let Q1x1 · · ·Qkxk ψ be the result.

We evaluate this sentence in A using k nested loops iterating each of x1, . . . , xk through all the
elements of the universe of A. If xi is universally quantified then the loop corresponding to xi

computes a big conjunction (disjunction if existentially quantified). In the innermost loop we
evaluate A, v |= ψ where v is the valuation recording the current values of x1, . . . , xk. If m is the
number of elements of A then the time complexity of doing all this is

O(mk poly(| A |, | ψ |))

where poly is a two-variable polynomial. For the space complexity, note that we can keep track
of the current v by using k pointers of size logm. Thus the space complexity adds O(k logm) to
the space complexity of the quantifier-free case. This gives LOGSPACE for data complexity and
PSPACE for expression and combined complexities.

4However, it seems that we cannot evaluate functional terms in LOGSPACE. (Think what goes wrong with the
stack-based procedure.) It is known that there exist context-free languages that are NLOGSPACE-complete. I am
still trying to find out whether such languages can be reduced to the problem of functional term evaluation.

5I don’t know if this can be done in LOGSPACE but for data complexity the sentence is fixed. It certainly can
be done in low degree PTIME hence PSPACE.

8

To show PSPACE-completeness we reduce from QBF, the problem of checking the truth of a
(fully) quantified boolean formula. This is essentially the same reduction performed in the proof
of Corollary 4.3.

Given a fully (no free propositional variables) quantified boolean formula γ
def= Q1p1 · · ·Qkpk β

we construct the FO sentence ϕ def= Q1x1 · · ·Qkxk β̄ over a vocabulary with one unary predicate
symbol R where β̄ is obtained by replacing each pi with R(xi). Clearly γ is true iff B |= ϕ where B
is defined in the proof of Corollary 4.3. Since B is a fixed model, this gives a lower bound for both
combined complexity and expression complexity.

9

