
Logic and Probability, EPFL, Fall 2011

Homework 1

(due Wednesday, October 12, 2011, at the beginning of class)

Val Tannen

The theme of this homework is “First-Order Logic as a query language”. This idea was brought
into Computer Science by E.F. Codd in 1970 and it underlies the entire field of relational database
management systems.

The treatment follows, more or less, the textbook “Foundations of Databases” by Abiteboul, Hull,
and Vianu, Addison-Wesley 1995.

A relational database schema is a non-empty set Σ of relation symbols with their arities. Relational
database formalisms also permit constants. In fact, we fix a countably infinite set ID whose elements
we call constants. These constants can appear in formulas, in other words we work with the FO
vocabulary Σ ∪ ID.

For semantics it is more covenient—although not essential—to give a treatment a little different
than that of standard FOL. Namely the set ID is also understood as the sole universe of discourse for
the interpretation of formulas. A relational database instance for a given schema Σ (a Σ-instance)
is a first-order structure whose domain, or universe, is ID and in which the relation symbols are
interpreted by finite relations, while the constants are interpreted as themselves. Although, ID is
infinite, only finitely many of its elements should matter, namely those appearing in the relations
or in a formula. This is discussed below as domain-independence.

Definition 1 Fix a schema Σ. An FO query has the form {x | ϕ} where x is a tuple of variables
or constants and ϕ is a first-order formula with equality over Σ such that the free variables of ϕ
occur in x.

The inputs of the query are the Σ-instances. For each input I, the output of the query q ≡ {x | ϕ}
is the n-ary relation (where n is the length of x)

q(I) = {v(x) | valuation v such that I, v |= ϕ}.

But what is a database? Clearly, we expect it to be finite so we would only consider the case when
the schema, Σ, is finite. The database consists of interpretations for the schema symbols, hence it
is a finite collection of finite relations. A database cannot encompass the entire domain ID which is
infinite. Let I be an instance. The active domain of I, notation adom(I), is the set of all elements
of ID that actually appear in the interpretations in I for the relation symbols. While ID is infinite,

1

adom(I) is always finite. Moreover, given a query q ≡ {x | ϕ}, we will denote by adom(q) the
(finite) set of constants that occur in ϕ or x.

It is our expectation that the database I together with the query q completely determine the output
q(I). In particular, only the elements in adom(I) ∪ adom(q) can appear in the output. Moreover,
our exact choice of ID should not matter either. This is not the case for all FO queries.

Problem 1 For each of the following FO queries explain intuitively (in a couple of sentences!)
why their output is not completely determined by the database together with the query:

(a) {x | ¬R(x)}

(b) {(x, y) | R(x) ∨ S(y)}

(c) {x | ∀yR(x, y)}

These three queries are “dependent on the domain”. To capture this precisely, given a query
q ≡ {x | ϕ}, for any instance I and any D such that adom(I) ∪ adom(q) ⊆ D ⊆ ID, we denote by
q(I/D) the output of the query on the input obtained by resticting the domain to D.

Definition 2 A query q is domain independent if for any I and any D1, D2 where adom(I) ∪
adom(q) ⊆ Di ⊆ ID, i = 1, 2 we have q(I/D1) = q(I/D2).

Problem 2 It seems from the examples of Problem 1 that negation, disjunction, and universal
quantification “cause” domain dependence. It’s more subtle that this:

(a) Earlier you gave an intuitive explanation but now prove that {x | ∀yR(x, y)} is domain
dependent.

(b) Keep the universal quantification but modify this query slightly to make it domain independent.

Are existential quantification and conjunction OK? Almost:

(c) If the FO query {x | ϕ} is such that ϕ uses only conjunction, existential quantification,
and relational atoms then it is domain independent (such a query is a called a conjunctive
query). (Hint: recall that by Definition 1 all the variables in x must occur in ϕ.)

(d) Give an example of a domain dependent conjunctive query if in addition to relational atoms
we are allowed also equality atoms. How would you define conjunctive queries with equality
so they are guaranteed to be domain independent?

It is generally agreed that in a reasonable query language, all the queries should be domain inde-
pendent. Therefore, general first-order queries do not make a good query language. Worse

Problem 3 By exhibiting a reduction from FIN-VALID prove that Trakhtenbrot’s Theorem implies
that it is undecidable whether a first-order query is domain independent.

2

So what do we do to get a reasonable query language? It is possible to define decidable safety
restrictions on general first-order formulas such that the safe queries are domain independent and
moreover for any domain independent query there exists an equivalent safe query. But the safety
restrictions are ugly and, in any case, Codd had a better idea (which led eventually to SQL).

The relational algebra is a many-sorted algebra, where the sorts are the natural numbers. The
idea is that the elements of sort n are finite n-ary relations. Recall the domain ID. The carrier of
sort n of the algebra is REL(IDn) (the set of finite n-ary relations on ID).

If f is a many-sorted k-ary operation symbol that takes arguments of sorts n1, . . . , nk (in this order)
and returns a result of sort n then we write its type as follows: f : n1 × · · · × nk −→ n0, and we
simplify this to n for nullary (k = 0) operations.

The operations of the algebra, with their types and their interpretation over the relational carriers
are the following:

constant singletons {c} : 1 (c ∈ ID)

selection1 σn
ij : n −→ n (1 ≤ i < j ≤ n) interpreted as σn

ij(R) = {x ∈ R | xi = xj}.

selection2 σn
ic : n −→ n (1 ≤ i ≤ n, c ∈ ID) interpreted as σn

ic(R) = {x ∈ R | xi = c}.

projection πn
i1...ik

: n −→ k (1 ≤ i1, . . . , ik ≤ n, not necessarily distinct)
interpreted as πn

i1...ik
(R) = {xi1 , . . . , xik | x ∈ R}.

cartesian(cross-) product ×mn : m× n −→ m+ n
interpreted as ×mn (R,S) = {x1, . . . , xm, y1, . . . , yn | x ∈ R ∧ y ∈ S}.

union ∪n : n× n −→ n interpreted as ∪n (R,S) = {x | x ∈ R ∨ x ∈ S}.

difference −n : n× n −→ n interpreted as −n (R,S) = {x | x ∈ R ∧ x 6∈ S}.

Relational algebra expressions are built, respecting the sorting, from these operation symbols, using
the relational schema symbols as variables.

Note that an obvious operation, intersection, is missing. Of course, intersection can be defined
from union and difference, by De Morgan’s laws. Interestingly, we also have the following:

Problem 4 Show that intersection is definable just from cartesian product, selection, and projec-
tion.

Given a relational schema Σ, a relational algebra query is an algebraic expression constructed from
the symbols in Σ and the relational algebra operation symbols, for example if R,S are binary, the
expression π2414(σ13(R× S))− (R×R) defines a query that returns a 4-ary relation (we omit the
operation’s superscripts because they can usually be reconstructed and we use infix notation for
the binary operations). Given a database instance I as input, such a query e returns a relation
e(I) as output.

Clearly, each of the operations of the relational algebra maps finite relations to finite relations, even
when the domain of the instance is infinite. In fact, using a definition similar to the one given for
first-order queries, the algebra queries are all obviously domain-independent.

3

Next, you will show that the relational algebra and the domain-independent first-order queries have
the same expressive power.

Problem 5 Give a translation that takes any relational algebra query into an equivalent domain-
independent first-order query. Proceed by induction on the structure of relational algebra expres-
sions.

The converse is slightly more delicate. Because the set of domain-independent FO queries is not
decidable, we cannot define a translation just for these queries. Therefore, you will define a trans-
lation for all FO queries, such that domain-independent FO queries are translated to equivalent
algebraic queries. In fact, in the next (optional0 problem you can prove a slightly more general
result that will also allow you to transfer undecidability and lower bound results from logic over
finite models to databases.

Problem 6 (OPTIONAL) Give a translation that takes any first-order query q over the schema
Σ into a relational algebra query e over the schema Σ ∪ {D} where D is a fresh unary relation
symbol, such that for any Σ ∪ {D}-instance I, we have

e(I) = q(I/D)

(Abuse of notation: we denote the interpretation of D in I also by D.)

Conclude that there exists a computable translation that takes any first-order query q into a rela-
tional algebra query e over the same schema such that for any instance I, we have

e(I) = q(I/adom(I) ∪ adom(q))

(which further equals q(I) whenever q is domain-independent). (Hint: show that the active domain
can be computed in the relational algebra.)

It is possible to define a notion of satisfiability for FO queries and also one of equivalence. But the
familiar undecidability demons are still present.

Definition 3 A relational algebra expression e is satisfiable if there exists an instance I such that
e(I) 6= ∅.

Problem 7 (OPTIONAL) Prove that satisfiability of relational algebra queries is undecidable.

Problem 8 (OPTIONAL) Define equivalence of relational algebra queries and prove that it is
undecidable.

4

