
For Logic and Probability, EPFL, Fall 2011. PLEASE DO NOT DISTRIBUTE FURTHER

Lecture Notes on Computability

c©Val Tannen 1995

1 Models of Computation

From the working computer scientist’s point of vue, Computability Theory is concerned with the
mathematical limitations on what can be programmed. Any treatment of the subject begins with a
mathematical definition of the “computing agents”. Imprecisely, a computing agent is a program. A
survey of different approaches to Computability Theory will show definitions of computing agents
that vary from those resembling (some) Pascal programs to those resembling machine language
programs, to those resembling nothing technologically existent, such as Turing Machines.
For various reasons, most texts on the subject begin with a description of Turing Machines, and
these notes will follow this tradition. This is useful especially if one also studies Complexity Theory,
where the intimate functioning of Turing machines plays a more important role. I believe however,
that the intimate workings of the computing agents play a significant role only in the most boring
parts of Computability Theory, parts which amount to lots of laborious programming in usually
very weak programming languages. Relying on programming experience, we can skip most of these
boring parts, with the knowledge that, if needed, we can supply the missing and gory details. After
some familiarization with the subject, we will find that we are quite comfortable without ever seeing
those details.

1.1 Turing Machines

The treatment of Turing Machines follows “Introduction to Automata Theory, Languages, and
Computation”, by J. E. Hopcroft and J. D. Ullman, Addison-Wesley, 1979. A textbook that
uses a version of While Programs, albeit computing with natural numbers rather than strings, is
“A Programming Approach to Computability”, by A. J. Kfoury, R. N. Moll, and M. A. Arbib,
Springer-Verlag, 1982.
In the Turing Machine model of computation, a computing agent, i.e., a Turing machine, consists
of

• a tape divided in cells and infinite in one direction (say, to the right), such that each cell can
hold a symbol (character) from a finite alphabet associated with the machine

• a “finite control”, that is, a finite set of states and a “next move” function

1

• a tape head that scans one cell at a time.

In one move the machine, depending on the state of the finite control and the symbol in the tape
cell currently scanned by the tape head will

• change state

• writes a symbol in the cell that’s currently scanned

• move the tape head left or right one cell.

Formally, a Turing machine M is a tuple

M = (Γ,Σ,#, Q, δ, q0, F)

where Γ is a finite tape alphabet, Σ ⊆ Γ is an input alphabet, # ∈ Γ is the blank (# 6∈ Σ), Q is a
finite set of states, δ : Γ × Q −−→ Q × Γ × {L,R} is a partial function that gives the next move,
q0 ∈ Q is the initial state, and F ⊆ Q is a set of final states.
We describe next the conventions used to make Turing machines accept strings (words) over the
alphabet Σ. Initially, the tape contains a word (the input) on the tape, in the leftmost cells, while
the rest of the tape contains blanks. This way, only a finite portion of the tape is f interest, and
this stays true after each move, hence, we can describe the state of the machine’s store, which is
the tape, using only a finite amount of information. The finite control starts in the initial state.
A sequence of moves follows. We have described above of what consists a move. The machine
may halt in two situations: first when δ is undefined (recall that δ is partial) on (γ, q) where γ is
the symbol currently read by the tape head and q is the current state; and second, when it tries
to move the head left from the first cell. The second situation can be avoided by programming
conventions such as having a special symbol to the left of the input in the first cell. We say that
the input word is accepted if the finite control reaches a final state. Programming conventions may
insure that the machine also halts in that case. Other programming conventions can insure that
the machine never halts in a non-final state (how do we do this?).
Here is a formal definition of the predicate “machineM accepts word w”, whereM = (Γ,Σ,#, Q, δ, q0, F)
and w ∈ Σ∗. Without loss of generality, we can assume that Q and Γ are disjoint. An instantaneous
description (ID) of M is a string uqv where q ∈ Q is the current state of the finite control, and
uv ∈ Γ∗ is the content of the tape up to the rightmost nonblank symbol or the symbol in the cell
to the left of the head, whichever is rightmost, such that the tape head is scanning the leftmost
symbol of u, or, if v = nil, the head is scanning a blank. It is straightforward to define a one-move
relation ⇒ between ID’s. For example, if δ(γ, q) = (γ′, q′, L) then for any u′, v′ ∈ Γ∗

u′γ′′qγv′ ⇒ u′q′γ′′γ′v′

except if v′ = nil and γ′ = γ′′ = B in which case

u′γ′′qγv′ ⇒ u′q′

2

To insure that the tape head will not “fall off” the left end of the tape, if δ(γ, q) = (γ′, q′, L) then
the ID’s of the form qγv′ are not related to any other ID by the one-move relation. We define
the several-moves relation to be the transitive-reflexive closure of ⇒, notation ⇒∗. Then, we say
that the word w ∈ Σ∗ is accepted by M whenever there exists a final state f ∈ F and some
(uninteresting) content of the tape u, v ∈ Γ∗ such that

q0w ⇒∗ ufv

We will shortly claim that one can compute with a Turing machine anything that can be computed
with, say, a Pascal program. This result can be proved rigorously but we feel that such proof are
not terribly informative. We will only indicate a couple of Turing machine “programming tricks”
which go some way toward making available the usual tools of Pascal-like programming. We rely on
your programming experience for you to be convinced that the remaining details can be tediously
but straightforwardly supplied.
The first trick is that we can “store” symbols in the finite control, which allows us to transport
them between two tape cells. This is done by defining the set of states as a cartesian product
Q = Q′ × Γ so each state has the second component in which a symbol can be “stored” while the
first component takes care of the control flow. Another trick allows us to “check off” the symbols
in certain cells. This useful if the head must go back and forth between cells covering a distance
that depends on the various inputs. It’s done with a tape alphabet of the form Γ = Σ∪Γ′×{

√
,−}

where Γ′ is (conceptually) the tape alphabet that is used beyond the checking off issue (it will be
useful to have Σ ⊆ Γ′),

√
means “checked”and − means “unchecked”. A slight generalization of

this idea allows us to have the equivalent of auxiliary storage (beyond that for the input, that is).
This is the same as having a machine with more then one tape so we might as well define such a
model of computation and show that it doesn’t bring more power (but it brings more convenience
in definitions and proofs).
A multitape Turing machine has one finite control, but several tapes, each with its read-write head,
moving independently. Each tape can have its own alphabet. Note that the number is fixed for a
given machine, there is no new tape creation during the functioning of the machine (as opposed to
programs in which new variables can be declared dynamically).
In one move the machine, depending on the state of the finite control and the (tuple of) symbols
in the tape cells currently scanned by the tape heads will

• change state

• write a symbol in each of the cells that are currently scanned by the tape heads (some of
these symbols can be the same as the existing ones which amounts to no activity by the
corresponding heads

• move each of the tape heads left or right one cell, or just leave it where it was.

The input alphabet must be a subset of the alphabet of the first tape so we can adopt the convention
that initially the input is on the first tape. Of course, the first tape is otherwise blank, and so

3

are the other tapes. It would be straightforward to generalize the formalism of the definition of
the one-tape Turing machine but we feel that this would not improve the understanding of the
definition, nor of the main theorem presented next.

Theorem 1.1
For any multitape Turing machine MM there exists a one-tape Turing machine M which simulates
the behavior of MM . In particular, M accepts exactly the same words as MM .

Proof. (Sketch) To simplify the notation let’s say that MM has three tapes, and let Γ1,Γ2,Γ3 be
their alphabets. Let Σ be the input alphabet. Then, the tape alphabet of the equivalent one-tape
machine is

Γ = Σ ∪ (Γ1 × {H1, N} × Γ2 × {H2, N} × Γ3 × {H3, N})

Think of the tape of M as having 6 “tracks”, three of them used to simulate the three tapes of
MM and the other three used to mark the position of the three heads (Hk means “head of tape k
is here” while N means “no head is here).
To simulate a single move of MM , the machine M will sweep its tape from left to right up to the
rightmost Hk, figuring out what simulated symbols are the simulated heads of MM reading. This
is possible because the finite control of M is built with the knowledge of the fixed number of tapes
(in the illustration, 3) of MM . The state of M will store the state of MM as one of its components
so M can now figure out what MM will write on its tapes and how it moves its heads (in some
sense, the next-move function of MM is built into that of M) and record it during a sweep back
toward left. Finally M will change its state to reflect the new state of MM . If the new state is
final, then M ’s state will be final too. End of Proof.
The language of words accepted by a Turing machine is one of several ways to describe its computing
power. We can also use Turing machines to compute partial functions, an activity that is closer in
generality to usual programming:

Definition 1.2 Fix two alphabets, an “input” alphabet Σi, and an “output” alphabet Σo. A partial
function f : Σ∗i

·→ Σ∗o is said to be Turing-computable if there exists a Turing machine M such
that for any u ∈ Σ∗i , M halts on input u iff f is defined on u, and when M halts on input u, it
outputs v = f(u) . In such a situation, we say that M computes f .

Note that the function in the definition above is a function of one argument. In the theory of
recursive functions, one usually considers functions of several arguments which are natural numbers.
In our generalization from natural numbers to strings, the distinction between one and several
arguments is unimportant, because we can trivially encode a tuple of strings as one string, simply
by concatenating them with some special separator symbols in between. We should note however
that separating the arguments and even the result is often very convenient, and the multitape
Turing machine offers an easy way to do this: one could say that a function of n arguments is
computed by a multitape Turing machine with n+1 tapes if in the beginning the arguments are on
the first n tapes and at the end of teh computation teh result is on the last tape.

4

1.2 While Programs

According to an intuitive ordering based on “expressive power”, while-programs are somewhere
between Turing machines and, say, (idealized) full Pascal programs. We will state, without proof,
that Turing machines have the same “computing power” as Pascal programs. It’s easier to believe
this if you believe, first, that the Turing machine programming tricks that we saw previously would
alow us to simulate while-programs, and second, that while-programs can simulate (have them as
“syntactic sugar”) all the other features that Pascal programs have. We will give some evidence
for the second part below.
Here is the syntax of while-programs, in BNF:
< identifier >::= . . . (your favorite names convention)
< char >::= ′a′ | ′b′ etc.
< expression >::=< identifier >|< char >| NIL | TAIL(< expression >) | CONS(< char > , <

expression >)
< test >::=< expression > = < expression >| NOT(< test >) | OR(< test > , < test >)
< statement >::=< identifier > := < expression >| SKIP | WHILE(< test > DO < statement− sequence >
OD

< statement− sequence >::=< statement >|< statement > ; < statement− sequence >
< program >::=< statement− sequence >
Note that variables can contain only values that are strings of characters (we use list-like notation
for the empty string, for taking the tail or for adding a character at the beginning of a string—
cons-ing). SKIP does nothing. The tail of the empty string equals, by convention, the empty
string.
Other familiar programming constructs can be added to the language as syntactic sugar. In other
words, we can simulate more complicated constructs with while-programs. Strings, such as ’abc’

are equivalent to

CONS(’a’ , CONS(’b’ , CONS(’c’ , NIL)))

Using De Morgan’s law we can express AND using OR and NOT. Let t be a test and p a program. IF
t THEN p FI is equivalent to

fresh-aux := NIL ;

WHILE AND(fresh-aux = NIL , t) DO

p ; fresh-aux := ’a’ OD

With this, IF t THEN p1 ELSE p2 FI is equivalent to
”copy the variables in t into auxiliary ones let t-aux be the same test as t but performed on the
corresponding auxiliary variables”

IF t-aux THEN p1 FI ; IF NOT(t-aux) THEN p2 FI

5

Using IF - THEN - ELSE - FI, one can express a program that is equivalent to a CASE statement.
We are ready to write the equivalent of x := HEAD(w) which takes the first character of a
nonempty string, and does nothing if the string is empty. For simplicity we assume that we have
only two characters, ’a’ and ’b’.

CASE w = CONS(’a’ , TAIL(w)) => x := ’a’ ;

w = CONS(’b’ , TAIL(w)) => x := ’b’ ;

DEFAULT => SKIP

ESAC

As an exercise, try to write a program that reverses a string (the reverse of ’ababb’ is ’bbaba’).

Definition 1.3 Fix two alphabets, an “input” alphabet Σi, and an “output” alphabet Σo. A partial
function f : Σ∗i

·→ Σ∗o is said to be WP-computable if there exists a while-program P with two
distinguished variables, called input and output, such that for any u ∈ Σ∗i , P halts when started
with u in input iff f is defined on u, and when P halts, it has v = f(u) in output. In such a
situation, we say that P computes f .

Theorem 1.4
A partial function is Turing-computable iff it is WP-computable.

This result can be proved rigorously but I feel that such proofs are not terribly informative. For
example, once we know about multitape Turing machines, we can simulate a while program with n
variables (identifiers) by a Turing machine with n+k tapes where we always maintain the content
of the variables on the first n tapes and we used then other k to compute the values of expressions
and test. Thus, with knowledge of a couple of Turing machine “programming tricks” which go some
way toward making available the usual tools of Pascal-like programming, I propose that we rely on
our programming experience to convince ourselves that the remaining details can be tediously but
straightforwardly supplied.

1.3 Church’s Thesis

The Turing Machine model of computation is quite simple, and it is a remarkable fact that it has the
same “computing power” as, say, Pascal programs. Here I have in mind idealized Pascal programs,
in particular ones in which the variables can hold data of any size. In reality, there is always an
upper bound on, say, the length of a string that a variable can hold, so we couldn’t even consider
computing functions that take any string as argument. In principle, one can rigorously prove that
such Pascal programs compute the same class of partial functions as the Turing machines. In
practice, there are a few proofs of equivalence between Turing machines and programs similar to
the ones in certain Pascal fragments, such as the while-programs described in the previous section.
Moreover, there is nothing special about Pascal here, as there are models of computation suggesting
assembly languages or bare machine languages, or even other high-level programming languages,
and all have been shown to be equivalent to Turing machines.

6

Quite a few other models of computation have been proposed by mathematicians in the last 60
years, especially at the beginnings of Computability Theory. Here are some of the more famous
ones:

• Herbrand-Gödel’s general recursive functions, defined by an equational calculus

• Church’s λ-calculus

• Gödel-Kleene’s µ-recursive functions

• Post’s canonical deduction systems

• Markov’s algorithms

Each of these models constitutes an attempt to capture the informal and intuitive idea of effective
computability. These models of computation are quite different, and hence it is a very remarkable
fact that they, and all other formalisms that have been proposed so far, have all been shown to
be equivalent. This constitutes strong evidence that all and each of them has been successful in
capturing intuitive computability. While the equivalences between models are formal theorems
that have been proved, the statement that, say, Church’s λ-definable functions are exactly the
intuitive effectively computable functions is not a theorem, since it involves an intuitive concept.
This statement is usually called Church’s thesis (or the Church-Turing thesis, because Church and
Turing made such statements independently about the formalisms they proposed—λ-definability
and computability by Turing machines):
Thesis. The intuitively and informally understood class of effectively computable partial functions
coincides with the formally defined class of, say, Turing-computable functions.
(In view of the equivalence results mentioned above, any of those models of computation could
have been used in the formulation of the thesis instead of Turing machines.)
What is the evidence for Church’s thesis? First, of course, the equivalence between the models of
computation that have been proposed. Second, one “half” of the thesis is intuitively obvious: each
function that is WP-computable or Turing computable is clearly effectively computable, for any
reasonable meaning of the latter. Third, very, very many tasks that were claimed to be intuitively
effectively computable have been, sure enough, shown to be “programmable” in some model of
computation (and hence in all). Finally, there is no known task that would be acknowledged
by a significant number of mathematicians, logicians, or computer scientists as being intuitively
effectively computable but which has been formally shown not to be programmable in the models
of computation.
Not surprisingly, most mathematicians, logicians, and computer scientists believe Church’s thesis.
I am going to rely, philosophically, on Church’s thesis in the rest of these notes, by casting machine
descriptions in terms of an informal and somewhat intuitive concept of “program” or “algorithm”
(we are talking here about an intuition shared mostly by programming connoisseurs). This is,
however, a rather “soft” dependence, since I expect the reader, making extensive use of her pro-
gramming experience, and at the cost of an immense amount of work on tedious details, to be able,

7

if challenged, to provide a fully formal version of the definitions, theorems, and proofs in terms of,
say, Turing machines or while-programs. No such challenge wil be made, but the reader should be
convinced that he can, in principle, meet it.

2 Computable Functions, R.E. Languages, Decidable Predicates

These are the main “characters” in the portion of the Computability Theory that we are studying.
We will give a sequence of theorems that relate these concepts.
We have already defined what Turing-computable partial functions are. In view of our discussion
in the previous section, we will drop the “Turing” prefix and talk about computable functions.
The computable partial functions are also called partial recursive functions, and another name for
Computablity Theory is Recursive Function Theory or simply Recursion Theory. In Computer
Science, where how we program given tasks is as important as whether we can program them, it
would be nice to reserve “recursive” for a special way of computing (by recursive procedures).
Before proceeding further, we will slightly change the definition of when a word is accpted by
a Turing machine, replacing it with an equivalent one, which can also be generalized to while-
programs.

Definition 2.1 Fix an alphabet, Σ. A language L ⊆ Σ∗ is said to be Turing-acceptable if there
exists a Turing machine M such that for any w ∈ Σ∗ , M halts on input w iff w ∈ L . In such a
situation, we say that M is an acceptor for L.

Similarly, one can define acceptable languages for while-programs, etc. All these definitions yield
the same class of languages. It will turn out that there is a substantially different definition, that
of r.e. languages, that yields the same class, but for the moment let us call the Turing-acceptable
languages—halt-acceptable. We can immediately give a characterization of such languages in terms
of the computability of certain partial functions.
A bit of notation: for any language L ⊆ Σ∗ consider the partial function fL : Σ∗ → Σ∗ given by

fL(u) def=

{
ε if u ∈ L
undefined if u 6∈ L

Theorem 2.2
A language L is halt-acceptable iff the corresponding partial function fL is computable.

Proof. First, assume that L is halt-acceptable. Let M be an acceptor for L. Construct a TM M ′

that computes fL as follows:
M ′: “on input u
run M on u

if it halts then output ε and halt”
Indeed, M ′ halts on input u iff M halts on u iff u ∈ L iff fL is defined on u. Moreover, when M ′

halts on input u, it outputs ε = fL(u) . Hence, M ′ computes fL.

8

Conversely, suppose that fL is computed by some machine M ′′. Then, M ′′ is also an acceptor for
L since M ′′ halts on input u iff fL is defined on u iff u ∈ L . End of proof.
For the next definition, we will need Turing machines that are able to print strings. We can do
this using multi-tape machines and the “programming” convention that the “printed” strings are
written on a special tape, in sequence, from left to right, separated by some delimiter.
Note. In the case of while-programs just add a new clause to the definition of statements:

< statement >::= · · · | PRINT(< expression >)

Definition 2.3 Fix an alphabet, Σ. A language L ⊆ Σ∗ is said to be Turing-enumerable if
there exists a Turing machine E such that for any w ∈ Σ∗ , E, starting, eventually prints w
iff w ∈ L . In other words, E eventually prints all the strings in L, and only those. In such a
situation, we say that E is an enumerator for L.

Note that E may run forever, printing an infinite language. It may also run forever without printing,
after having printed a finite set of strings. Note also that we did not require that a given string be
printed at most once. This, however, can be achieved by a machine that also stores all the strings
it prints and makes sure each candidate for printing is not already stored.
As before, we drop the “Turing” prefix, since equivalent notions are obtained by using any of the
known models of computation. We shall call such languages recursively enumerable. As promised:

Theorem 2.4
A language is halt-acceptable iff it is recursively enumerable.

Proof. First, let L be a recursively enumerable and let us show that L is halt-acceptable. Let E
be an enumerator for L. Construct an acceptor for L as follows:
M : “on input w
run E, and each time E prints a string u

compare u with w

if u = w, halt
if not, continue running E
if E halts before a string that equals w is found, loop”
Clearly, M halts on w iff E eventually prints w iff w ∈ L .
For the converse, we need a little preparation. First, we need a total ordering on strings such
that we can write a subroutine which given a positive integer n will return the n’th string in the
ordering. We define the canonical ordering on strings to be the order that is given, first by the
length of the string, and then, among strings of equal length, by lexicographic (dictionary) order.
We will also need a programming technique for generating all possible pairs of positive integers.
(This can be done in various ways. For example, it is easy to write a program that generates the
sequence (1,1),(1,2),(2,1),(3,1),(2,2),(1,3),(1,4),(2,3), etc.)
With this, let L be halt-acceptable and let M be an acceptor for it. Construct an enumerator for
L as follows:

9

E: “generate all pairs of positive integers
for each pair (i, j),

compute the i’th string in the canonical ordering, call it w
run M on input w for up to j steps
if this halts, print w

repeat with the next pair (i, j)”
Indeed, w is eventually printed by E iff there exists a pair of positive integers (i, j) such that w
is the i’th string in the canonical ordering and M halts on w in up to j steps iff w is a string on
which M halts iff w ∈ L. End of proof.
The terminology “halt-acceptable” was temporarily invented for these notes. From now on we shall
call such languages recursively enumerable, or simply r.e., and, in view of the previous theorem,
describe them either by acceptors or by enumerators, whichever is more convenient in specific
proofs. One can sometimes find r.e. languages under the names semi-decidable or semi-recursive.
Back to the relationship between r.e. languages and computable functions. While Theorem 2.2
states that halt-acceptability (r.e.-ness) can be characterized in terms of computable partial func-
tions, the next theorem is stating a sort of converse.
First another bit of notation: if f : Σ∗i

·→ Σ∗o is a partial function, then

graph(f) def= {〈u, v〉 | u ∈ Σ∗i , v ∈ Σ∗o, f is defined on u, and f(u) = v}

Here, 〈u, v〉 is a pair of strings. Pairs of strings are finite objects and can be encoded as strings
too, so that we can compute with them in our general framework. For example, we can assume
that 〈, the comma, and 〉 do not belong to Σi ∪ Σo , literally think of 〈u, v〉 as a string over the
alphabet Σi ∪Σo ∪{〈, comma , 〉} , and hence think of graph(f) as a language over this alphabet.

Theorem 2.5
A partial function f is computable iff the corresponding language graph(f) is r.e.

Proof. Assume f is computable and show graph(f) is r.e. Let M be a TM that computes f .
Construct an acceptor for graph(f) as follows:
M ′: “on input w
if w = 〈u, v〉 for some u, v

then run M on u

if it halts, compare the output with v

if they are equal, halt
otherwise loop

if w 6= 〈u, v〉 for any u, v,
then loop”

Indeed, M ′ halts on w iff w = 〈u, v〉 for some u, v and M halts on input u with output v iff
w = 〈u, v〉 for some u, v, f is defined on u, and f(u) = v iff w ∈ graph(f).
Conversely, assume that graph(f) is r.e. and let’s show that f is computable. Let E be an
enumerator for graph(f). Construct a TM that computes f as follows;

10

M : “on input u
run E, and each time E prints a string w

if there is a v such that w = 〈u, v〉
then output v and halt

otherwise continue running E
if E halts before such a w is printed, loop”
Clearly, M halts on input u iff E eventually prints 〈u, v〉 for some v iff there is a v such that
〈u, v〉 ∈ graph(f) iff f is defined on u. Moreover, when M halts on input u, it outputs a v such
that 〈u, v〉 ∈ graph(f) hence it outputs v = f(u). End of proof.
In view of Theorems 2.2 and 2.5, we can say that the concepts of computable partial function and
r.e. language are very strongly related.

Definition 2.6 Fix an alphabet, Σ. A language L ⊆ Σ∗ is said to be Turing-decidable if there
exists a Turing machine D that halts on all inputs, and such that for any w ∈ Σ∗ , when D halts
on input w it outputs ©Y if w ∈ L and ©N if w 6∈ L. In such a situation, we say that D is a decider
for L.

Decidable languages are called recursive in some textbooks. The reader may have noticed the
“decidable predicates” in the title of this section, while we have just defined “decidable languages”.
The reason is a perfect one-to-one correspondence (bijection) between decidable languages and
certain computable total functions called predicates.
Let IB def= {©Y ,©N } A predicate on Σ∗ is a total function from Σ∗ to IB. We can think of IB as a
subset of some Σ∗o, for example if Σo actually contains©Y and©N . This way, a predicate is a function
taking strings to strings so we can ask whether it is computable. Note however that predicates
are quite special among general partial functions, being total and very restricted in their possible
outputs.
There is an obvious and well-known bijection between the predicates on Σ∗ and the subsets of Σ∗. In
one direction, this bijection associates to a predicate p : Σ∗ → IB its yes-language (Yes-languages
are usually called “truth-sets”):

Yp
def= {w ∈ Σ∗ | p(w) =©Y }

In the other direction, this bijection associates to a language L ⊆ Σ∗ its characteristic predicate
χL : Σ∗ → IB defined by

χL(w) def=

{
©Y if w ∈ L
©N if w 6∈ L

The next theorem says that this bijection is maintained when we restrict ourselves to decidable
languages and computable predicates.

Theorem 2.7
A language is decidable iff its characteristic predicate is computable. A predicate is computable iff

its yes-language (or truth-set) is decidable.

11

Proof. It is easy to see that if D is a decider for L then D is also a TM that computes χL.
Conversely, it is just as easy to see that if M computes a predicate p then M is also a decider for
Yp. End of proof.
In view of this result, and of its proof, we can use “decidable language” interchangeably with
“computable predicate”. In fact, people even use, with a slight abuse of terminology, “decidable
predicate”, hence the title of this section.
Thus, while r.e. languages are strongly related to partial computable functions, decidable languages
are strongly related to total computable functions. In fact, one can even show an analogue of
Theorem 2.5: a total function is computable iff its graph is decidable. Just as total functions are
particular cases of partial functions, any decidable language is r.e. To see this, note that any decider
for a language L can be transformed into an acceptor for L by simply replacing “output ©N then
halt” by “loop”.
We will see in the next section that the converse fails: there are r.e. languages which are not
decidable. Of course, in Computer Science we are first interested in decidability, whenever possible.
Thus we end this section on a positive note with a criterion for showing decidability.
First, note that the class of decidable languages is closed under complementation: any decider D
for L can be transformed into a decider for its complement L by swapping ©Y and ©N . The same
is no true for r.e. languages. This will follow from the existence of r.e. but undecidable languages
and the next theorem. First, a widely used terminology:

Definition 2.8 Let Σ be a finite alphabet. A set L ⊆ Σ∗ is said to be co-r.e. if its complement
L

def= Σ∗ − L is r.e.

Theorem 2.9
A language is decidable iff it is both r.e. and co-r.e.

Proof. If a language is decidable, so is its complement hence the language is both r.e. and co-r.e.
Conversely, let L be both r.e. and co-r.e. Let M be a acceptor for L and M an acceptor for L.
Construct a decider for L as follows:
D: “on input w
run M and M both on input w, “in parallel” (interleaving the computation)
if M halts, output ©Y and halt
if M halts, output ©N and halt”
Indeed, D must halt on all inputs because any input is either in L or in L so one of M , M must
halt, and in both cases D halts. Moreover, when D halts on w, it outputs ©Y if M halts on w, that
is, if w ∈ L, and it outputs ©N if M halts on w, that is, if w ∈ L, equivalently w 6∈ L. It follows
that D is a decider for L. End of proof.
Finally, another important connection between r.e.-ness and decidability.

Theorem 2.10
A language L is r.e. iff there exists a decidable language R such that for any u ∈ Σ∗

u ∈ L iff there exists v ∈ Σ∗ such that 〈u, v〉 ∈ R

12

Proof. EXERCISE! End of proof.

3 Undecidability

3.1 The Halting Problem

Turing machine descriptions can be encoded as strings too, and hence can be taken as inputs by
other machines. If M is a TM, we shall denote by [M] its description encoded as a string. We will
assume that it is decidable whether an arbitrary string is a machine description or not. Clearly,
encodings of TM descriptions with this property can be given. The following is a fundamental
result of Computability Theory:
The Universal Simulation Theorem (Gödel-Church-Kleene-Turing)
There exists (can be written down!) a Turing machine U which, on an input of the form 〈[M], w〉,
simulates the computation of the Turing machine M on input w.
“Proof”. U is an interpreter for Turing machines. (A formal proof of this result is very tedious
and, nowadays, uninformative. We rely heavily on the reader’s programming experience to accept
this result.)
Definition. The Halting Problem is the language

K
def= {〈[M], w〉 |M halts on input w}

Theorem 3.1
K is r.e.

Proof. By the Universal Simulation Theorem, U accepts K. End of proof.
We proceed to show that K is undecidable. Define the auxiliary Diagonal Halting Problem:

Kd
def= {[M] |M halts on input[M]}

Theorem 3.2
Kd is undecidable.

Proof. Suppose, toward a contradiction, that Kd is decidable. Let Dd be a decider for Kd. Consider
the folowing Turing machine (called T for trouble...):
T : “on input w
if w = [M] for some M
then run Dd on input [M]

if Dd outputs ©Y then loop
if Dd outputs ©N then halt

if w 6= [M] for any M then do whatever”
Clearly, for any TM M ,
T halts on input [M] iff

13

Dd outputs ©N on input [M] iff [M] is not in Kd iff
M loops on input [M].
Instantiating in the previous equivalence M = T gives T halts on input T iff T loops on input T ,
a contradiction. End of proof.

Theorem 3.3
K is undecidable.

Proof. We show that K decidable implies Kd decidable, hence we can conclude that K is unde-
cidable from the fact that Kd is undecidable.
Let D decide K. Construct a decider for Kd as follows:
Dd: “on input w
construct 〈w,w〉 and run D on it”
Clearly Dd halts on all inputs and outputs either ©Y or ©N , since D does so. Moreover, Dd outputs
©Y on input w iff D outputs ©Y on 〈w,w〉 iff w = [M] for some M and M halts on [M] iff w ∈ Kd.
End of proof.

3.2 Many-One Reducibility

The argument we used to show that K decidable implies Kd decidable is a particular instance of a
general technique called many-one reducibility.

Definition 3.4 Let L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 be two sets. We say that L1 is many-one reducible
to L2, notation L1 ≤m L2 whenever there exists a total computable function f : Σ∗1 → Σ∗2 such
that

∀w ∈ Σ∗1, w ∈ L1 iff f(w) ∈ L2

The adjective “many-one” was introduced to distinguish this kind of reduction from others studied
in Computability Theory (notably Turing-reduction). This being the only kind of reduction studied
here, we will drop the “many-one” as well as the m from ≤m.
It is easy to check that Kd ≤ K by the total computable function f(w) = 〈w,w〉 . We generalize
the argument in the proof of Theorem 3.3:

Theorem 3.5
If L1 ≤ L2 and L2 is decidable, then L1 is decidable.

Proof. Let f be the total computable function performing the reduction and M a TM that com-
putes it.
Let D2 be a decider for L2. Construct a decider for L1 as follows:
D1: “on input u
run M on u producing output v
then run D2 on v”

14

D1 halts on all inputs because M halts on all inputs (since it computes the total function f) and
then because D2 halts on all inputs. D1 outputs either ©Y or ©N , since D2 does so. Finally, D1

outputs ©Y on input u iff D2 outputs ©Y on v = f(u) iff f(u) ∈ L2 iff u ∈ L1 (where the last
equivalence is by the fundamental property of the reduction). End of proof.
Here are two other important properties of reducibility

Theorem 3.6

1. If L1 ≤ L2 and L2 ≤ L3 then L1 ≤ L3 .

2. L1 ≤ L2 iff L1 ≤ L2 .

Proof. (Sketch) Part1: take the composition of the functions performing the reductions. Part
2: the same function performs the reduction between the complements too. Exercise: fill in the
details! End of proof.
We apply the reducibility technique to show the undecidability of several questions, as a consequence
of the undecidability of K. Define

Kε
def= {[M] |M halts on input ε}

Kw0

def= {[M] |M halts on input w0}

where w0 is a fixed arbitrary string.

NONEMPTY def= {[M] |M halts on some input}

TOTAL def= {[M] |M halts on all inputs}

Theorem 3.7
K ≤ L for each L in {Kε,Kw0 ,NONEMPTY ,TOTAL} .

Proof. We have grouped these languages together because the reduction is the same. Define a
total function f as follows. If u = 〈[M], w〉 for some M,w then f(u) def= [M ′] where
M ′: “on input v
ignore v and run M on w”
If u 6= 〈[M], w〉 for any M,w then f(u) def= whatever, provided it is not the encoding of a TM
description (that is, it is not of the form [M ′′] for any TM M ′′).
We claim that f is computable. Indeed, the TM that computes f will work as compilers do, taking
as input a “program text” [M] (and a “manifest data” string w) and producing as output another
“program text”. All it will need to do is to produce a bit of TM “code” that writes w in the input
area (overwriting v) and then add the TM “code” of M .

15

The fact that f performs the four claimed reductions follows immediately from the following ob-
servations:
1) If M halts on w then M ′ halts on all inputs.
2) If M ′ halts on some input then M halts on w.
(By the way, f also performs the reduction K ≤ Kd .) End of proof.

3.3 K is r.e.-complete

We are about to see that K is quite special among the r.e. languages. The result can be interpreted
as saying that K is “most” undecidable among all r.e. languages.

Definition 3.8 A language C is said to be r.e. complete if C is r.e. and any r.e. language L is
reducible to C, L ≤ C.

Strictly speaking, we should have said ”r.e.-complete with respect to many-one reducibility”, but
since this is the only kind of reducibility we talk about here, we will omit the qualification.
By Theorem 3.5, if an r.e.-complete language is decidable then all r.e. languages are decidable.
Of course, we have seen that this is not the case, but based on this observation, we can say that
r.e.-complete languages are “most” undecidable among all r.e. languages.

Theorem 3.9
K is r.e.-complete.

Proof. K is r.e. by Theorem 3.1. Let L be any r.e. language. Then, there exists an acceptor for L,
call it M . Consider the total function f defined by f(w) def= 〈[M], w〉 . This function is obviously
computable. Finally, for any w, w ∈ L iff M halts on w iff 〈[M], w〉 ∈ K iff f(w) ∈ K, hence f
establishes the desired reduction. End of proof.

3.4 Rice’s Theorem

The facts that Kε,Kw0 , NONEMPTY , and TOTAL are undecidable are particular aspects of a
much more general negative phenomenon. These four problems can all be described in terms of
properties of the r.e. language (halt-)accepted by a TM.
Definition. L(M) def= {w ∈ Σ∗ |M halts on input w}
To see how Kε,Kw0 , NONEMPTY , and TOTAL can be seen as particular cases of a more general
problem note that:

Kε = {[M] | L(M) 3 nil}

Kw0 = {[M] | L(M) 3 w0}

NONEMPTY = {[M] | L(M) 6= ∅}

16

TOTAL = {[M] | L(M) = Σ∗}

All languages of the form L(M) are r.e. Let RE be the set of all r.e. languages over our fixed
alphabet. We define a property of r.e. languages to be simply a function defined on the set of r.e.
languages taking truth values π : RE −−→ IB . Instead of π(L) = ′YES′ we say that “L has
property π”. We will consider the following problem associated to a property of r.e. languages π:

Jπ
def= {[M] | L(M) has property π}

Hence, Kε,Kw0 , NONEMPTY , and TOTAL are all Jπ’s, where π is, respectively, “contains ε”,
“contains w0”, “does not equal the empty set”, and “equals Σ∗”.
A property of r.e. languages is said to be non-trivial whenever there is an r.e. language that has it
and there is also an r.e. language that does not have it. There are only two trivial properties: the
one that all r.e. have and the one that no r.e. language has. In both cases the associated set Jπ is
trivially decidable. Note that all four properties mentioned above are non-trivial.
Rice’s Theorem
For any nontrivial property of r.e. languages π, the set Jπ is undecidable
Proof. Let π be non-trivial. We distinguish two cases:
Case 1: ∅ does not have property π.
Since π is non-trivial, there exists an r.e. language L that has the property π. Let A be a TM that
accepts L.
We show that K ≤ Jπ . Define a total function f as follows. If u ≡ 〈[M], w〉 for some M,w then
f(u) def= [M ′] where
M ′:
“on input v
save v then run M on w

if it halts, run A on v”
If u 6≡ 〈[M], w〉 for any M,w then f(u) def= ε. f is clearly computable. To see that it performs
the desired reduction note that if M halts on w, then M ′ halts on v iff A halts on v, hence
L(M ′) = L(A) = L which has property π. For the converse, we check its contrapositive: if M
loops on w then M ′ loops on all inputs hence L(M ′) = ∅ which does not have property π, by the
assumption in this case.
Case 2: ∅ has property π.
Consider the property ¬π which is true of exactly those languages which do not have property π.
∅ does not have property ¬π so by Case 1 we have K ≤ J6=π . By Theorem 3.6, K ≤ J¬π .
Let N be the set of all strings that are not TM description encodings. It is easy to see that
J¬π = Jπ ∪N . We claim that J¬π ≤ Jπ . Indeed, this reduction is given by the total computable
function f defined by f([M]) def= [M] and f(w) def= [LOOP] for w ∈ N where LOOP is a TM
that loops on all inputs (L(LOOP) = ∅ which has property π hence [LOOP] ∈ Jπ).

17

By transitivity of reducibility (Theorem 3.6), we conclude that K ≤ Jπ . Since K is undecidable,
so is Jπ. End of proof.
In fact, the proof we gave yields a stronger result than the one stated. Because K is not even r.e.,
Jπ cannot be even r.e. in Case 2. We obtain
Sharpened Rice’s Theorem
For any nontrivial property of r.e. languages π, the set Jπ is undecidable. Moreover, if ∅ has
property π then Jπ is not even r.e.
As a consequence, we obtain that Kε,Kw0 , NONEMPTY , and TOTAL are undecidable. Other
interesting consequences:

NON −Kε
def= {[M] |M loops on ε } is not r.e.

NON −Kw0

def= {[M] |M loops on w0} is not r.e.

EMPTY def= {[M] |M loops on all inputs } is not r.e.

NONTOTAL def= {[M] |M loops on some input } is not r.e.

FIN def= {[M] |M halts on finitely many inputs } is not r.e.

REG def= {[M] | L(M) is regular } is not r.e.

CF def= {[M] | L(M) is context-free } is not r.e.

DEC def= {[M] | L(M) is decidable } is not r.e.

3.5 Beyond R.E. and Co-R.E.

Are there languages which are neither r.e. nor co-r.e.? It turns out that TOTAL is such a language.
From the Sharpened Rice’s Theorem we know that NONTOTAL is not r.e. An argument in the
spirit of that which showed J¬π ≤ Jπ in the proof of Rice’s Theorem will show that NONTOTAL ≤
TOTAL . Hence, TOTAL cannot be r.e. either, from which follows that TOTAL is not co-r.e. It
remains to show that TOTAL is not r.e. We will do so by proving that K ≤ TOTAL . By
Theorem 3.6, this is equivalent to K ≤ TOTAL . Since NONTOTAL ≤ TOTAL , it is sufficient
to show K ≤ NONTOTAL . To see this, consider the total function f defined as follows. If
u ≡ 〈[M], w〉 for some M,w then f(u) def= [M ′] where
M ′:
“on input v

18

run M on w for length(v) steps
if it halts, loop
otherwise halt”
If u 6≡ 〈[M], w〉 for any M,w then f(u) def= ε. Clearly f is computable. Moreover, M halts on w iff
there is an n such that M halts on w in n steps iff there is a v such that M halts on w in length(v)
steps iff there is a v such that M ′ loops on v. This completes the argument.

4 Undecidability of String Rewriting

The String Rewriting Problem (SRP) is an example of an undecidable problem that does not seem
to talk directly about programs (while all the undecidable problems we’ve encountered before do).
It is a generalization of many other problems that occur in symbol manipulation languages or in
automated theorem proving.
Fix a finite alphabet Σ. A string rewrite rule, r, is just an ordered pair of strings over Σ, .e. r ≡
〈w1, w2〉 . We will use the more suggestive notation r : w1 −→ w2 . Let R be a finite set of string
rewrite rules:

r1 : u1 −→ v1

r2 : u2 −→ v2

...
rn : un −→ vn

For each rule ri ∈ R, define a binary relation ri−→ on strings over Σ as follows (one-step rewriting
according to the rule ri)

∀u, v ∈ Σ∗, u
ri−→ v

def⇐⇒ ∃x, y ∈ Σ∗, u ≡ xuiy ∧ v ≡ xviy

and then a binary relation R−→ (rewriting according to the set of rules R)

∀u, v ∈ Σ∗, u
R−→ v

def⇐⇒ ∃i, u
ri−→ v

Let
R
−→→ be the transitive-reflexive closure of R−→. In other words

u
R
−→→ v ⇐⇒ ∃k ≥ 0, ∃x0, x1, . . . , xk ∈ Σ∗, u ≡ x0

R−→ x1
R−→ · · · R−→ xk ≡ v

so we call this relation, rewriting in 0 or more steps according to the set of rules R, or simply,
rewriting.
The String Rewriting Problem is the following: given a finite set of string rewrite rules R and two
strings u and v, does u rewrite to v according to R? We will see that this is undecidable. In other
words, we will see that the set

SRP def= {〈R, u, v〉 | u
R
−→→ v}

is not decidable.

19

Note that we insist on rewriting in 0 or more steps. In fact, it is not hard to see that one-step
rewriting is decidable. To decide whether u R−→ v, simply check for each rule ri and each substring
u′ of u whether u′ ≡ ui. If so, rewrite u according to ri and check whether the result is v.

Theorem 4.1
SRP is r.e.

Proof. By the considerations in the previous paragraph, given k, x0, x1, . . . , xk, u, v , it is decidable
whether u ≡ x0

R−→ x1
R−→ · · · R−→ xk ≡ v . Using this, we conclude that SRP is r.e. by

Theorem 2.10. End of proof.
However,

Theorem 4.2
SRP is undecidable.

Proof. We prove this by showing that K ≤ SRP . It turns out that we need to be quite specific
about the model of computation in order to encode the Halting Problem into the String Rewriting
Problem and that it is convenient to choose the Turing Machine model for this.
We will describe the total computable function that performs the reduction K ≤ SRP by the
FC-program that computes it. This program will take an input of the form 〈[M], w〉 where [M] is
a description of a Turing Machine M and w is an arbitrary input for M and produce an output of
the form 〈R, u, v〉. In order for this to be a many-one reduction, it will have to be the case that M

halts on w iff u
R
−→→ v .

Without loss of generality, we will assume that M never writes blank, B, and that it has just one
halting state, h. Let Γ be the tape alphabet of M and Q its set of states. Then, R will consist of
rules for rewriting strings over the alphabet Σ def= Γ∪Q∪{$} where $ is a fresh auxiliary symbol
(the need for $ will explained below). Recall that an instantaneous description (or configuration)
of M is a string αqβ over Γ∪Q where q ∈ Q is the current state of the finite control, and αβ ∈ Γ∗

is the content of the tape up to the rightmost nonblank symbol such that the tape head is scanning
the leftmost symbol of β, or, if β = nil, the head is scanning a blank. (Since the machine is not
writing blanks, this is somewhat simpler than the earlier definition.) We will try to simulate the
moves of the Turing machine by one-step rewritings on strings representing configurations. Let q0

be the start state of M . The reduction will construct

u
def= q0w$ and v

def= h$

which correspond roughly to an initial and a final configuration of a halting computation of M on
input w. (Except for the presence of $ and the absence of the tape content in the final configuration.)
The reduction will also construct a finite set R of string rewrite rules, as follows.
For each right move,

RM ≡ δ(γ, q) = (γ′, q′, R)

20

which can be found in [M], such that γ 6≡ B, the reduction will construct a rewrite rule

rRM : qγ −→ γ′q′

since rewriting according to this rule corresponds to the efect of a move RM on some configuration
of the machine:

αqγβ′
rRM−→ αγ′q′β′

For each left move,
LM ≡ δ(γ, q) = (γ′, q′, L)

which can be found in [M], such that γ 6≡ B, the reduction will construct a finite set of rewrite
rules, one for each γ′′ ∈ Γ

rLM (γ′′) : γ′′qγ −→ q′γ′′γ′

since a move LM on some configuration of the machine can be simulated by rewriting according
to one of these rules:

α′γ′′qγβ′
rLM (γ′′)−→ α′q′γ′′γ′β′

You have probably noticed the restriction γ 6≡ B. Indeed, the first time the head gets to scan a
blank, the configuration will be of the form αq and it will not be possible to further rewrite this
with rules whose left hand side is of the form qB. If we drop the B then we get rewrite rules whose
left hand side is just q and they are applicable to many other configurations, leading to ambiguity
and non-deterministic behavior in the rewriting. the solutions is to add the auxiliary symbol $ to
mark the right end of the configuration and the following rewrite rules.
For each right move reading blank,

RM ≡ δ(B, q) = (γ′, q′, R)

the reduction will construct a rewrite rule

rRM : q$ −→ γ′q′$

For each left move reading blank,

LM ≡ δ(B, q) = (γ′, q′, L)

the reduction will construct again a finite set of rewrite rules, one for each γ′′ ∈ Γ

rLM (γ′′) : γ′′q$ −→ q′γ′′γ′$

Finally, we have to make sure that the rewriting process can “detect” that the halting state has
been reached. Since we cannot take v to be a “pattern” like h , the reduction constructed v ≡ h$
and therefore it will also need, for each γ ∈ Γ, to construct the rewrite rules

rhL(γ) : γh −→ h rhR(γ) : hγ −→ h

21

Obviously, the reduction will only have to do searches through the (finite) description [M] as well
constructions by terminating transformations. Hence, it will compute a total function.
Moreover, if M halts on w then there is a halting computation of M on w, i.e., a finite sequence
of configurations starting with the initial one and ending with one containing the halt state, such
that each two consecutive configurations in the sequence are related by some move of M . But then,

by the discussion that accompanied the description of the reduction, u
R
−→→ w where w is a string

of the form αhβ$ with α, β ∈ Γ∗. Then w
rhL , rhR

−→→ v hence u
R
−→→ v.

Conversely, if u
R
−→→ v, since only rhL and rhR have h occurring in their left hand side, there must

be some w such that u
R
−→→ w

rhL , rhR

−→→ v . By induction on the length of u
R
−→→ w , one can then see

that the strings that occur in this reduction sequence represent a sequence of configurations that
constitute a halting computation of M on w. End of proof.

5 Computing with Valid First-Order Sentences

In this section we are concerned with the computational aspects of determining the validity of first-
order sentences. Recall that a sentence φ is valid, write |= φ) whenever it is true in all structures
(that is, any structure A is a model for φ, i.e., A |= φ).
Many equivalent proof systems for first-order logic (predicate calculus) have been proposed over
the years (eg., Hilbert-style, natural deduction). We assume here that we fixed one of these and we
denote its provability relation as follows: Φ |−− φ whenever there exists a derivation (proof) with
conclusion φ and hypotheses taken from Φ. When Φ is empty we simply write |−− φ . Consider
the set of theorems of this proof system

THM def= {φ | φ is a sentence, and |−− φ}

Our proof system is clearly sound, this being the first criterion used by the authors in designing it!
Hence, all theorems are valid. In fact, the converse is also true. We state without proof, what is
known as the Completeness Theorem for first-order logic:

Theorem 5.1 (Gödel)
All valid sentences are theorems (are provable).

This result has important consequences for computing with valid first-order sentences. Validity is
a property of great “logical complexity” since, on the face of it, checking validity seems to require
checking truth in all structures. In view of soundness and of the Completeness Theorem, validity
is equivalent to provability, which, again on the face of it, is much simpler. In fact

Theorem 5.2
THM is r.e.

Proof. The proof system we have presented has three important properties.

22

1. Proofs are finite objects, hence they can be encoded as strings, just as formulas are, and we
can compute with them.

2. Given an arbitrary string it is decidable whether it encodes a proof or not, in particular the
well-formedness conditions on proofs (such as the side-condition for the rule (∀I)) can be
effectively checked.

3. The function that takes a proof as input and returns as output the formula that the proof
proves, is total computable.

In fact these properties are required of any “reasonable” proof system. Using them, we can describe
an enumerator for THM
“enumerate all strings in canonical order
for each string, decide whether it encodes a proof
if yes, compute the formula the proof proves
if it is a sentence (no free variables) output it” End of proof.
Now consider

VALID def= {φ | φ is a sentence, and |= φ}

By soundness and completeness, VALID = THM and by the previous theorem, VALID is r.e. In
the large family of logical systems, the fact that the valid sentences can be recursively enumerated
is a rare occurrence (see also the next section). Now, perhaps we are even luckier and VALID is
even decidable, thus allowing complete automatization of validity checking? Unfortunately,

Theorem 5.3 (Church/Turing)
VALID is undecidable.

Proof. In view of Theorem 4.2 it is sufficient to show that SRP ≤ VALID . We will describe the
total computable function that performs the reduction SRP ≤ VALID by the FC-program that
computes it. This program will take an input of the form 〈R, u, v〉 where R is a finite set of string
rewrite rules over an alphabet Σ and u, v are strings over Σ and produce an output of the form φ.

In order for this to be a many-one reduction, we need u
R
−→→ v iff |= φ .

First, the reduction will have to construct the first-order language over which φ is built. This will
contain a binary a binary predicate symbol, Rew . Moreover, let Σ be the alphabet over which
the strings in R and u, v are built. For each σ ∈ Σ, the first-order language will contain a unary
function symbol fσ. Finally, we have a constant symbol c. From each rewrite rule r ∈ R,

r : σ1 · · ·σm −→ τ1 · · · τn

the reduction will construct a sentence

Φr
def= ∀x Rew(fσ1(· · · fσm(x) · · ·) , fτ1(· · · fτn(x) · · ·))

and then, if R = {r1, . . . , rk} , the reduction will construct

ΦR
def= Φr1 ∧ · · · ∧ Φrk

23

Moreover, if u ≡ δ1 · · · δp and v ≡ ε1 · · · εq , the reduction will construct

Φu,v
def= Rew(fσ1(· · · fσm(c) · · ·) , fτ1(· · · fτn(c) · · ·))

We also need to say something that ensures that the meaning of the predicate symbol Rew always
“simulates” a rewriting relation. Taking

ΦRew
def= (∀x Rew(x, x)) ∧ (∀x, y, z Rew(x, y) ∧ Rew(y, z)→Rew(x, z)) ∧

∧
∧
σ∈Σ

(∀x, y Rew(x, y)→Rew(fσ(x), fσ(y)))

the reduction will finally construct

φ
def= ΦR ∧ ΦRew→Φu,v

This is clearly defining a total computable function. It remains to show that u
R
−→→ v iff |= φ .

Claim 1. u
R
−→→ v ⊃ |= φ

Proof of Claim 1. By soundness, it is sufficient to show u
R
−→→ v ⊃ |−− φ . This is shown by

induction on the length of the rewriting sequence from u to v. More precisely, one can show that

• for any w ∈ Σ∗, |−− ΦR ∧ ΦRew→Φw,w

• for any r ∈ R,w1, w2 ∈ Σ∗, if w1
r−→ w2 then |−− ΦR ∧ ΦRew→Φw1,w2 , and

• for any w1, w2, w3 ∈ Σ∗, if |−− ΦR ∧ ΦRew→Φw1,w2 and |−− ΦR ∧ ΦRew→Φw2,w3

then |−− ΦR ∧ ΦRew→Φw1,w3 .

The details are omitted. End of Proof of Claim 1.
Claim 2. |= φ ⊃ u

R
−→→ v

Proof of Claim 2. Since |= φ then R |= φ where R is the following structure: the underlying

set is Σ∗, Rew is interpreted as the rewrite relation
R
−→→, fσ is interpreted as the function that

concatenates σ at the beginning of its argument, and c is interpreted as nil, the empty string.

Clearly R |= ΦR ∧ ΦRew . Since we also have R |= φ , it follows that R |= Φu,v hence u
R
−→→ v .

End of Proof of Claim 2.
End of proof.
Note that the first-order language needs to contain at least one binary predicate symbol, one
constant symbol, and a number of unary function symbols for the previous proof to go through.
It turns out that the number of function symbols can be reduced to two, since the String Rewrite
Problem over the alphabet {0, 1} is undecidable (to see this, recall that strings over an arbitrary
alphabet can be encoded as strings of bits).

24

6 Computing with True Sentences of Arithmetic

We have seen that the set of sentences which are true in all structures is r.e. but not decidable.
What if we fix a structure? Of obvious interest is the structure IN, which is the standard model for
arithmetic. Most other logical theories of interest “contain” arithmetic therefore the results about
arithmetic discussed in this section transfer to them too. Consider the language 0, 1,+, · with the
standard interpretation in IN. We will be interested in the computational properties of the set of
true sentences of arithmetic:

TA def= {φ | φ is a sentence over 0, 1,+, ·, and IN |= φ}

It turns out that this set is not decidable, in fact, one can show that

Theorem 6.1
K ≤ TA

Proof Sketch. All the ingredients for this proof can be found in Gödel’s work on his famous
Incompleteness Theorem (see below), although Gödel did not have at his disposition a precise
definition of computability. In essence, he showed how string manipulation can be encoded by
logical formulae that talk about integers. The main encoding trick is the following: if we consider
strings over, say, {a, b, c}, we first associate numbers to the letters, say a 7−→ 1, b 7−→ 2, c 7−→ 3,
and then we encode a string by

dσ1σ2 · · ·σne
def= 2k13k2 · · · pkn

n

where pn is the n’th prime number and σi 7−→ ki. For example dbbacabce = 22325173111132173 .
In view of the well-known theorem on the unique prime factorization of natural numbers, this
encoding is injective. Therefore, this encoding can be inverted, and it turns out, remarkably, that
the decoding can be described by true first-order formulae over 0, 1,+, · .
We set up the reduction as follows. Given a Turing machine description [M] and an input w, the
reduction will compute a sentence of the form ∃x Ψ such that IN |= Ψ[n/x] iff the natural
number n is the code of a string representing a halting computation of M on w. To express Ψ, one
makes heavy use of the string decoding formulae to assert that the computation is a sequence of TM
configurations that is well-formed according to the moves of the machine, that its first configuration
is the start configuration and that some configuration contains a halting state. The details are not
so interesting for the top-level discussion that we have here and we omit them. End of Proof
Sketch.
All the symbols of the language are used in the reduction described above, and look what happens
if we drop mutiplication. We state without proof:

Theorem 6.2 (Presburger)
The set

{φ | φ is a sentence over 0, 1,+, and IN |= φ}

(known as Presburger Arithmetic) is decidable.

25

(Presburger Arithmetic is however intractable: the deciders that were provided run in double
exponential time, that is, it takes O(22n

) time to decide whether a sentence of size n is true
or not, and it was shown that this is inherent, that is, the problem is 2EXPTIME -complete.)
Back to TA. The next best hope is that TA might be just like VALID , undecidable, but r.e. For
example, can we find a reasonable proof system that is sound and complete for TA? In fact, most
elementary facts in arithmetic are proved using such a proof system, one which extends a general
proof system that is sound and complete for proving valid first-order formulae (such as natural
deduction) with specific axioms that belong only to TA. Such a set of axioms was proposed by
Peano:

∀x x+ 1 6= 0 ∀x, y x+ 1 = y + 1 → x = y

∀x x+ 0 = x ∀x, y x+ (y + 1) = (x+ y) + 1

∀x x · 0 = 0 ∀x, y x · (y + 1) = (x · y) + x

φ[0/z] ∧ (∀x φ[x/z] → φ[x+ 1/z]) → (∀y φ[y/z])

where φ is any formula with exactly one free variable, z (which makes this an axiom scheme rather
than a single axiom as the others are.)
The set of sentences that are provable from these axioms is known as Peano Arithmetic, PA. Peano
Arithmetic is clearly sound for IN hence PA ⊆ TA. For a while logicians hoped that PA = TA.
These hopes were ended 1931 by Gödel with his famous Incompleteness Theorem. The proof of
this theorem constructs a sentence which is true but not provable. We can show that the existence
of such a sentence is an immediate consequence of the reducibility K ≤ TA .

Theorem 6.3
TA is not r.e.

Proof. First we show that TA ≤ TA . Indeed, this reduction is performed by the total computable
function that maps any sentence φ to ¬φ since φ ∈ TA ⇐⇒ IN |= φ ⇐⇒ IN 6|= ¬φ ⇐⇒ ¬φ 6∈
TA ⇐⇒ ¬φ ∈ TA . Hence, K ≤ TA ≤ TA and by Theorem 3.6, K ≤ TA . Since K is not r.e.,
neither is TA. End of proof.
However, PA is r.e., by the same proof that showed that THM is r.e in the previous section.
Therefore, PA 6= TA so there must be some true sentence that is not provable, so Peano Arithmetic
is incomplete. In fact, the significance of Theorem 6.3 is larger than that. This result says that,
moreover, there is no way to “fix” Peano Arithmetic nor to find some other reasonable proof system
that is complete.
This is not quite the form in which Gödel proved his result. He took a particular proof system and
effectively constructed a sentence which was not provable but true. The meaning of his sentence
was “I am not provable”! It should be now clear how this is possible since we have seen that proofs
can be encoded by strings which can be encoded by natural numbers and as the reductions K ≤
SRP ≤ THM and the r.e.-ness of THM showed, there are strong analogies between computability
and provability. The last ingredient in his proof is a diagonalization trick à la Cantor which allowed

26

his sentence to talk about itself. You have undoubtedly remarked that all the undecidability and
non-r.e.-ness results we have proved have a similar source: the diagonalization trick in the proof
of undecidability of the Halting Problem. Of course, we did not match one achievement of Gödel’s
proof, the fact that his sentence is computable from the proof system. One can give an account
of this aspect too: if you are interested, read about creative and productive sets in recursion
theory textbooks. On the other hand, the approach you have seen obtains a result that proves the
incompleteness of any proof system, something that can be said about Gödel’s proof only at the
methodological level.
A final remark. Gödel formulated his incompleteness result as follows: there exists a sentence φ
such that neither φ nor ¬φ are provable. (This had the advantage of avoiding truth altogether;
model theory was still in its infancy in 1931. Nowadays, it has the disadvantage that it depends
on the particularities of the proof system.) But this formulation is equivalent to the one above.
Indeed, one of the two, φ or ¬φ, must be true! Conversely, if φ is true but not provable, then ¬φ
cannot be provable either, otherwise ¬φ would be true, which contradicts the truth of φ.

27

