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$1. Introduction and overview. In 1960, E. P. Wigner, a joint winner of the 
1963 Nobel Prize for Physics, published a paper titled On the Uizreasoizable 
Efectiveness of Mathematics in the Natural Sciences [61]. This paper can 
be construed as an examination and affirmation of Galileo's tenet that "The 
book of nature is written in the language of mathematics". To this effect, 
Wigner presented a large number of examples that demonstrate the effective- 
ness of mathematics in accurately describing physical phenomena. Wigner 
viewed these examples as illustrations of what he called the empirical law of 
epistemologj), which asserts that the mathematical formulation of the laws 
of nature is both appropriate and accurate, and that mathematics is actually 
the correct language for formulating the laws of nature. At the same time, 
Wigner pointed out that the reasons for the success of mathematics in the 
natural sciences are not completely understood; in fact, he went as far as 
asserting that ". . . the enormous usefulness of mathematics in the natural 
sciences is something bordering on the mysterious and there is no rational 
explanation for it." 

In 1980, R. W. Hamming, winner of the 1968 ACM Turing Award for 
Computer Science, published a follow-up article: titled The Unreasonable 
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Eflectiveness of Mathematics [23]. In this article: Hamming provided fur- 
ther examples manifesting the effectiveness of mathematics in the natural sci- 
ences. Moreover, he attempted to answer the "implied question" in Wigner's 
article: "Why is mathematics so unreasonably effective?" Although Ham- 
ming offered several partial explanations: at the end he concluded that on 
balance this question remains "essentially unanswered". 

Since the time of the publication of Wigner's article: computer science has 
undergone a rapid, wide-ranging: and far-reaching development. Just as 
in the natural sciences, mathematics has been highly effective in computer 
science. In particular, several areas of mathematics, including linear algebra, 
number theory, probability theory, graph theory, and combinatorics, have 
been instrumental in the development of computer science. Unlike the 
natural sciences, however: computer science has also benefitted from an 
extensive and continuous interaction with logic. As a matter of fact, logic 
has turned out to be significantly more effective in computer science than it 
has been in mathematics. This is quite remarkable, especially since much of 
the impetus for the development of logic during the past one hundred years 
came from mathematics. 

Indeed, let us recall that to a large extent mathematical logic was developed 
in an attempt to confront the crisis in the foundations of mathematics that 
emerged around the turn of the 20th Century. Between 1900 and 1930, this 
development was spearheaded by Hilbert's Program, whose main aim was 
to formalize all of mathematics and establish that mathematics is complete 
and decidable. Informally, completeness means that all "true" mathemat- 
ical statements can be "proved", whereas decidability means that there is 
a mechanical rule to determine whether a given mathematical statement is 
"true" or "false". Hilbert firmly believed that these ambitious goals could 
be achieved. Nonetheless, Hilbert's Program was dealt devastating blows 
during the 1930s. Indeed, the standard first-order axioms of arithmetic were 
shown to be incomplete by Godel in his celebrated 1931 paper [19]. Further- 
more: A. Turing, A. Church, and A. Tarski demonstrated the undecidability 
of first-order logic. Specifically: the set of all valid first-order sentences was 
shown to be undecidable [5, 541, whereas the set of all first-order sentences 
that are true in arithmetic was shown to be highly undecidable [53]. 

Today, mathematical logic is a mature and highly sophisticated research 
area with deep results and a number of applications in certain areas of 
mathematics. All in all, however, it is fair to say that the interaction between 
logic and mathematics has been rather limited. In particular, mathematical 
logic is not perceived as one of the mainstream area of mathematics, and the 
"typical" mathematician usually knows little about logic. Along these lines, 
R.W. Hamming's judgment [23] is not uncommon, albeit perhaps severe: 
". . . we have had an intense study of what is called the foundations of 
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mathematics. . . . It is an interesting field, but the main results of mathematics 
are impervious to what is found there." 

In contrast, logic has permeated through computer science during the past 
thirty years much more than it has through mathematics during the past one 
hundred years. Indeed, at present concepts and methods of logic occupy a 
central place in computer science, insomuch that logic has been called "the 
calculus of computer science" [43]. Our goal in this article is to illustrate 
the effectiveness of logic in computer science by focusing on just a few of the 
many areas of computer science on which logic has had a definite and last- 
ing impact. Specifically: the connections between logic and computational 
complexity will be highlighted in Section 2, the successful use of first-order 
logic as a database query language will be illustrated in Section 3: the in- 
fluence of type theory in programming language research will be addressed 
in Section 4, the deployment of epistemic logic to reason about knowledge 
in multi-agent systems will be covered in Section 5, and the connections 
between logic and automated design verification will be presented in Section 
6. 

32. Descriptive Complexity. A fundamental issue in theoretical computer 
science is the computational complexity of problems. How much time and 
how much memory space is needed to solve a particular problem? 

Let DTIME[t (n)] be the set of problems that can be solved by algorithms 
that perform at most O(t(n)) steps for inputs of size n. The complexity class 
Polynomial Time (P) is the set of problems that are solvable in time at most 
some polynomial in n. Formally, P = U ~ + T I M E [ ~ ~ ] .  

Some important computational problems appear to require more than 
polynomial time. An interesting class of such problems is contained in 
nondeterministic polynomial time (NP). A nondeterministic computation is 
one that may make arbitrary choices as it works. If any of these choices lead 
to an accept state, then we say the input is accepted. 

The three-colorability problem-testing whether an undirected graph can 
have its vertices colored with three colors so that no two adjacent vertices 
have the same color-as well as hundreds of other well-known combinato- 
rial problems are NP-complete. (See [17] for a survey of many of these.) 
This means that not only are they in NP, but they are the "hardest prob- 
lems" in NP: all problems in NP are reducible (in polynomial time) to each 
NP-complete problem. At present; the fastest known algorithm for any 
of these problems is exponential. An efficient algorithm for any one of 
these problems would translate to an efficient algorithm for all of them. 
The P NP question, which asks whether P and NP coincide, is an ex- 
ample of our inability to determine what can or cannot be computed in 
a certain amount of computational resource: time, space, parallel time, 
etc. 
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Complexity theory typically considers yes/no problems. This is the exam- 
ination of the difficulty of computing a particular bit of the desired output. 
Yes/no problems are properties of the input. The set of all inputs to which 
the answer is "yes" have the property in question. Rather than asking the 
complexity of checking if a certain input has a property T : in Descriptive 
Complexity we ask how hard is it to express the property T in some logic. 
It is plausible that properties that are harder to check might be harder to 
express. What is surprising is how closely logic mimics computation: de- 
scriptive complexity exactly captures the important complexity classes. 

In Descriptive Complexity we view inputs as finite logical structures, e.g., 
a graph is a logical structure AG = ({1,2, . . . whose universe is the , n), E ~ )  
set of vertices and E~ is the binary edge relation. 

PROVISO.We will assume unless otherwise stated that a total ordering 
relation on the universe (5)is available. 

In first-order logic we can express simple properties of our input structures. 
For example the following says that there are exactly two edges leaving every 
vertex. 

In second-order logic we also have variables Xi that range over relations 
over the universe. These variables may be quantified. A second-order 
existential formula (S03) begins with second order existential quantifiers 
and is followed by a first-order formula. As an example, the following 
second-order existential sentence says that the graph in question is three- 
colorable. It does this by asserting that there are three unary relations, Red 
(R),  Yellow (Y) ,  and Blue (B),  defined on the universe of vertices. It goes 
on to say that every vertex has some color and no two adjacent vertices have 
the same color. 

Descriptive Complexity began with the following theorem of R. Fagin. 
Observe that Fagin's Theorem characterizes the complexity class NP purely 
by logic, with no mention of machines or time: 

THEOREM2.1 ([14]). A set of structures T is iiz NP ifaizd only if there exists 
a second-order existeiztial formula, 0such that T = { A I A /= 0). Formally, 
NP = S03. 

Define CRAM[t (n)] to be the set of properties checkable by concurrent- 
read, concurrent-write, parallel random-access machines using polynomially 
many processors in parallel time O(t (72)). FO: the set of first-order express- 
ible properties, exactly captures the complexity class CRAM[l], i.e., constant 
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parallel time. It is possible to increase the power of FO by allowing longer 
descriptions for longer inputs. Let FO[t (n)] be those properties describable 
by a block of restricted quantifiers that may be iterated t (iz) times for inputs 
of size n. 

THEOREM or all constructible1 t (n), FO[t (n)] CRAM[t (n)]. 2.2 ([32]). = 

Thus, parallel time corresponds exactly to first-order iteration: i.e., quantifier- 
depth. Rather than iterating blocks of quantifiers, a natural way to increase 
the power of first-order logic is by allowing inductive definitions. This is 
formalized via a least-$xed-point operator (LFP) . 

As an example, the reflexive, transitive closure E* of the edge relation E 
can be defined via the following inductive definition, 

E*(x, y )  z x = y V E(x:  y )  V (3z)(E*(x:z )  A E*(z; y ) ) .  

Equivalently, this can be expressed using the least-fixed-point operator, 

E*(x, y )  E LFPR,s,y(X y V E(x ,  y )  V ( ~ z ) ( R ( x ,= Z )  A R(z. y ) ) .  

It is exciting that the natural descriptive class FO(LFP)-first-order logic 
extended with the power to define new relations by induction-precisely 
captures polynomial time. 

THEOREM2.3 ([29, 30, 561). A problem is in polyizomial time ifand only if 
it is describable in jirst-order logic with the addition of the least-fixed-point 
operator. This is equivalent to being expressible by ajirst-orderfornzula iterated 
polynomially many times. Formally, P = FO(LFP) = F O [ ~ Z ~ ( ' ) ] .  

Theorems 2.1 and 2.3 cast the P A NP question in a different light. (In the 
following we are using the fact that if P were equal to NP, then NP would be 
closed under complementation. It would then follow that every second-order 
formula would be equivalent to a second-order existential one.) 

COROLLARY2.4. P is equal to NP ifand only ifevery secoizd-order expressible 
property overjiizite, ordered structures is already expressible injirst-order logic 
usiizg inductive dejinitioizs. In symbols, (P = NP) FO(LFP) = SO. 

The following theorem considers the arbitrary iteration of first-order for- 
mulas, which is the same as iterating them exponentially, and is more general 
than monotone iteration of first-order formulas. Such iteration defines the 
partial-fixed-point operator. The theorem shows that this allows the de- 
scription of exactly all properties computable using a polynomial amount of 
space. 

THEOREM2.5 ([28, 29, 561). A problem is in polynomial space if aizd only 
if it is describable in first logic with the addition of the partial-jixed-point 

'"~onstructible" means that the function n H t ( n ) can be computed in space t ( n ) .  All 
but very bizarre functions are constructible. Another proviso of this theorem is that for 
t (n)  < logn, the first-order formulas may have access not only to ordering but to the 
addition and multiplication relations on the n-element universe. 
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operator. This is eqz~ivaleizt to being expressible bj) a$rst-order formula iterated 
exponentially. Fonnally, PSPACE = FO(PFP) = ~ 0 [ 2 " ~ ( " ] .  

A refinement of Theorem 2.5 shows that the precise amount of space used 
can be characterized via the number of distinct variables in the relevant first- 
order formula: i.e., the number of descriptive variables captures space, for 
k = 1,2, . . . : DSPACE[~"]= VAR[k + 11, [33]. 

Combinatorial games due to Ehrenfeucht and Fraisse have been used to 
prove many inexpressibility results. These bounds provide usef~ll insights 
but they do not separate relevant complexity classes because they are proved 
without the ordering relation [13, 16,351. No such lower bounds were known 
for separating the classes corresponding to P and PSPACE. Abiteboul and 
Vianu showed why, thus proving another fundamental relationship between 
logic and complexity. In the following, FO (wo<) means first-order logic 
without a given ordering relation. 

THEOREM2.6 ([2]). The follo,viizg conditioizs are equivaleizt: 
1. FO (wo<) (LFP) = FO (wo<) (PFP) . 
2. FO(LFP) = FO(PFP). 
3. P = PSPACE. 
Descriptive complexity reveals a simple but elegant view of computation. 

Natural complexity classes and measures such as polynomial time, nondeter- 
ministic polynomial time, parallel time: and space have natural descriptive 
characterizations. Thus, logic has been an effective tool for answering some 
of the basic questions in complexity.' 

§3. Logic as a database query language. The database area is an impor- 
tant area of computer science concerned with storing, querying and updating 
large amounts of data. Logic and databases have been intimately connected 
since the birth of database systems in the early 1970s. Their relationship 
is an unqualified success story. Indeed, first-order logic (FO) lies at the 
core of modern database systems, and the standard query languages such as 
Structured Query Language (SQL) and Query-By-Examnple (QBE) are syn- 
tactic variants of FO. More powerful query languages are based on exten- 
sions of FO with recursion, and are reminiscent of the well-known fixpoint 
queries studied in finite-model theory (see Section 2). The impact of logic 
on databases is one of the most striking examples of the effectiveness of logic 
in computer science. 

This section discusses the question of why FO has turned out to be so 
successful as a query language. We will focus on three main reasons: 

a FO has syntactic variants that are easy to use. These are used as basic 
building blocks in practical languages like SQL and QBE. 

2 ~ h i ssection is based in part on the article [34]. See also the books [12. 351 for much more 
information about descriptive complexity. 
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FO can be efficiently implemented using relational algebra, which pro-
vides a set of simple operations on relations expressing all FO queries. 
Relational algebra as used in the context of databases was introduced 
by Ted Codd in [7]. It is related to Tarski's Cylindric Algebras [24]. 
The algebra turns out to yield a crucial advantage when large amounts 
of data are concerned. Indeed, the realization by Codd that the algebra 
can be used to efficiently implement FO queries gave the initial impetus 
to the birth of relational database systems.3 
FO queries have the potential for "perfect scaling" to large databases. If 
massive parallelism is available,FO queries can inprinciple be evaluated 
in constant time;independent of the database size. 

A relational database can be viewed as a finite relational structure. Its 
signature is much like a relational FO signature, with the minor difference 
that relations and their coordinates have names. The name of a coordinate is 
called an attribute, and the set of attributes of a relation R is denoted att(R). 
For example, a "beer drinker's" database might consist of the following 
relations: 

Molly's King's 
Sue Molly 's Molly's Bass 

The main use of a database is to query its data, e.g., find the drinkers who 
frequent only bars serving Bass. It turns out that each query expressible 
in FO can be broken down into a sequence of simple subqueries. Each 
subquery produces an intermediate result: that may be used by subsequent 
subqueries. A subquery is of the form: 

where L, is a literal P(j7) or lP(y'),P is in the input or is on the left-hand 
side of a previous subquery in the sequence. and R is not in the input and 
does not occur previously in the sequence. The meaning of such a subquery 
is to assign to R the result of the FO query 3.2 (L1A . . . A LI,) on the 
structure resulting from the evaluation of the previous subqueries in the 
sequence. The subqueries provide appealing building blocks for FO queries. 
This is illustrated by the language QBE, in which a query is formulated 
as just described. For example, consider the following query on the "beer 
drinker's" database: 

Find the drinkers whofrequent some bar serving Bass. 

3 ~ o d dreceived the ACM Turing Award for his work leading to the development of 
relational systems. 
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This can be expressed by a single query of the above form: 

( t)  answer := 3b vrequerzts(d, b) A serves(d; Bass)). 

In QBE, the query is formulated in a visually appealing way as follows: 

answer :inker + frequents drinker bar serves bar beerBass1 1 1 

Similar building blocks are used in SQL, the standard query language for 
relational database systems. 

Let us consider again the query ( t) .  The naive implementation would 
have us check, for each drinker d and bar b, whether frequents(d. b) A 
serves(d. Bass) holds. The number of checks is then the product of the 
number of drinkers and the number of bars in the database, which can be 
roughly n2 in the size of the database. This turns out to be infeasible for 
very large databases. A better approach, and the one used in practice, makes 
use of relational algebra. Before discussing how this works, we informally 
review the algebra's operators. There are two set operators, U (union) and 
- (difference). The selection operator, denoted oCond(R) extracts from R the 
tuples satisfying a condition cond involving (in)equalities of attribute values 
and constants. For example, ob,e,.=~c,,s(serves) produces the tuples in serves 
for which the beer is Bass. The projection operator, denoted nx(R); projects 
the tuples of relation R on a subset X of its attributes. The join operator. 
denoted by R M Q, consists of all tuples t over att(R) U att(Q) such that 
n,tt(R) ( t )  E R and n a t t ( ~ )  ( t )  E Q. A last unary operator allows to rename an 
attribute of a relation without changing its contents. 

Expressions constructed using relational algebra operators are called re- 
lational algebra queries. The query (1)is expressed using relational algebra 
as follows: 

($1 nd,.inker(obeer=Bc,ssvrequerzts w serves)). 

A result of crucial importance is that FO and relational algebra express 
precisely the same queries. 

The key to the efficient implementation of relational algebra queries is 
twofold. First. individual algebra operations can be efficiently implemented 
using data structures called indexes, providing fast access to data. A simple 
example of such a structure is a binary search tree. which allows locating 
the tuples with a given attribute value in time log(n), where n is the number 
of tuples. Second, algebra queries can be simplified using a set of rewriting 
rules. The query ($) above can be rewritten to the equivalent but more 
efficient form: 

The use of indexes and rewriting rules allows to evaluate the above query 
at cost roughly n log(n) in the size of the database, which is much better 
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than rz2. Indeed. for large databases this can make the difference between 
infeasibility and feasibility. 

The FO queries turn out to be extremely well-behaved with respect to 
scaling. Given sufficient resources. response time can in prirzciyle be kept 
constant as the database becomes larger. The key to this remarkable property 
is parallel processing. Admittedly, a lot of processors are needed to achieve 
this ideal behaviour: polynomial in the size of the database. This is unlikely 
to be feasible in practice any time soon. The key point. however. is that FO 
query evaluation admits linear scaling; the speed-up is proportional to the 
number of parallel processors used. 

Once again. relational algebra plays a crucial role in the parallel imple- 
mentation of FO. Indeed, the algebra operations are set oriented, and thus 
highlight the intrinsic parallelism in FO queries. For example. consider the 
projection n x ( R ) .  The key observation is that one can project the tuples 
in R independently of each other. Given one processor for each tuple in 
R,  the projection can be computed in constant time, independent of the 
number of tuples. As a second example. consider the join R M Q. This can 
be computed by joining all pairs of tuples from R and Q. independently of 
each other. Thus. if one processor is available for each pair, the join can be 
computed in constant time, independent on the number of tuples in R and 
(2. 

Since each algebra operation can be evaluated in constant parallel time, 
each algebra query can also be evaluated in constant time. The constant 
depends only on the query and is independent of the size of the database. Of 
course, more and more processors are needed as the database grows. 

In practice. the massive parallelism required to achieve perfect scaling 
is not available. Nevertheless, there are algorithms that can take optimal 
advantage of a given set of processors. It is also worth noting that the 
processors implementing the algebra need not be powerful. as they are only 
required to perform very specific, simple operations on tuples. In fact. it is 
sufficient to have processors that can implement the basic Boolean circuit 
operations. This fact is formalized by a result due to Immerman [31] stating 
that FO is included in A C ~ ,the class of problems solvable by circuits of 
constant depth and polynomial size, with unbounded fan-in. 

In conclusion, logic has proven to be a spectacularly effective tool in the 
database area. FO provides the basis for the standard query languages. 
because of its ease of use and efficient implementation via relational algebra. 
FO can achieve linear scaling, given parallel processing resources. Thus, its 
full potential as a query language remains yet to be realized. 

A good introduction to the database area may be found in [51]. while [55] 
provides a more in-depth presentation. The first text on database theory is 
[42], followed more recently by [I]. The latter text also described database 
query languages beyond FO, including fixpoint logics. An excellent survey 
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of relational database theory is provided in [37]. The relationship between 
finite-model theory and databases is discussed in [60]. 

54. Type theory in programming language research. In the 1980s and 1990s 
the study of programming languages was revolutionized by a remarkable con- 
fluence of ideas froin mathematical and philosophical logic and theoretical 
computer science. Type theory emerged as a unifying conceptual framework 
for the design, analysis, and implementation of programming languages. 
Type theory helps to clarify subtle concepts such as data abstraction, poly- 
morphism, and inheritance. It provides a foundation for developing logics 
of program behavior that are essential for reasoning about programs. It sug- 
gests new techniques for implementing compilers that improve the efficiency 
and integrity of generated code. 

Type theory is the study of type systems. Reynolds defines a type system 
to be a "syntactic discipline for enforcing levels of abstraction" [49]. A 
type system is a form of context-sensitive grammar that imposes restrictions 
on the formation of programs to ensure that a large class of errors, those 
that arise from misinterpretation of values, cannot occur. Examples of 
such errors are: applying a function on the integers to a boolean argument; 
treating an integer as a pointer to a data structure or a region of executable 
code: over-writing a program's memory without regard to its purpose or 
validity: violating the assumptions of a procedure by calling it with too few 
arguments or arguments of the wrong type. 

A type system is typically defined by an inductive definition of a typing 
judgement of the form I- t- e : z.  Here e is an expression. z is its type, and 
r assigns types to the global variables that may occur within e .  The typing 
judgement is defined to be the least three-place relation closed under a given 
collection of typing rules that determine whether or not an expression is 
well-typed. 

The abstract syntax of an illustrative fragment of the ML language is 
given in Figure 1. Its type system is given in Figure 2. Note that the lan- 
guage constructs are grouped according to their type. Each type comes with 
expressions to denote its values together with operations for manipulating 
those values in a computation. 

The rules governing the function type constructor exhibit an intrigu-
ing similarity to the introduction and elimination rules for implication in 
Gentzen's system of natural deduction. This similarity is not acciden- 
tal: according to the propositions-as-types princiyle [8, 9 ,  271 there is an 
isomorphism between propositions and types with the property that the 
natural deduction proofs of a proposition correspond to the elements of 
its associated type. This principle extends to the full range of logical 
connectives and quantifiers, including those of second- and higher-order 
logic. 
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Types z ::= i n t  ( boo1 I zl + z2 
Expressions e ::= x n ( el oe2 1 t r u e  f a l s e  1 el = e2 1 

i fe t h e n  el e l s e  e2 I f u n  f ( x  :z l )  :7 2  i s  e I el ( e 2 )  
Values v ::= x(nItrueIfalseIfunf(x:zl):z2ise 

Tlze operator o ranges over tlze arithmetic operations +. -. and 
X .  

The variable n ranges over numerals for the natural numbers. 
The variables f and x are bound in tlze expression 

f u n  f ( x : z l ) : z 2 i s e .  

FIGURE1. Abstract Syntax of MinML 

r t- el : i n t  I- F e2 : i n t  
T t- n : i n t  r t- el o e2 : i n t  

I- I- t r u e  : boo1 t f a l s e  : boo1 

r t el : i n t  r t e2 : i n t  r t e : b o o l  r t e l : z  r k e 2 : z  
r t- el = e2 : boo1 r t- i fe t h e n e l  e l s e e 2  : z 

FIGURE2. Type System of MinML 

An operational semantics defines how to execute programs. It is useful 
to define the operational semantics of a language as a transition relation 
between states of an abstract machine, with certain states designated as fi- 
nal states. For the illustrative language of Figure 2 the states of the abstract 
machine are closed expressions; the final states are the fully-evaluated expres- 
sions. The transition relation is given in Figure 3 using Plotkin's technique 
of structured operational semarztics [46]. These rules constitute an inductive 
definition of the call-by-value evaluation strategy. in which function argu- 
ments are evaluated prior to application. and for which function expressions 
are fully evaluated. 

One role of a type system is to preclude execution errors arising from 
misinterpretation of values. 

THEOREM4.1 (Type Soundness). If t e : z ,  tlzen either e is fully evaluated 
or there exists el such that t- el : z and e t,el. 
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el el, e2 t,eit, 


t r u e  i f n l = n 2
el = ez H ei = e2 vl = e2 H v1 = e; 121 = n2 H 

f a l s e  if n l  # rz2 

el ++ ell e2 ++ e i  ( v = f u n  f ( x : z l ) : z 2 i s e )  

el (e2)  ++ ell (e2)  vl ( e z )  ++ vl ( e i )  v ( v l )  t,[v ,  v l l f ;  x ] e  

The notation [v.  v l / f ,  x ] e  stands for the result of szlbstitutiorz v 
for jkee occzlrrelzces of f and vl for p e e  occurrences of x irz the 
expression e . 

FIGURE3. Operational Semantics of MinML 

A type error is an expression e such that e is not a value, yet there is no el 
such that e ++ el. In practice type errors correspond to illegal instructions or 
memory faults; the type soundness theorem ensures that well-typed programs 
never incur such errors. 

The structure of more realistic programming languages can be described 
using very similar techniques. According to the type-theoretic viewpoint 
programming language "features" correspond to types. The following chart 
summarizes some of the main correspondences: 

Corzcept Type Values Operations 
booleans boo1 true; false conditional 
integers i n t  integer numerals integer arithmetic 
floating point f l o a t  f. p. numerals f. p. arithmetic 
tuples 71 x 7 2  ordered pairs component projection 
disjoint union 71 + 7 2  tagged values case analysis 
procedures 71 + 7 2  procedure definition procedure call 
recursive types pt.7 heap pointers traversal 
polymorphism vt.7 templates, generics instantiation 
data abstraction 3t.7 packages, modules opening a package 
mutable storage t r e f  storage cells update. retrieve 
tagging tagged values dynamic dispatch 

Organizing programming languages by their type structure has a number 
of benefits. We mention a few salient ones here. First. language concepts 
are presented modularly. avoiding confusion or conflation of distinct con- 
cepts. Traditional concepts such as "call-by-reference" parameter passing 
emerge instead as functions that take values of reference type. Second, type 
structure can be exploited to reason about program behavior. For example. 
the technique of logical relations. which interprets types as relations between 
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values, may be used to characterize interchangeability of program fragments. 
Third, it becomes possible (as outlined above) to give a precise statement and 
proof of safety properties of a programming language. Moreover. the type 
annotations on programs form a certificate of safety that can be checked 
prior to execution of the program. Fourth. types may be exploited by a 
compiler to improve run-time efficiency and to provide a "self-check" on the 
integrity of the compiler itself [52]. 

$5.  Reasoning about knowledge. The formal study of epistemic logic was 
initiated in the 1950s and led to Hintikka's seminal book Knowledge and Be- 
lief [25]. The 1960s saw a flourishing of interest in the area in the philosophy 
community. More recently, reasoning about knowledge has been shown to 
play a key role in such diverse fields as distributed computing, game theory, 
and AI. The key concern is the connection between knowledge and action. 
What does a robot need to know in order to open a safe? What do processes 
need to know about other processes in order to coordinate an action? What 
do agents need to know about other agents to carry on a conversation? The 
formal model used by the philosophers provides the basis for an appropriate 
analysis of these questions. 

We briefly review the model here, just to show how it can be used. The 
syntax is straightforward. We start with a set <D of primitive propositions. 
where a primitive proposition p E <D represents a basic fact of interest 
like "it is raining in Spain", and a set {I. . . . . n )  of agents. We then close 
off under conjunction and negation, as in propositional logic. and modal 
operators K 1 ,  . . . . K,, E ,  and C ;  where K i p  is read "agent i knows p". 
E p  is read "everyone knows p" and C p  is read " p  is common knowledge. 
Thus, a statement such as K 1  K2p  A 1 K 2 K 1  K2p  says "agent 1 knows agent 
2 knows p, but agent 2 does not know that 1 knows that 2 knows p". More 
colloquially: " I  know that you know it. but you don't know that I know that 
you know it." 

The semantics for this logic, like that of other modal logics, is based on 
possible worlds. The idea is that, given her current information, an agent 
may not be able to tell which of a number of possible worlds describes the 
actual state of affairs. We say that the agent krzovvs a fact p if p is true in all 
the worlds she considers possible. We formalize this intuition using Kriyke 
structures. A Kriyke structure4 M for n agents is a tuple ( K K l , . . . ,K,; n ) ,  
where W is a set of possible worlds, Ki is a binary relation on W-that is, 
a set of pairs (w, w') E W x W, and 71 associates with each world a truth 
assignment to the primitive propositions (that is, n ( w ) ( p )E {true, false) 

"ripke structures are named after Saul Kripke. who introduced them in their current 
form in [38]. although the idea of possible worlds was in the air in the philosophy community 
in the 1950s. 
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for each primitive proposition p E @ and world w E W).  Intuitively, 
(v,w) E K; if. in world v, agent i considers world w possible. 

We can define (M,w) + p; read "p is true in world w in structure M"; by 
induction on the structure of formulas: 

(M. w) 1= y (for a ~rimitiveproposition p E @) if and only if n(w) (y)  = 

true. 
(M,w) k p ~ p ' i f a n d o n l y i f(M,w) + p and (M,w) + y t .  
(M,w) k l i p  ifandonlyif ( M w )  cp. 
( M  w) k K i p  if and only if ( M  wt) + p for all (w,wt) E K;. 
( Mw) 1= E p  if and only if (M,w) + K;p for i = 1, . . . . n. 
( Mw) + Cp if and only if (M.w) k E k p  fork  = 1, 2, 3. . . . . where 
E k  is defined inductively by taking E'p := E p  and Ek+ 'p  := E E " ~ .  

Note how the semantics of K i p  captures the intuition that agent i knows p 
exactly if p is true at all the worlds he considers possible. Clearly E p  is true 
if and only if Kip  is true for each agent i. Finally, Cp is true if and only if 
everyone knows p .  everyone knows that everyone knows, and so on. 

What is the appropriate structure for analyzing a complicated multi-agent 
system? It turns out that a natural model for multi-agent systems can 
be viewed as a Kripke structure. (The phrase "system" is intended to be 
interpreted rather loosely here. Players in a poker game, agents conducting 
a bargaining session, robots interacting to clean a house. and processes in a 
computing system can all be viewed as multi-agent systems.) Assume that; at 
all times, each of the agents in the system can be viewed as being in some local 
state. Intuitively, the local state encapsulates all the relevant information to 
which the agent has access. In addition, there is an environment, whose state 
encodes relevant aspects of the system that are not part of the agents' local 
states. For example, if we are modeling a robot that navigates in some office 
building. we might encode the robot's sensor input as part of the robot's 
local state. If the robot is uncertain about its position. we would encode this 
position in the environment state. A global state of a system with rz agents 
is an (rz + 1)-tuple of the form (s,; s l . .  . . ,s,). where s, is the state of the 
environment and s; is the local state of agent i. 

A systein is not a static entity; it changes over tiine. A rurz is a complete 
description of what happens over tiine in one possible execution of the 
system. For definiteness, we take tiine to range over the natural numbers. 
Thus. formally, a run is a function from the natural numbers to global states. 
Given a run r ,  r(0) describes the initial global state of the systein in r; r(1) 
describes the next global state, and so on. We refer to a pair (r,m) consisting 
of a run r and tiine In as a point. If r(m) = (s,; s l , .  . . ;s,), we define 
ri( m )  = si, i = 1, . . . ; rz: thus, ri (m) is agent i's local state at the point 
(r:4. 

The points in a system can be viewed as the states in a Kripke structure. 
Moreover. we can define a natural relation K;: agent i thinks (r t ,172') is 
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possible at (r ,  m )  if r i ( m )  = r i (nz f ) ;that is, the agent has the same local 
state at both points. Intuitively. the local state encodes whatever the agent 
remembers about the run. An interpreted system Zconsists of a pair ( R ,n).  
where R is a system and n associates with each point in R a truth assignment 
to the primitive propositions in some appropriately chosen set @ of primitive 
propositions. We can now define truth of episteinic formulas at a point in 
an interpreted system just as we did for a Kripke structure. That is. an 
interpreted system Z can be viewed as a set of possible worlds, with the 
points acting as the world^.^ In particular, we have 

( Z ,  r, MZ) + Kipif ( Z ,  r', m') + cp for all (r ' ,m') such that r j ( ~ 1 )= r i ( m f ) .  

As an example of how this framework can be used in analyzing distributed 
protocols; consider the coordinated attack problem, from the distributed 
systems folklore [21]. It abstracts a problem of data recovery management 
that arises when using standard protocols in database management called 
commit protocols. The following presentation is taken from [22]: 

Two divisions of an army are camped on two hilltops overlooking 
a common valley. In the valley awaits the eneiny. It is clear that 
if both divisions attack the enemy simultaneously they will win 
the battle. whereas if only one division attacks it will be defeated. 
The generals do not initially have plans for launching an attack 
on the eneiny. and the commanding general of the first division 
wishes to coordinate a simultaneous attack (at some time the next 
day). Neither general will decide to attack unless he is sure that the 
other will attack with him. The generals can communicate only by 
means of a messenger. Normally. it takes the messenger one hour 
to get from one encampment to the other. However. it is possible 
that he will get lost in the dark or; worse yet, be captured by 
the enemy. Fortunately, on this particular night, everything goes 
smoothly. How long will it take them to coordinate an attack? 

Suppose the messenger sent by General A makes it to General B with a 
message saying "Let's attack at dawn". Will General B attack? Of course 
not, since General A does not know that B got the message. and thus may not 
attack. So General B sends the messenger back with an acknowledgment. 
Suppose the messenger makes it. Will General A attack? No. because now 
General B does not know that General A got the message, so General B 
thinks General A may think that B didn't get the original message, and thus 
not attack. So A sends the messenger back with an acknowledgment. But 
of course, this is not enough either. 

5 ~ nan interpreted system we can also deal with temporal formulas, which talk about what 
happens at some point in the future, although that is unnecessary for the issues discussed in 
this section. See Section 6 for more discussion of temporal logic. 



228 HALPERN. HARPER. IMMERMAN. KOLAITIS. VARDI. AND VIANU 

In terms of knowledge, each time the messenger makes a transit, the depth 
of the generals' knowledge increases by one. Suppose that the primitive 
proposition m stands for "A message saying 'Attack at dawn' was sent by 
General A." When General B gets the message. KRrn holds. When A gets 
B's acknowledgment, K A K B m  holds. The next acknowledgment brings us 
to K B  K A K B m .  Although more acknowledgments keep increasing the depth 
of knowledge. it is not hard to show that by following this protocol. the 
generals never attain common knowledge that the attack is to be held at 
dawn. 

What happens if the generals use a different protocol? That does not help 
either. As long as there is a possibility that the messenger may get captured 
or lost, then common knowledge is not attained. even if the messenger 
in fact does deliver his messages. It would take us too far afield here to 
completely formalize these results (see [22] for details), but we can give a 
rough description. We say a systern 72 displaj~s unbozirzded message delays if, 
roughly speaking, whenever there is a run r E R such that process i receives 
a message at time 172 in r .  then for all m' > m.  there is another run r' that is 
identical to r up to time rqz except that process i receives no messages at time 
171. and no process receives a message between times nz and 172'. 

THEOREM5.1 ([22]). In anjl run of a system tlzat displays zlrzbourzded mes- 
sage delays. it can rzever be cornrnon Icno\vledge tlzat a rnessage lzas been deliv- 
ered. 

This says that no matter how many messages arrive. we cannot attain 
common knowledge of message delivery. But what does this have to do with 
coordinated attack? The fact that the generals have no initial plans for attack 
means that in the absence of message delivery. they will not attack. Since 
it can never become common knowledge that a message has been delivered, 
and message delivery is a prerequisite for attack. it is not hard to show that 
it can never become common knowledge among the generals that they are 
attacking. More precisely. let attack be a primitive proposition that is true 
precisely at points where both generals attack. 

COROLLARY5.2. Irz arzy rurz of a system that displays unbounded rnessage 
delays. it carz rzever be cornrnorz krzoivledge among tlze generals that they are 
attackirzg: i.e., C (attack) never holds. 

We still do not seem to have dealt with our original problem. What is the 
connection between common knowledge of an attack and coordinated at- 
tack? As the following theorem shows, it is quite deep. Common knowledge 
is a prerequisite for coordination in any system for coordirzated attack, that 
is, in any system that is the set of runs of a protocol for coordinated attack. 

THEOREM5.3 ([22]). Irz arzy systernfor coordinated attack. lvlzerz the generals 
attack, it is cornrnon knoivledge arnong tlze generals that they are attacking. 
Tlzzis. $1is an irzterpreted system for coordi~zated attack, then at every point 
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(r ,  m )  of Z,we have 

(Z, attack ===+C (attack).r, m )  

Putting together Corollary 5.2 and Theorem 5.3, we get the following 
corollary. 

COROLLARY5.4. In any system for coordinated attack tlzat displays un-
bounded message delays, tlze generals never attack. 

This negative result shows the power of the approach as a means of under- 
standing the essence of coordination. There are positive results showing how 
this approach can be used to verify, analyze, and reason about distributed 
protocols. Of course, this brief discussion has only scratched the surface 
of the topic. For more details and further references, the interested reader 
should consult Fagin, Halpern, Moses, and Vardi's book [15]. 

$6. Automated verification of semiconductor designs. The recent growth 
in computer power and connectivity has changed the face of science and 
engineering, and is changing the way business is being conducted. This 
revolution is driven by the unrelenting advances in semiconductor manufac- 
turing technology. Nevertheless, the U. S. semiconductor community faces 
a serious challenge: chip designers are finding it increasingly difficult to keep 
up with the advances in semiconductor manufacturing. As a result, they 
are unable to exploit the enormous capacity that this technology provides. 
The International Technology Roadmap for ~emiconductors~ suggests that 
the semiconductor industry will require productivity gains greater than the 
historical 20% per-year to keep up with the increasing complexity of semi- 
conductor designs. This is referred to as the "design productivity crisis". 
As designs grow more complex, it becomes easier to introduce flaws into 
the design. Thus, designers use various validation techniques to verify the 
correctness of the design. Unfortunately, these techniques themselves grow 
more expensive and difficult with design complexity. As the validation pro- 
cess has begun to consume more than half the project design resources, the 
semiconductor industry has begun to refer to this problem as the "validation 
crisis". 

Formal verfication is a process in which mathematical techniques are used 
to guarantee the correctness of a design with respect to some specified be- 
havior. Algorithmic formal-verification tools, based on model-checking tech- 
nology [6 ,  41, 48, 581 have enjoyed a substantial and growing use over the 
last few years, showing an ability to discover subtle flaws that result from 
extremely improbable events. While until recently these tools were viewed as 
of academic interest only, they are now routinely used in industrial applica- 
tions, resulting in decreased time to market and increased product integrity 
[401. 

'h t tp :  / /publ ic .  i t r s  .ne t / f  iles/l999-SIA_Roadmap/Home.htm. 
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The first step in formal verification is to come up with a formal specijkation 
of the design, consisting of a description of the desired behavior. One of the 
more widely used specification languages for designs is temporal logic [47]. 
In linear temporal logics, time is treated as if each moment in time has a 
unique possible future. Thus, linear temporal formulas are interpreted over 
linear sequences, and we regard them as describing the behavior of a single 
computation of a system. 

In the linear temporal logic LTL, formulas are constructed from a set Prop 
of atomic propositions using the usual Boolean connectives as well as the 
unary temporal connective X ("next"), F ("eventually"), G ("always"), and 
the binary temporal connective U ("until"). For example, the LTL formula 
G (request i F grant), which refers to the atomic propositions request and 
grant, is true in a computation precisely when every state in the computation 
in which request holds is followed by some state in the future in which grant 
holds. The LTL formula G(request i (request Ugmnt)) is true in a com- 
putation precisely if, whenever request holds in a state of the computation, 
it holds until a state in which grant holds is reached. 

LTL is interpreted over computations, which can be viewed as infinite 
sequences of truth assignments to the atomic propositions; i.e., a com- 
putation is a function n :  N i 2Pr0p that assigns truth values to the ele- 
ments of Prop at each time instant (natural number). For a computation 
n and a point i E N,the notation n, i + cp indicates that a formula cp 
holds at the point i of the computation n. For example, n, i /= Xcp 
if and only if n, i + 1 /= c p ,  and and n, i /= cpUy if and only if for 
some j > i ,  we have n, j /= y and for all k ,  i < k < j ,  we have 
n,k + cp. We say that rc satisfies a formula c p ,  denoted n + c p ,  if and 
only if n, 0 + cp. The connectives F and G can be defined in terms 
of the connective U: Fcp is defined as true U p ,  and Gcp is defined as 
7F7cp.  

Designs can be described in a variety of formal description formalisms. 
Regardless of the formalism used, a $finite-state design can be abstractly 
viewed as a labeled transition system, i.e., as a structure of the form M = 

( W Wo,R,  V), where W is the finite set of states that the system can be 
in, Wo c W is the set of initial states of the system, R c W* is a tran- 
sition relation that indicates the allowable state transitions of the system, 
and V : W i 2P"0p assigns truth values to the atomic propositions in each 
state of the system. (A labeled transition system is essentially a Kripke 
structure.) A path in M that starts at u is a possible infinite behavior 
of the system starting at u, i.e., it is an infinite sequence uo, ul, . . . of 
states in W such that uo = u, and ui R ui+l for all i > 0. The se- 
quence V (uo), V (ul) ,  . . . is a computation of M that starts at u. It is 
the sequence of truth assignments visited by the path, The language of 
M, denoted L ( M )  consists of all computations of M that start at a state 
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in W o  Note that L ( M )  can be viewed as a language of infinite words 
over the alphabet 2"0p. L ( M )  can be viewed as an abstract descrip- 
tion of a system, describing all possible "traces". We say that M satis-
j e s  an LTL formula cp if all computations in L ( M )  satisfy cp, that is, if 
L ( M )  Cmodels(cp). 

One of the major approaches to automated verification is the automata-
theoretic approach, which underlies model checkers such as SPIN [26]and 
Cadence SMV.~ The key idea underlying the automata-theoretic approach 
is that, given an LTL formula cp, it is possible to construct a finite-state 
automaton A, on infinite words that accepts precisely all computations that 
satisfy cp [59].The type of finite automata on infinite words we consider is the 
one defined by Biichi [3].A Biichi nutornaton is a tuple A = ( C ,S,S o ,  p, F ) ,  
where C is a finite alphabet, S is a finite set of states, So c S is a set 
of initial states, p :  S 2' +Cx is a nondeterministic transition function, 
and F c S is a set of accepting states. A run of A over an infinite word 
w = ala2. .  . , is a sequence sosl . . . , where so E So and si a i )E P ( S ~ - ~ ,  

for all i > 1. A run so, s l ,  . . . is accepting if there is some accepting 
state that repeats infinitely often, i.e., for some s E F there are infinitely 
many i's such that si = s .  The infinite word w is accepted by A if there 
is an accepting run of A over w .  The language of infinite words accepted 
by A is denoted L ( A ) .  The following fact establishes the correspondence 
between LTL and Biichi automata: Given an LTL formula cp, one can build a 
Biichi automaton A, = (c,S, So,  p, ,F ) ,where C = 2P"0pand I S  < 2°(191), 
such that L(A,) is exactly the set of computations satisfying the formula cp 

1591. 
This correspondence reduces the verification problem to an automata- 

theoretic problem as follows [58]. Suppose that we are given a system M 
and an LTL formula cp. We check whether L ( M )  c models(cp) as follows: 
( 1 )  construct the automaton A,, that corresponds to the negation of the 
formula cp, (2)take the cross product of the system M and the automaton 
A,, to obtain an automaton AM,,, such that L(AM,v)= L ( M )nL(A,,), 
and (3)check whether the language L(AM,,) is nonempty, i.e., whether AM,, 
accepts some input. If it does not, then the design is correct. If it does, then 
the design is incorrect and the accepted input is an incorrect computation. 
The incorrect computation is presented to the user as a finite trace, possibly 
followed by a cycle. Thus, once the automaton A,, is constructed, the verifi- 
cation task is reduced to automata-theoretic problems, namely, intersecting 
automata and testing emptiness of automata, which have highly efficient 
solutions [57].Furthermore, using data structures that enable compact rep- 
resentation of very large state space makes it possible to verify designs of 
significant complexity [4]. 

'h t tp:  //www-cad. eecs .berkeley .edu/" kenrncrnil/smv/ 
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The linear-time framework is not limited to using LTL as a specifica- 
tion language. There are those who prefer to use automata on infinite 
words as a specification formalism [59]; in fact, this is the approach of 
COSPAN [39]. In this approach, we are given a design represented as 
a finite transition system M and a property represented by a Biichi (or 
a related variant) automaton P. The design is correct if all computa- 
tions in L ( M )  are accepted by P, i.e., L ( M )  c L(P) .  This approach 
is called the language-containment approach. To verify M with respect 
to P, we: (1) construct the automaton PCthat compleme~ztsP, (2) take 
the product of the system M and the automaton PCto obtain an au- 
tomaton A M P ,and (3) check that the automaton A M Pis nonempty. As 
before, the design is correct if and only if AM,p is empty. Thus, the ver- 
ification task is again reduced to automata-theoretic problems, namely 
intersecting and complementing automata and testing emptiness of au-
tomata. 

Over the last few years, automated formal verification tools, such as model 
checkers, have shown their ability to provide a thorough analysis of reason- 
ably complex designs [20]. Companies such as AT&T, Cadence, Fujitsu, 
HP, IBM, Intel, Motorola, NEC, SGI, Siemens, and Sun are using model 
checkers increasingly on their own designs to reduce time to market and 
ensure product quality. 

$7. Concluding remarks. It should be made clear that we are not the 
first ones to single out the effectiveness of logic in computer science. In 
fact, already back in 1988 M. Davis wrote an eloquent essay on the In-
fluences of Logic in Computer Science [lo], which begins by stating that 
"When I was a student, even the topologists regarded mathematical logi- 
cians as living in outer space. Today the connections between logic and 
computers are a matter of engineering practice at every level of computer 
organization." Davis proceeds then to examine how certain fundamen- 
tal concepts from logic have found crucial uses in computer science. In 
particular, Davis adresses the connections between Boolean logic and dig- 
ital circuits, discusses the influence of logic on the design of programming 
languages, and comments on the relationship between logic programming 
and automated theorem-proving. More recently, Davis wrote a book ti- 
tled The Universal Computer [ l l ]  in which he presents the fundamental 
connection between logic and computation by tracing the lives and con- 
tributions of Leibniz, Boole, Frege, Cantor, Hilbert, Godel, and Tur- 
ing. 

The effectiveness of logic in computer science is not by any means limited 
to the areas mentioned in here. As a matter of fact, it spans a wide spec- 
trum of areas, from artificial intelligence to software engineering. Overall, 
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logic provides computer science with both a unifying foundational frame- 
work and a powerful tool for modeling and reasoning about aspects of 
computation. Computer science is concerned with phenomena that are usu- 
ally described as "synthetic", because for the most part they are a human 
creation, unlike the phenomena studied in the natural sciences. This dif- 
ference between computer science and the natural sciences can provide an 
explanation as to why the use of logic in computer science is both appro- 
priate and successful. Thus, the effectiveness of logic in computer science 
is perhaps not mysterious or unreasonable, but still quite remarkable and 
unusual. 
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