
On the Unusual Effectiveness of Logic in Computer Science

Joseph Y. Halpern; Robert Harper; Neil Immerman; Phokion G. Kolaitis; Moshe Y. Vardi; Victor
Vianu

The Bulletin of Symbolic Logic, Vol. 7, No. 2. (Jun., 2001), pp. 213-236.

Stable URL:

http://links.jstor.org/sici?sici=1079-8986%28200106%297%3A2%3C213%3AOTUEOL%3E2.0.CO%3B2-7

The Bulletin of Symbolic Logic is currently published by Association for Symbolic Logic.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/asl.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Fri Feb 1 15:40:30 2008

http://links.jstor.org/sici?sici=1079-8986%28200106%297%3A2%3C213%3AOTUEOL%3E2.0.CO%3B2-7
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/asl.html

THE BULLETIN LOGICOF SYRIBOLIC
Volume 7 Number 2. June 2001

ON THE UNUSUAL EFFECTIVENESS OF LOGIC

IN COMPUTER SCIENCE

JOSEPH Y HALPERN, ROBERT HARPER. NEIL IMMERMAN. PHOKION G. KOLAITIS

MOSHE Y VARDI. AND VICTOR VIANU

$1. Introduction and overview. In 1960, E. P. Wigner, a joint winner of the
1963 Nobel Prize for Physics, published a paper titled On the Uizreasoizable
Efectiveness of Mathematics in the Natural Sciences [61]. This paper can
be construed as an examination and affirmation of Galileo's tenet that "The
book of nature is written in the language of mathematics". To this effect,
Wigner presented a large number of examples that demonstrate the effective-
ness of mathematics in accurately describing physical phenomena. Wigner
viewed these examples as illustrations of what he called the empirical law of
epistemologj), which asserts that the mathematical formulation of the laws
of nature is both appropriate and accurate, and that mathematics is actually
the correct language for formulating the laws of nature. At the same time,
Wigner pointed out that the reasons for the success of mathematics in the
natural sciences are not completely understood; in fact, he went as far as
asserting that ". . . the enormous usefulness of mathematics in the natural
sciences is something bordering on the mysterious and there is no rational
explanation for it."

In 1980, R. W. Hamming, winner of the 1968 ACM Turing Award for
Computer Science, published a follow-up article: titled The Unreasonable

Received December 8, 2000; revised January 23, 2001.
This paper summarizes a symposium, by the same title, which was held at the 1999

Meeting of the American Association for the Advancement of Science. The authors wrote
the following: Sections 1 and 7: Kolaitis; Section 2: Immerman; Section 3: Vianu; Section
4: Harper; Section 5: Halpern; and Section 6: Vardi.

Halpern's work partially supported by NSF Grant IRI-96-25901.
Harper's work partially supported by NSF Grant CCR-9502674 and DARPA Contract

F19628-95-C-0050.
Immerman's work partially supported by NSF grant CCR-9877078.
Kolaitis' work partially supported by NSF Grant CCR-9610257.
Vardi's work partially supported by NSF Grants CCR-9700061, CCR-9988322, IIS-

9978135, and CCR-9988322.
Vianu's work partially supported by NSF Grant 11s-9802288.

@ 2001. Association for Syn~bolic Logic
1079-8986/01/0702-0003/$3.40

214 HALPERN. HARPER, IMMERMAN, KOLAITIS, VARDI. AND VIANU

Eflectiveness of Mathematics [23]. In this article: Hamming provided fur-
ther examples manifesting the effectiveness of mathematics in the natural sci-
ences. Moreover, he attempted to answer the "implied question" in Wigner's
article: "Why is mathematics so unreasonably effective?" Although Ham-
ming offered several partial explanations: at the end he concluded that on
balance this question remains "essentially unanswered".

Since the time of the publication of Wigner's article: computer science has
undergone a rapid, wide-ranging: and far-reaching development. Just as
in the natural sciences, mathematics has been highly effective in computer
science. In particular, several areas of mathematics, including linear algebra,
number theory, probability theory, graph theory, and combinatorics, have
been instrumental in the development of computer science. Unlike the
natural sciences, however: computer science has also benefitted from an
extensive and continuous interaction with logic. As a matter of fact, logic
has turned out to be significantly more effective in computer science than it
has been in mathematics. This is quite remarkable, especially since much of
the impetus for the development of logic during the past one hundred years
came from mathematics.

Indeed, let us recall that to a large extent mathematical logic was developed
in an attempt to confront the crisis in the foundations of mathematics that
emerged around the turn of the 20th Century. Between 1900 and 1930, this
development was spearheaded by Hilbert's Program, whose main aim was
to formalize all of mathematics and establish that mathematics is complete
and decidable. Informally, completeness means that all "true" mathemat-
ical statements can be "proved", whereas decidability means that there is
a mechanical rule to determine whether a given mathematical statement is
"true" or "false". Hilbert firmly believed that these ambitious goals could
be achieved. Nonetheless, Hilbert's Program was dealt devastating blows
during the 1930s. Indeed, the standard first-order axioms of arithmetic were
shown to be incomplete by Godel in his celebrated 1931 paper [19]. Further-
more: A. Turing, A. Church, and A. Tarski demonstrated the undecidability
of first-order logic. Specifically: the set of all valid first-order sentences was
shown to be undecidable [5, 541, whereas the set of all first-order sentences
that are true in arithmetic was shown to be highly undecidable [53].

Today, mathematical logic is a mature and highly sophisticated research
area with deep results and a number of applications in certain areas of
mathematics. All in all, however, it is fair to say that the interaction between
logic and mathematics has been rather limited. In particular, mathematical
logic is not perceived as one of the mainstream area of mathematics, and the
"typical" mathematician usually knows little about logic. Along these lines,
R.W. Hamming's judgment [23] is not uncommon, albeit perhaps severe:
". . . we have had an intense study of what is called the foundations of

215 ON THE UNUSUAL EFFECTIVENESS OF LOGIC IN COMPUTER SCIENCE

mathematics. . . . It is an interesting field, but the main results of mathematics
are impervious to what is found there."

In contrast, logic has permeated through computer science during the past
thirty years much more than it has through mathematics during the past one
hundred years. Indeed, at present concepts and methods of logic occupy a
central place in computer science, insomuch that logic has been called "the
calculus of computer science" [43]. Our goal in this article is to illustrate
the effectiveness of logic in computer science by focusing on just a few of the
many areas of computer science on which logic has had a definite and last-
ing impact. Specifically: the connections between logic and computational
complexity will be highlighted in Section 2, the successful use of first-order
logic as a database query language will be illustrated in Section 3: the in-
fluence of type theory in programming language research will be addressed
in Section 4, the deployment of epistemic logic to reason about knowledge
in multi-agent systems will be covered in Section 5, and the connections
between logic and automated design verification will be presented in Section
6.

32. Descriptive Complexity. A fundamental issue in theoretical computer
science is the computational complexity of problems. How much time and
how much memory space is needed to solve a particular problem?

Let DTIME[t (n)] be the set of problems that can be solved by algorithms
that perform at most O(t(n)) steps for inputs of size n. The complexity class
Polynomial Time (P) is the set of problems that are solvable in time at most
some polynomial in n. Formally, P = U ~ + T I M E [~ ~] .

Some important computational problems appear to require more than
polynomial time. An interesting class of such problems is contained in
nondeterministic polynomial time (NP). A nondeterministic computation is
one that may make arbitrary choices as it works. If any of these choices lead
to an accept state, then we say the input is accepted.

The three-colorability problem-testing whether an undirected graph can
have its vertices colored with three colors so that no two adjacent vertices
have the same color-as well as hundreds of other well-known combinato-
rial problems are NP-complete. (See [17] for a survey of many of these.)
This means that not only are they in NP, but they are the "hardest prob-
lems" in NP: all problems in NP are reducible (in polynomial time) to each
NP-complete problem. At present; the fastest known algorithm for any
of these problems is exponential. An efficient algorithm for any one of
these problems would translate to an efficient algorithm for all of them.
The P NP question, which asks whether P and NP coincide, is an ex-
ample of our inability to determine what can or cannot be computed in
a certain amount of computational resource: time, space, parallel time,
etc.

216 HALPERN. HARPER. IMMERMAN. KOLAITIS. VARDI. AND VIANU

Complexity theory typically considers yes/no problems. This is the exam-
ination of the difficulty of computing a particular bit of the desired output.
Yes/no problems are properties of the input. The set of all inputs to which
the answer is "yes" have the property in question. Rather than asking the
complexity of checking if a certain input has a property T : in Descriptive
Complexity we ask how hard is it to express the property T in some logic.
It is plausible that properties that are harder to check might be harder to
express. What is surprising is how closely logic mimics computation: de-
scriptive complexity exactly captures the important complexity classes.

In Descriptive Complexity we view inputs as finite logical structures, e.g.,
a graph is a logical structure AG = ({1,2, . . . whose universe is the , n), E ~)
set of vertices and E~ is the binary edge relation.

PROVISO.We will assume unless otherwise stated that a total ordering
relation on the universe (5)is available.

In first-order logic we can express simple properties of our input structures.
For example the following says that there are exactly two edges leaving every
vertex.

In second-order logic we also have variables Xi that range over relations
over the universe. These variables may be quantified. A second-order
existential formula (S03) begins with second order existential quantifiers
and is followed by a first-order formula. As an example, the following
second-order existential sentence says that the graph in question is three-
colorable. It does this by asserting that there are three unary relations, Red
(R), Yellow (Y) , and Blue (B), defined on the universe of vertices. It goes
on to say that every vertex has some color and no two adjacent vertices have
the same color.

Descriptive Complexity began with the following theorem of R. Fagin.
Observe that Fagin's Theorem characterizes the complexity class NP purely
by logic, with no mention of machines or time:

THEOREM2.1 ([14]). A set of structures T is iiz NP ifaizd only if there exists
a second-order existeiztial formula, 0such that T = { A I A /= 0). Formally,
NP = S03.

Define CRAM[t (n)] to be the set of properties checkable by concurrent-
read, concurrent-write, parallel random-access machines using polynomially
many processors in parallel time O(t (72)). FO: the set of first-order express-
ible properties, exactly captures the complexity class CRAM[l], i.e., constant

ON THE UNUSUAL EFFECTIVENESS OF LOGIC IN COMPUTER SCIENCE 217

parallel time. It is possible to increase the power of FO by allowing longer
descriptions for longer inputs. Let FO[t (n)] be those properties describable
by a block of restricted quantifiers that may be iterated t (iz) times for inputs
of size n.

THEOREM or all constructible1 t (n), FO[t (n)] CRAM[t (n)]. 2.2 ([32]). =

Thus, parallel time corresponds exactly to first-order iteration: i.e., quantifier-
depth. Rather than iterating blocks of quantifiers, a natural way to increase
the power of first-order logic is by allowing inductive definitions. This is
formalized via a least-$xed-point operator (LFP) .

As an example, the reflexive, transitive closure E* of the edge relation E
can be defined via the following inductive definition,

E*(x, y) z x = y V E(x: y) V (3z)(E*(x:z) A E*(z; y)) .

Equivalently, this can be expressed using the least-fixed-point operator,

E*(x, y) E LFPR,s,y(X y V E(x , y) V (~ z) (R (x ,= Z) A R(z. y)) .

It is exciting that the natural descriptive class FO(LFP)-first-order logic
extended with the power to define new relations by induction-precisely
captures polynomial time.

THEOREM2.3 ([29, 30, 561). A problem is in polyizomial time ifand only if
it is describable in jirst-order logic with the addition of the least-fixed-point
operator. This is equivalent to being expressible by ajirst-orderfornzula iterated
polynomially many times. Formally, P = FO(LFP) = F O [~ Z ~ (')] .

Theorems 2.1 and 2.3 cast the P A NP question in a different light. (In the
following we are using the fact that if P were equal to NP, then NP would be
closed under complementation. It would then follow that every second-order
formula would be equivalent to a second-order existential one.)

COROLLARY2.4. P is equal to NP ifand only ifevery secoizd-order expressible
property overjiizite, ordered structures is already expressible injirst-order logic
usiizg inductive dejinitioizs. In symbols, (P = NP) FO(LFP) = SO.

The following theorem considers the arbitrary iteration of first-order for-
mulas, which is the same as iterating them exponentially, and is more general
than monotone iteration of first-order formulas. Such iteration defines the
partial-fixed-point operator. The theorem shows that this allows the de-
scription of exactly all properties computable using a polynomial amount of
space.

THEOREM2.5 ([28, 29, 561). A problem is in polynomial space if aizd only
if it is describable in first logic with the addition of the partial-jixed-point

'"~onstructible" means that the function n H t (n) can be computed in space t (n) . All
but very bizarre functions are constructible. Another proviso of this theorem is that for
t (n) < logn, the first-order formulas may have access not only to ordering but to the
addition and multiplication relations on the n-element universe.

218 HALPERN. HARPER IMMERMAN KOLAITIS VARDI. AND VIANU

operator. This is eqz~ivaleizt to being expressible bj) a$rst-order formula iterated
exponentially. Fonnally, PSPACE = FO(PFP) = ~ 0 [2 " ~ ("] .

A refinement of Theorem 2.5 shows that the precise amount of space used
can be characterized via the number of distinct variables in the relevant first-
order formula: i.e., the number of descriptive variables captures space, for
k = 1,2, . . . : DSPACE[~"]= VAR[k + 11, [33].

Combinatorial games due to Ehrenfeucht and Fraisse have been used to
prove many inexpressibility results. These bounds provide usef~ll insights
but they do not separate relevant complexity classes because they are proved
without the ordering relation [13, 16,351. No such lower bounds were known
for separating the classes corresponding to P and PSPACE. Abiteboul and
Vianu showed why, thus proving another fundamental relationship between
logic and complexity. In the following, FO (wo<) means first-order logic
without a given ordering relation.

THEOREM2.6 ([2]). The follo,viizg conditioizs are equivaleizt:
1. FO (wo<) (LFP) = FO (wo<) (PFP) .
2. FO(LFP) = FO(PFP).
3. P = PSPACE.
Descriptive complexity reveals a simple but elegant view of computation.

Natural complexity classes and measures such as polynomial time, nondeter-
ministic polynomial time, parallel time: and space have natural descriptive
characterizations. Thus, logic has been an effective tool for answering some
of the basic questions in complexity.'

§3. Logic as a database query language. The database area is an impor-
tant area of computer science concerned with storing, querying and updating
large amounts of data. Logic and databases have been intimately connected
since the birth of database systems in the early 1970s. Their relationship
is an unqualified success story. Indeed, first-order logic (FO) lies at the
core of modern database systems, and the standard query languages such as
Structured Query Language (SQL) and Query-By-Examnple (QBE) are syn-
tactic variants of FO. More powerful query languages are based on exten-
sions of FO with recursion, and are reminiscent of the well-known fixpoint
queries studied in finite-model theory (see Section 2). The impact of logic
on databases is one of the most striking examples of the effectiveness of logic
in computer science.

This section discusses the question of why FO has turned out to be so
successful as a query language. We will focus on three main reasons:

a FO has syntactic variants that are easy to use. These are used as basic
building blocks in practical languages like SQL and QBE.

2 ~ h i ssection is based in part on the article [34]. See also the books [12. 351 for much more
information about descriptive complexity.

ON THE UNUSUAL EFFECTIVENESS OF LOGIC IN COMPUTER SCIENCE 219

FO can be efficiently implemented using relational algebra, which pro-
vides a set of simple operations on relations expressing all FO queries.
Relational algebra as used in the context of databases was introduced
by Ted Codd in [7]. It is related to Tarski's Cylindric Algebras [24].
The algebra turns out to yield a crucial advantage when large amounts
of data are concerned. Indeed, the realization by Codd that the algebra
can be used to efficiently implement FO queries gave the initial impetus
to the birth of relational database systems.3
FO queries have the potential for "perfect scaling" to large databases. If
massive parallelism is available,FO queries can inprinciple be evaluated
in constant time;independent of the database size.

A relational database can be viewed as a finite relational structure. Its
signature is much like a relational FO signature, with the minor difference
that relations and their coordinates have names. The name of a coordinate is
called an attribute, and the set of attributes of a relation R is denoted att(R).
For example, a "beer drinker's" database might consist of the following
relations:

Molly's King's
Sue Molly 's Molly's Bass

The main use of a database is to query its data, e.g., find the drinkers who
frequent only bars serving Bass. It turns out that each query expressible
in FO can be broken down into a sequence of simple subqueries. Each
subquery produces an intermediate result: that may be used by subsequent
subqueries. A subquery is of the form:

where L, is a literal P(j7) or lP(y'),P is in the input or is on the left-hand
side of a previous subquery in the sequence. and R is not in the input and
does not occur previously in the sequence. The meaning of such a subquery
is to assign to R the result of the FO query 3.2 (L1A . . . A LI,) on the
structure resulting from the evaluation of the previous subqueries in the
sequence. The subqueries provide appealing building blocks for FO queries.
This is illustrated by the language QBE, in which a query is formulated
as just described. For example, consider the following query on the "beer
drinker's" database:

Find the drinkers whofrequent some bar serving Bass.

3 ~ o d dreceived the ACM Turing Award for his work leading to the development of
relational systems.

220 HALPERN. HARPER, IMMERMAN. KOLAITIS VARDI AND VIANU

This can be expressed by a single query of the above form:

(t) answer := 3b vrequerzts(d, b) A serves(d; Bass)).

In QBE, the query is formulated in a visually appealing way as follows:

answer :inker + frequents drinker bar serves bar beerBass1 1 1

Similar building blocks are used in SQL, the standard query language for
relational database systems.

Let us consider again the query (t) . The naive implementation would
have us check, for each drinker d and bar b, whether frequents(d. b) A
serves(d. Bass) holds. The number of checks is then the product of the
number of drinkers and the number of bars in the database, which can be
roughly n2 in the size of the database. This turns out to be infeasible for
very large databases. A better approach, and the one used in practice, makes
use of relational algebra. Before discussing how this works, we informally
review the algebra's operators. There are two set operators, U (union) and
- (difference). The selection operator, denoted oCond(R) extracts from R the
tuples satisfying a condition cond involving (in)equalities of attribute values
and constants. For example, ob,e,.=~c,,s(serves) produces the tuples in serves
for which the beer is Bass. The projection operator, denoted nx(R); projects
the tuples of relation R on a subset X of its attributes. The join operator.
denoted by R M Q, consists of all tuples t over att(R) U att(Q) such that
n,tt(R) (t) E R and n a t t (~) (t) E Q. A last unary operator allows to rename an
attribute of a relation without changing its contents.

Expressions constructed using relational algebra operators are called re-
lational algebra queries. The query (1)is expressed using relational algebra
as follows:

($1 nd,.inker(obeer=Bc,ssvrequerzts w serves)).

A result of crucial importance is that FO and relational algebra express
precisely the same queries.

The key to the efficient implementation of relational algebra queries is
twofold. First. individual algebra operations can be efficiently implemented
using data structures called indexes, providing fast access to data. A simple
example of such a structure is a binary search tree. which allows locating
the tuples with a given attribute value in time log(n), where n is the number
of tuples. Second, algebra queries can be simplified using a set of rewriting
rules. The query ($) above can be rewritten to the equivalent but more
efficient form:

The use of indexes and rewriting rules allows to evaluate the above query
at cost roughly n log(n) in the size of the database, which is much better

ON THE UNUSUAL EFFECTIVENESS OF LOGIC IN COMPUTER SCIENCE 221

than rz2. Indeed. for large databases this can make the difference between
infeasibility and feasibility.

The FO queries turn out to be extremely well-behaved with respect to
scaling. Given sufficient resources. response time can in prirzciyle be kept
constant as the database becomes larger. The key to this remarkable property
is parallel processing. Admittedly, a lot of processors are needed to achieve
this ideal behaviour: polynomial in the size of the database. This is unlikely
to be feasible in practice any time soon. The key point. however. is that FO
query evaluation admits linear scaling; the speed-up is proportional to the
number of parallel processors used.

Once again. relational algebra plays a crucial role in the parallel imple-
mentation of FO. Indeed, the algebra operations are set oriented, and thus
highlight the intrinsic parallelism in FO queries. For example. consider the
projection n x (R) . The key observation is that one can project the tuples
in R independently of each other. Given one processor for each tuple in
R, the projection can be computed in constant time, independent of the
number of tuples. As a second example. consider the join R M Q. This can
be computed by joining all pairs of tuples from R and Q. independently of
each other. Thus. if one processor is available for each pair, the join can be
computed in constant time, independent on the number of tuples in R and
(2.

Since each algebra operation can be evaluated in constant parallel time,
each algebra query can also be evaluated in constant time. The constant
depends only on the query and is independent of the size of the database. Of
course, more and more processors are needed as the database grows.

In practice. the massive parallelism required to achieve perfect scaling
is not available. Nevertheless, there are algorithms that can take optimal
advantage of a given set of processors. It is also worth noting that the
processors implementing the algebra need not be powerful. as they are only
required to perform very specific, simple operations on tuples. In fact. it is
sufficient to have processors that can implement the basic Boolean circuit
operations. This fact is formalized by a result due to Immerman [31] stating
that FO is included in A C ~ ,the class of problems solvable by circuits of
constant depth and polynomial size, with unbounded fan-in.

In conclusion, logic has proven to be a spectacularly effective tool in the
database area. FO provides the basis for the standard query languages.
because of its ease of use and efficient implementation via relational algebra.
FO can achieve linear scaling, given parallel processing resources. Thus, its
full potential as a query language remains yet to be realized.

A good introduction to the database area may be found in [51]. while [55]
provides a more in-depth presentation. The first text on database theory is
[42], followed more recently by [I]. The latter text also described database
query languages beyond FO, including fixpoint logics. An excellent survey

222 HALPERN. HARPER. IMMERMAN. KOLAITIS. VARDI, AND VIANU

of relational database theory is provided in [37]. The relationship between
finite-model theory and databases is discussed in [60].

54. Type theory in programming language research. In the 1980s and 1990s
the study of programming languages was revolutionized by a remarkable con-
fluence of ideas froin mathematical and philosophical logic and theoretical
computer science. Type theory emerged as a unifying conceptual framework
for the design, analysis, and implementation of programming languages.
Type theory helps to clarify subtle concepts such as data abstraction, poly-
morphism, and inheritance. It provides a foundation for developing logics
of program behavior that are essential for reasoning about programs. It sug-
gests new techniques for implementing compilers that improve the efficiency
and integrity of generated code.

Type theory is the study of type systems. Reynolds defines a type system
to be a "syntactic discipline for enforcing levels of abstraction" [49]. A
type system is a form of context-sensitive grammar that imposes restrictions
on the formation of programs to ensure that a large class of errors, those
that arise from misinterpretation of values, cannot occur. Examples of
such errors are: applying a function on the integers to a boolean argument;
treating an integer as a pointer to a data structure or a region of executable
code: over-writing a program's memory without regard to its purpose or
validity: violating the assumptions of a procedure by calling it with too few
arguments or arguments of the wrong type.

A type system is typically defined by an inductive definition of a typing
judgement of the form I- t- e : z. Here e is an expression. z is its type, and
r assigns types to the global variables that may occur within e . The typing
judgement is defined to be the least three-place relation closed under a given
collection of typing rules that determine whether or not an expression is
well-typed.

The abstract syntax of an illustrative fragment of the ML language is
given in Figure 1. Its type system is given in Figure 2. Note that the lan-
guage constructs are grouped according to their type. Each type comes with
expressions to denote its values together with operations for manipulating
those values in a computation.

The rules governing the function type constructor exhibit an intrigu-
ing similarity to the introduction and elimination rules for implication in
Gentzen's system of natural deduction. This similarity is not acciden-
tal: according to the propositions-as-types princiyle [8, 9 , 271 there is an
isomorphism between propositions and types with the property that the
natural deduction proofs of a proposition correspond to the elements of
its associated type. This principle extends to the full range of logical
connectives and quantifiers, including those of second- and higher-order
logic.

223 ON THE UNUSUAL EFFECTIVENESS OF LOGIC IN COMPUTER SCIENCE

Types z ::= i n t (boo1 I zl + z2
Expressions e ::= x n (el oe2 1 t r u e f a l s e 1 el = e2 1

i fe t h e n el e l s e e2 I f u n f (x :z l) :7 2 i s e I el (e 2)
Values v ::= x(nItrueIfalseIfunf(x:zl):z2ise

Tlze operator o ranges over tlze arithmetic operations +. -. and
X .

The variable n ranges over numerals for the natural numbers.
The variables f and x are bound in tlze expression

f u n f (x : z l) : z 2 i s e .

FIGURE1. Abstract Syntax of MinML

r t- el : i n t I- F e2 : i n t
T t- n : i n t r t- el o e2 : i n t

I- I- t r u e : boo1 t f a l s e : boo1

r t el : i n t r t e2 : i n t r t e : b o o l r t e l : z r k e 2 : z
r t- el = e2 : boo1 r t- i fe t h e n e l e l s e e 2 : z

FIGURE2. Type System of MinML

An operational semantics defines how to execute programs. It is useful
to define the operational semantics of a language as a transition relation
between states of an abstract machine, with certain states designated as fi-
nal states. For the illustrative language of Figure 2 the states of the abstract
machine are closed expressions; the final states are the fully-evaluated expres-
sions. The transition relation is given in Figure 3 using Plotkin's technique
of structured operational semarztics [46]. These rules constitute an inductive
definition of the call-by-value evaluation strategy. in which function argu-
ments are evaluated prior to application. and for which function expressions
are fully evaluated.

One role of a type system is to preclude execution errors arising from
misinterpretation of values.

THEOREM4.1 (Type Soundness). If t e : z , tlzen either e is fully evaluated
or there exists el such that t- el : z and e t,el.

224 HALPERN HARPER. IMMERMAN, KOLAITIS. VARDI. AND VIANU

el el, e2 t,eit,

t r u e i f n l = n 2
el = ez H ei = e2 vl = e2 H v1 = e; 121 = n2 H

f a l s e if n l # rz2

el ++ ell e2 ++ e i (v = f u n f (x : z l) : z 2 i s e)

el (e2) ++ ell (e2) vl (e z) ++ vl (e i) v (v l) t,[v , v l l f ; x] e

The notation [v. v l / f , x] e stands for the result of szlbstitutiorz v
for jkee occzlrrelzces of f and vl for p e e occurrences of x irz the
expression e .

FIGURE3. Operational Semantics of MinML

A type error is an expression e such that e is not a value, yet there is no el
such that e ++ el. In practice type errors correspond to illegal instructions or
memory faults; the type soundness theorem ensures that well-typed programs
never incur such errors.

The structure of more realistic programming languages can be described
using very similar techniques. According to the type-theoretic viewpoint
programming language "features" correspond to types. The following chart
summarizes some of the main correspondences:

Corzcept Type Values Operations
booleans boo1 true; false conditional
integers i n t integer numerals integer arithmetic
floating point f l o a t f. p. numerals f. p. arithmetic
tuples 71 x 7 2 ordered pairs component projection
disjoint union 71 + 7 2 tagged values case analysis
procedures 71 + 7 2 procedure definition procedure call
recursive types pt.7 heap pointers traversal
polymorphism vt.7 templates, generics instantiation
data abstraction 3t.7 packages, modules opening a package
mutable storage t r e f storage cells update. retrieve
tagging tagged values dynamic dispatch

Organizing programming languages by their type structure has a number
of benefits. We mention a few salient ones here. First. language concepts
are presented modularly. avoiding confusion or conflation of distinct con-
cepts. Traditional concepts such as "call-by-reference" parameter passing
emerge instead as functions that take values of reference type. Second, type
structure can be exploited to reason about program behavior. For example.
the technique of logical relations. which interprets types as relations between

225 ON THE UNUSUAL EFFECTIVENESS OF LOGIC IN COMPUTER SCIENCE

values, may be used to characterize interchangeability of program fragments.
Third, it becomes possible (as outlined above) to give a precise statement and
proof of safety properties of a programming language. Moreover. the type
annotations on programs form a certificate of safety that can be checked
prior to execution of the program. Fourth. types may be exploited by a
compiler to improve run-time efficiency and to provide a "self-check" on the
integrity of the compiler itself [52].

$5. Reasoning about knowledge. The formal study of epistemic logic was
initiated in the 1950s and led to Hintikka's seminal book Knowledge and Be-
lief [25]. The 1960s saw a flourishing of interest in the area in the philosophy
community. More recently, reasoning about knowledge has been shown to
play a key role in such diverse fields as distributed computing, game theory,
and AI. The key concern is the connection between knowledge and action.
What does a robot need to know in order to open a safe? What do processes
need to know about other processes in order to coordinate an action? What
do agents need to know about other agents to carry on a conversation? The
formal model used by the philosophers provides the basis for an appropriate
analysis of these questions.

We briefly review the model here, just to show how it can be used. The
syntax is straightforward. We start with a set <D of primitive propositions.
where a primitive proposition p E <D represents a basic fact of interest
like "it is raining in Spain", and a set {I. n) of agents. We then close
off under conjunction and negation, as in propositional logic. and modal
operators K 1 , K,, E , and C ; where K i p is read "agent i knows p".
E p is read "everyone knows p" and C p is read " p is common knowledge.
Thus, a statement such as K 1 K2p A 1 K 2 K 1 K2p says "agent 1 knows agent
2 knows p, but agent 2 does not know that 1 knows that 2 knows p". More
colloquially: " I know that you know it. but you don't know that I know that
you know it."

The semantics for this logic, like that of other modal logics, is based on
possible worlds. The idea is that, given her current information, an agent
may not be able to tell which of a number of possible worlds describes the
actual state of affairs. We say that the agent krzovvs a fact p if p is true in all
the worlds she considers possible. We formalize this intuition using Kriyke
structures. A Kriyke structure4 M for n agents is a tuple (K K l , . . . ,K,; n) ,
where W is a set of possible worlds, Ki is a binary relation on W-that is,
a set of pairs (w, w') E W x W, and 71 associates with each world a truth
assignment to the primitive propositions (that is, n (w) (p)E {true, false)

"ripke structures are named after Saul Kripke. who introduced them in their current
form in [38]. although the idea of possible worlds was in the air in the philosophy community
in the 1950s.

226 HALPERN, HARPER. IMMERMAN, KOLAITIS, VARDI. AND VIANU

for each primitive proposition p E @ and world w E W). Intuitively,
(v,w) E K; if. in world v, agent i considers world w possible.

We can define (M,w) + p; read "p is true in world w in structure M"; by
induction on the structure of formulas:

(M. w) 1= y (for a ~rimitiveproposition p E @) if and only if n(w) (y) =

true.
(M,w) k p ~ p ' i f a n d o n l y i f(M,w) + p and (M,w) + y t .
(M,w) k l i p ifandonlyif (M w) cp.
(M w) k K i p if and only if (M wt) + p for all (w,wt) E K;.
(Mw) 1= E p if and only if (M,w) + K;p for i = 1, n.
(Mw) + Cp if and only if (M.w) k E k p fork = 1, 2, 3. where
E k is defined inductively by taking E'p := E p and Ek+ 'p := E E " ~ .

Note how the semantics of K i p captures the intuition that agent i knows p
exactly if p is true at all the worlds he considers possible. Clearly E p is true
if and only if Kip is true for each agent i. Finally, Cp is true if and only if
everyone knows p . everyone knows that everyone knows, and so on.

What is the appropriate structure for analyzing a complicated multi-agent
system? It turns out that a natural model for multi-agent systems can
be viewed as a Kripke structure. (The phrase "system" is intended to be
interpreted rather loosely here. Players in a poker game, agents conducting
a bargaining session, robots interacting to clean a house. and processes in a
computing system can all be viewed as multi-agent systems.) Assume that; at
all times, each of the agents in the system can be viewed as being in some local
state. Intuitively, the local state encapsulates all the relevant information to
which the agent has access. In addition, there is an environment, whose state
encodes relevant aspects of the system that are not part of the agents' local
states. For example, if we are modeling a robot that navigates in some office
building. we might encode the robot's sensor input as part of the robot's
local state. If the robot is uncertain about its position. we would encode this
position in the environment state. A global state of a system with rz agents
is an (rz + 1)-tuple of the form (s,; s l ,s,). where s, is the state of the
environment and s; is the local state of agent i.

A systein is not a static entity; it changes over tiine. A rurz is a complete
description of what happens over tiine in one possible execution of the
system. For definiteness, we take tiine to range over the natural numbers.
Thus. formally, a run is a function from the natural numbers to global states.
Given a run r , r(0) describes the initial global state of the systein in r; r(1)
describes the next global state, and so on. We refer to a pair (r,m) consisting
of a run r and tiine In as a point. If r(m) = (s,; s l , . . . ;s,), we define
ri(m) = si, i = 1, . . . ; rz: thus, ri (m) is agent i's local state at the point
(r:4.

The points in a system can be viewed as the states in a Kripke structure.
Moreover. we can define a natural relation K;: agent i thinks (r t ,172') is

227 ON THE UNUSUAL EFFECTIVENESS OF LOGIC IN COMPUTER SCIENCE

possible at (r , m) if r i (m) = r i (nz f) ;that is, the agent has the same local
state at both points. Intuitively. the local state encodes whatever the agent
remembers about the run. An interpreted system Zconsists of a pair (R ,n).
where R is a system and n associates with each point in R a truth assignment
to the primitive propositions in some appropriately chosen set @ of primitive
propositions. We can now define truth of episteinic formulas at a point in
an interpreted system just as we did for a Kripke structure. That is. an
interpreted system Z can be viewed as a set of possible worlds, with the
points acting as the world^.^ In particular, we have

(Z , r, MZ) + Kipif (Z , r', m') + cp for all (r ' ,m') such that r j (~ 1)= r i (m f) .

As an example of how this framework can be used in analyzing distributed
protocols; consider the coordinated attack problem, from the distributed
systems folklore [21]. It abstracts a problem of data recovery management
that arises when using standard protocols in database management called
commit protocols. The following presentation is taken from [22]:

Two divisions of an army are camped on two hilltops overlooking
a common valley. In the valley awaits the eneiny. It is clear that
if both divisions attack the enemy simultaneously they will win
the battle. whereas if only one division attacks it will be defeated.
The generals do not initially have plans for launching an attack
on the eneiny. and the commanding general of the first division
wishes to coordinate a simultaneous attack (at some time the next
day). Neither general will decide to attack unless he is sure that the
other will attack with him. The generals can communicate only by
means of a messenger. Normally. it takes the messenger one hour
to get from one encampment to the other. However. it is possible
that he will get lost in the dark or; worse yet, be captured by
the enemy. Fortunately, on this particular night, everything goes
smoothly. How long will it take them to coordinate an attack?

Suppose the messenger sent by General A makes it to General B with a
message saying "Let's attack at dawn". Will General B attack? Of course
not, since General A does not know that B got the message. and thus may not
attack. So General B sends the messenger back with an acknowledgment.
Suppose the messenger makes it. Will General A attack? No. because now
General B does not know that General A got the message, so General B
thinks General A may think that B didn't get the original message, and thus
not attack. So A sends the messenger back with an acknowledgment. But
of course, this is not enough either.

5 ~ nan interpreted system we can also deal with temporal formulas, which talk about what
happens at some point in the future, although that is unnecessary for the issues discussed in
this section. See Section 6 for more discussion of temporal logic.

228 HALPERN. HARPER. IMMERMAN. KOLAITIS. VARDI. AND VIANU

In terms of knowledge, each time the messenger makes a transit, the depth
of the generals' knowledge increases by one. Suppose that the primitive
proposition m stands for "A message saying 'Attack at dawn' was sent by
General A." When General B gets the message. KRrn holds. When A gets
B's acknowledgment, K A K B m holds. The next acknowledgment brings us
to K B K A K B m . Although more acknowledgments keep increasing the depth
of knowledge. it is not hard to show that by following this protocol. the
generals never attain common knowledge that the attack is to be held at
dawn.

What happens if the generals use a different protocol? That does not help
either. As long as there is a possibility that the messenger may get captured
or lost, then common knowledge is not attained. even if the messenger
in fact does deliver his messages. It would take us too far afield here to
completely formalize these results (see [22] for details), but we can give a
rough description. We say a systern 72 displaj~s unbozirzded message delays if,
roughly speaking, whenever there is a run r E R such that process i receives
a message at time 172 in r . then for all m' > m. there is another run r' that is
identical to r up to time rqz except that process i receives no messages at time
171. and no process receives a message between times nz and 172'.

THEOREM5.1 ([22]). In anjl run of a system tlzat displays zlrzbourzded mes-
sage delays. it can rzever be cornrnon Icno\vledge tlzat a rnessage lzas been deliv-
ered.

This says that no matter how many messages arrive. we cannot attain
common knowledge of message delivery. But what does this have to do with
coordinated attack? The fact that the generals have no initial plans for attack
means that in the absence of message delivery. they will not attack. Since
it can never become common knowledge that a message has been delivered,
and message delivery is a prerequisite for attack. it is not hard to show that
it can never become common knowledge among the generals that they are
attacking. More precisely. let attack be a primitive proposition that is true
precisely at points where both generals attack.

COROLLARY5.2. Irz arzy rurz of a system that displays unbounded rnessage
delays. it carz rzever be cornrnorz krzoivledge among tlze generals that they are
attackirzg: i.e., C (attack) never holds.

We still do not seem to have dealt with our original problem. What is the
connection between common knowledge of an attack and coordinated at-
tack? As the following theorem shows, it is quite deep. Common knowledge
is a prerequisite for coordination in any system for coordirzated attack, that
is, in any system that is the set of runs of a protocol for coordinated attack.

THEOREM5.3 ([22]). Irz arzy systernfor coordinated attack. lvlzerz the generals
attack, it is cornrnon knoivledge arnong tlze generals that they are attacking.
Tlzzis. $1is an irzterpreted system for coordi~zated attack, then at every point

229 ON THE UNUSUAL EFFECTIVENESS OF LOGIC IN COMPUTER SCIENCE

(r , m) of Z,we have

(Z, attack ===+C (attack).r, m)

Putting together Corollary 5.2 and Theorem 5.3, we get the following
corollary.

COROLLARY5.4. In any system for coordinated attack tlzat displays un-
bounded message delays, tlze generals never attack.

This negative result shows the power of the approach as a means of under-
standing the essence of coordination. There are positive results showing how
this approach can be used to verify, analyze, and reason about distributed
protocols. Of course, this brief discussion has only scratched the surface
of the topic. For more details and further references, the interested reader
should consult Fagin, Halpern, Moses, and Vardi's book [15].

$6. Automated verification of semiconductor designs. The recent growth
in computer power and connectivity has changed the face of science and
engineering, and is changing the way business is being conducted. This
revolution is driven by the unrelenting advances in semiconductor manufac-
turing technology. Nevertheless, the U. S. semiconductor community faces
a serious challenge: chip designers are finding it increasingly difficult to keep
up with the advances in semiconductor manufacturing. As a result, they
are unable to exploit the enormous capacity that this technology provides.
The International Technology Roadmap for ~emiconductors~ suggests that
the semiconductor industry will require productivity gains greater than the
historical 20% per-year to keep up with the increasing complexity of semi-
conductor designs. This is referred to as the "design productivity crisis".
As designs grow more complex, it becomes easier to introduce flaws into
the design. Thus, designers use various validation techniques to verify the
correctness of the design. Unfortunately, these techniques themselves grow
more expensive and difficult with design complexity. As the validation pro-
cess has begun to consume more than half the project design resources, the
semiconductor industry has begun to refer to this problem as the "validation
crisis".

Formal verfication is a process in which mathematical techniques are used
to guarantee the correctness of a design with respect to some specified be-
havior. Algorithmic formal-verification tools, based on model-checking tech-
nology [6 , 41, 48, 581 have enjoyed a substantial and growing use over the
last few years, showing an ability to discover subtle flaws that result from
extremely improbable events. While until recently these tools were viewed as
of academic interest only, they are now routinely used in industrial applica-
tions, resulting in decreased time to market and increased product integrity
[401.

'h t tp : / /publ ic . i t r s .ne t / f iles/l999-SIA_Roadmap/Home.htm.

230 HALPERN. HARPER, IMMERMAN, KOLAITIS, VARDI. AND VIANU

The first step in formal verification is to come up with a formal specijkation
of the design, consisting of a description of the desired behavior. One of the
more widely used specification languages for designs is temporal logic [47].
In linear temporal logics, time is treated as if each moment in time has a
unique possible future. Thus, linear temporal formulas are interpreted over
linear sequences, and we regard them as describing the behavior of a single
computation of a system.

In the linear temporal logic LTL, formulas are constructed from a set Prop
of atomic propositions using the usual Boolean connectives as well as the
unary temporal connective X ("next"), F ("eventually"), G ("always"), and
the binary temporal connective U ("until"). For example, the LTL formula
G (request i F grant), which refers to the atomic propositions request and
grant, is true in a computation precisely when every state in the computation
in which request holds is followed by some state in the future in which grant
holds. The LTL formula G(request i (request Ugmnt)) is true in a com-
putation precisely if, whenever request holds in a state of the computation,
it holds until a state in which grant holds is reached.

LTL is interpreted over computations, which can be viewed as infinite
sequences of truth assignments to the atomic propositions; i.e., a com-
putation is a function n : N i 2Pr0p that assigns truth values to the ele-
ments of Prop at each time instant (natural number). For a computation
n and a point i E N,the notation n, i + cp indicates that a formula cp
holds at the point i of the computation n. For example, n, i /= Xcp
if and only if n, i + 1 /= c p , and and n, i /= cpUy if and only if for
some j > i , we have n, j /= y and for all k , i < k < j , we have
n,k + cp. We say that rc satisfies a formula c p , denoted n + c p , if and
only if n, 0 + cp. The connectives F and G can be defined in terms
of the connective U: Fcp is defined as true U p , and Gcp is defined as
7F7cp.

Designs can be described in a variety of formal description formalisms.
Regardless of the formalism used, a $finite-state design can be abstractly
viewed as a labeled transition system, i.e., as a structure of the form M =

(W Wo,R, V), where W is the finite set of states that the system can be
in, Wo c W is the set of initial states of the system, R c W* is a tran-
sition relation that indicates the allowable state transitions of the system,
and V : W i 2P"0p assigns truth values to the atomic propositions in each
state of the system. (A labeled transition system is essentially a Kripke
structure.) A path in M that starts at u is a possible infinite behavior
of the system starting at u, i.e., it is an infinite sequence uo, ul, . . . of
states in W such that uo = u, and ui R ui+l for all i > 0. The se-
quence V (uo), V (ul) , . . . is a computation of M that starts at u. It is
the sequence of truth assignments visited by the path, The language of
M, denoted L (M) consists of all computations of M that start at a state

ON THE UNUSUAL EFFECTIVENESS OF LOGIC IN COMPUTER SCIENCE 23 1

in W o Note that L (M) can be viewed as a language of infinite words
over the alphabet 2"0p. L (M) can be viewed as an abstract descrip-
tion of a system, describing all possible "traces". We say that M satis-
j e s an LTL formula cp if all computations in L (M) satisfy cp, that is, if
L (M) Cmodels(cp).

One of the major approaches to automated verification is the automata-
theoretic approach, which underlies model checkers such as SPIN [26]and
Cadence SMV.~ The key idea underlying the automata-theoretic approach
is that, given an LTL formula cp, it is possible to construct a finite-state
automaton A, on infinite words that accepts precisely all computations that
satisfy cp [59].The type of finite automata on infinite words we consider is the
one defined by Biichi [3].A Biichi nutornaton is a tuple A = (C ,S,S o , p, F) ,
where C is a finite alphabet, S is a finite set of states, So c S is a set
of initial states, p : S 2' +Cx is a nondeterministic transition function,
and F c S is a set of accepting states. A run of A over an infinite word
w = ala2. . . , is a sequence sosl . . . , where so E So and si a i)E P (S ~ - ~ ,

for all i > 1. A run so, s l , . . . is accepting if there is some accepting
state that repeats infinitely often, i.e., for some s E F there are infinitely
many i's such that si = s . The infinite word w is accepted by A if there
is an accepting run of A over w . The language of infinite words accepted
by A is denoted L (A) . The following fact establishes the correspondence
between LTL and Biichi automata: Given an LTL formula cp, one can build a
Biichi automaton A, = (c,S, So, p, ,F) ,where C = 2P"0pand I S < 2°(191),
such that L(A,) is exactly the set of computations satisfying the formula cp

1591.
This correspondence reduces the verification problem to an automata-

theoretic problem as follows [58]. Suppose that we are given a system M
and an LTL formula cp. We check whether L (M) c models(cp) as follows:
(1) construct the automaton A,, that corresponds to the negation of the
formula cp, (2)take the cross product of the system M and the automaton
A,, to obtain an automaton AM,,, such that L(AM,v)= L (M)nL(A,,),
and (3)check whether the language L(AM,,) is nonempty, i.e., whether AM,,
accepts some input. If it does not, then the design is correct. If it does, then
the design is incorrect and the accepted input is an incorrect computation.
The incorrect computation is presented to the user as a finite trace, possibly
followed by a cycle. Thus, once the automaton A,, is constructed, the verifi-
cation task is reduced to automata-theoretic problems, namely, intersecting
automata and testing emptiness of automata, which have highly efficient
solutions [57].Furthermore, using data structures that enable compact rep-
resentation of very large state space makes it possible to verify designs of
significant complexity [4].

'h t tp: //www-cad. eecs .berkeley .edu/" kenrncrnil/smv/

232 HALPERN. HARPER. IMMERMAN, KOLAITIS. VARDI. AND VIANU

The linear-time framework is not limited to using LTL as a specifica-
tion language. There are those who prefer to use automata on infinite
words as a specification formalism [59]; in fact, this is the approach of
COSPAN [39]. In this approach, we are given a design represented as
a finite transition system M and a property represented by a Biichi (or
a related variant) automaton P. The design is correct if all computa-
tions in L (M) are accepted by P, i.e., L (M) c L(P) . This approach
is called the language-containment approach. To verify M with respect
to P, we: (1) construct the automaton PCthat compleme~ztsP, (2) take
the product of the system M and the automaton PCto obtain an au-
tomaton A M P ,and (3) check that the automaton A M Pis nonempty. As
before, the design is correct if and only if AM,p is empty. Thus, the ver-
ification task is again reduced to automata-theoretic problems, namely
intersecting and complementing automata and testing emptiness of au-
tomata.

Over the last few years, automated formal verification tools, such as model
checkers, have shown their ability to provide a thorough analysis of reason-
ably complex designs [20]. Companies such as AT&T, Cadence, Fujitsu,
HP, IBM, Intel, Motorola, NEC, SGI, Siemens, and Sun are using model
checkers increasingly on their own designs to reduce time to market and
ensure product quality.

$7. Concluding remarks. It should be made clear that we are not the
first ones to single out the effectiveness of logic in computer science. In
fact, already back in 1988 M. Davis wrote an eloquent essay on the In-
fluences of Logic in Computer Science [lo], which begins by stating that
"When I was a student, even the topologists regarded mathematical logi-
cians as living in outer space. Today the connections between logic and
computers are a matter of engineering practice at every level of computer
organization." Davis proceeds then to examine how certain fundamen-
tal concepts from logic have found crucial uses in computer science. In
particular, Davis adresses the connections between Boolean logic and dig-
ital circuits, discusses the influence of logic on the design of programming
languages, and comments on the relationship between logic programming
and automated theorem-proving. More recently, Davis wrote a book ti-
tled The Universal Computer [l l] in which he presents the fundamental
connection between logic and computation by tracing the lives and con-
tributions of Leibniz, Boole, Frege, Cantor, Hilbert, Godel, and Tur-
ing.

The effectiveness of logic in computer science is not by any means limited
to the areas mentioned in here. As a matter of fact, it spans a wide spec-
trum of areas, from artificial intelligence to software engineering. Overall,

233 ON THE UNUSUAL EFFECTIVENESS OF LOGIC IN COMPUTER SCIENCE

logic provides computer science with both a unifying foundational frame-
work and a powerful tool for modeling and reasoning about aspects of
computation. Computer science is concerned with phenomena that are usu-
ally described as "synthetic", because for the most part they are a human
creation, unlike the phenomena studied in the natural sciences. This dif-
ference between computer science and the natural sciences can provide an
explanation as to why the use of logic in computer science is both appro-
priate and successful. Thus, the effectiveness of logic in computer science
is perhaps not mysterious or unreasonable, but still quite remarkable and
unusual.

Acknowledgments. We are grateful to Susan Landau for suggesting to us
the topic of this article. We would also like to thank Matthias Felleisen for
his useful comments on a draft of this article.

REFERENCES

[I] S. ABITEBOUL, R . HULL, and V. VIANU. Fourzdations of databases. Addison-Wesley.
Reading, Massachusetts, 1995.

[2] S. ABITEBOUL and V. VIANU,Generic computation and its cotnplexity. Proceedings of
the 23rd ACM Symposinm orz Theouy of Computing. 199 1. pp. 209-2 19.

[3] J. R . BOCHI,On a decision method in restricted second order arithmetic, Pvoceedings of
the Znternatiorral Congress on Logic, Methodology and Philosophy of Science 1960, Stanford
University Press, Stanford, 1962. pp. 1-12.

[4] J. R. BURCH,E. M. CLARKE, D. L. DILL, and L. J. HWANG,K. L. MCMILLAN, Symbolic
model clzecking: lo2' states and beyond. Information and Conzputation, vol. 98 (1992), no. 2,
pp. 142-170.

[5] A. CHURCH, A note on the Entsclzeidz~ngsproble~?z,The JournalofSymbslic Logic, vol. 1
(1936), pp. 40-44.

[6] E. M. CLARKE, E. A. EMERSON, Automatic verification offinite-state and A. P. SISTLA,
concurrent systems using temporal logic specifications, ACM Transactions on Proguamnzing
Languages and Systenzs, vol. 8 (1986), no. 2, pp. 244-263.

[7] E. F. CODD, A relational model of data for large shared data banks, Comnzurrications of
the ACM, vol. 13 (1970), no. 6, pp. 377-387.

[8] H. B. CURRY and R. FEYS,Combinatoiy logic, North-Holland, 1958.
[9] H. B. CURRY, J. R. HINDLEY, and J. P. SELDIN, Combinatou~j logic, Volume 2, North-

Holland, 1972.
[lo] M. DAVIS, Injuences of mathematical logic on computer science, The univevsal Turirzg

machirre: A half-centuuy survey (R. Herken. editor), Oxford University Press, 1988, pp. 315-
326.

[11Ip , The universal computer, Norton, 2000.
[12] H. D. EBBINGHAUS and J. FLUM,Finite model theory, Perspectives in Mathematical

Logic, Springer-Verlag, 1995.
[13] A. EHRENFEUCHT, An application of games to the completeness problem for formalized

theories, Fundamenta Mathenzaticae, vol. 49 (1961), pp. 129-141.
[14] R . FAGIN,Geizeralizedfirst-order spectm andpolynomial-time recognizable sets, Com-

plexity of computation (R. M. Karp, editor), SIAM-AMS Proceedings, vol. 7. 1974, pp. 43-
73.

234 HALPERN HARPER, IMMERMAN, KOLAITIS. VARDI. AND VIANU

[15]R. FAGIN, J. Y HALPERN, Y. MOSES, and M. Y VARDI, Reasoning about knowledge,
MIT Press, Cambridge, Massachusetts, 1995.

[16]R. F~~i 'ssfr , des systimes de relations, Pub[. Sci. Univ. Sur quelques class$cations
Alger. Skr: A, vol. 1 (1954), pp. 35-182.

[17]M. GAREY and D. S. JOHNSON, Computers and intvactability: A guide to the theory of
NP-completeness, W. Freeman and Co., San Francisco, 1979.

[IS] J.-Y GIRARD, Y LAFONT, and P. TAYLOR, Prooji and types, Cambridge Tracts in
Theoretical Computer Science, vol. 7, Cambridge University Press, Cambridge, England,
1989.

[19] K. GODEL,~ b e rformal unentscheidbnre Siitze der Principia Mathemnticn und ver-
waizdter Systeme I , Monatsheftefiiv Mathematik undPhysik, vol. 38 (1931), pp. 173-198.

[20]R. GOERING, scope, Electronic Engineering To- Model checking expands ver$cation's
day, (1997).

[21]J. GRAY, Notes on database operating systems, Operatingsystems: An advanced course
(R. Bayer, R. M. Graham, and G. Seegmuller, editors), Lecture Notes in Computer Science,
vol. 66, Springer-Verlag, Berlin/New York, 1978, also appears as IBM Research Report RJ
2188, 1978.

[22]J. Y HALPERN and Y MOSES, Knowledge and cominon lcnoivledge in a distributed
environment, Journalof the ACM, vol. 37 (1990), no. 3, pp. 549-587.

[23]R. W. HAMMING, The unreasonable efectiveness of mnthernatics, Anzevican Mathemat-
ical Monthly, vol. 87 (1980), pp. 81-90.

[24] L. HENKIN.J. D. MONK, and A. TARSKI, Cylindric algebr,as, Pavt I, North Holland,
1971,Part II , North Holland, 1985.

[25] J. HINTIKKA, Knolvledge andbelief: Cornell University Press, Ithaca, New York, 1962.
[26] G. J. HOLZMANN, The model checker SPIN, IEEE fiansactions on Softrvare Engi-

neering, vol. 23 (1997), no. 5, pp. 279-295, special issue on Formal Methods in Software
Practice.

[27]WILLIAMA. HOWARD, The formulas-as-types notion of construction, To H. B. Cuvry:
Essays in cornbinatovy logic, lambda calculus and formalism (J. P. Seldin and J. R. Hindley,
editors), Academic Press, 1980, pp. 479-490.

[28]N. IMMERMAN, Number of quant$ers is better than number of tape cells, Journal of
Conzputer and Systenz Sciences, vol. 22 (1981), no. 3, pp. 384-406.

[29]--, Uyyer and lower bounds forjirst-order expressibility, Journal of Computev and
System Sciences, vol. 25 (1982), pp. 76-98.

Po] -, Relational queries colnputable in polynornial time, Infovmation and Control,
vol. 68 (1986), pp. 86-104.

[31Ip , Languages ~vlziclz capture complexity classes, SIAM Jouvnal on Conzputing,
vol. 16 (1987), no. 4, pp. 760-778.

[32Ip , Nondeterministic space is closed under complement, SIAM Jouvnal on Com-
pnting, vol. 17 (1988), pp. 935-938.

[33Ip , = 11,P~,oceedings of the 6th IEEE Symposiurn on Struc- ~ s ~ a c e [n "]var[k +
tuve in Complexity Theory, 199 1, pp. 334-340.

[34Ip , Descriptive complexity: a logician's approach to computation, Notices of the
American Mathematical Society, vol. 42 (1995), no. 10, pp. 1127-1 133.

[35]-, Descviptive complexity, Springer-Verlag, 1999.
[36]B. JACOBS, Categorical logic and type theovy, Studies in Logic and the Foundations of

Mathematics, vol. 141, Elsevier, Amsterdam, 1999.
[37]P. C. KANELLAKIS. Elements of relational database theory, Handbook of theovetical

computer science (J. Van Leeuwen, editor), Elsevier, 1991, pp. 1074-1 156.

ON THE UNUSUAL EFFECTIVENESS OF LOGIC IN COMPUTER SCIENCE 235

[38]S. KRIPKE,A semantical analysis of modal logic I: normal modalpropositional calczlli,
Zeitschriftfir Mathematische Logik und G~,undlagen der Mathematik, vol. 9 (1 963), pp. 67-
96, announced in Journalof Symbolic Logic, vol. 24 (1959), p. 323.

[39] R. P. KURSHAN, Computer aided vevijication of coordinating processes, Princeton
University Press, 1994.

[40]----, Formal verijication in a commercial setting, The Verijication Times; (1997).
[41] 0.LICHTENSTEINand A. PNUELI, Checking that finite-state conczirrent programs sat-

isfy their linear specijications, Proceedings of the 13th ACM Symposium on Principles of
Programming Languages, 1985; pp. 97-1 07.

[42] D. MAIER; The theory of relational databases, Computer Science Press, 1983.
[43] Z. MANNAand R. WALDINGER; The logical basis for computerprogramming, Addison-

Wesley, 1985.
[44]P. MARTIN-LOF; Intuitionistic type theovy, Studies in Proof Theory, Bibliopolis,

Naples, Italy, 1984.
[45] J. C. MITCHELL, Fozindationsforprog~amminglanguages,Foundations of Computing,

MIT Press, 1996.
[46] G. PLOTKIN; A strzictz~ral approaclz to operational semantics; Technical Report DAZMZ-

FN-19, Computer Science Department, Aarhus University. 1981.
[47] A. PNUELI; The temporal logic ofprograms, Pvoceedings of the 18th ZEEE Symposium

on Foundation of Computer Science, 1977, pp. 46-57.
[48] J. P. QUEILLE and J. SIFAKIS, Specijicatioiz and verijication of concurrent systems in

Cesar, Proceedings of the 5th Znternational Symposium on Programming, Lecture Notes in
Computer Science, vol. 137, Springer-Verlag, 1981, pp. 337-351.

[49] JOHN C. REYNOLDS, Three approaches to type structure, Tapsoft, Springer-Verlag,
1985.

[~oI- ; Theories of pvogramming languages, Cambridge University Press, 1998.
[51] A. SILBERSCHATZ, H. KORTH, and S. SUDARSHAN, Databasesystem concepts, McGraw-

Hill, 1997.
[52] DAVIDTARDITI, PERRY CHRIS ROBERT andGREG MORRISETT, CHENG, STONE, HARPER;

PETERLEE,TIL: A type-directed optimizing compiler for ML;ACM SZGPLAN Conference on
Pvogvamming Langziage Design and Implementation, Philadelphia, Pennsylvania, May 1996,
pp. 181-192.

[53] A. TARSKI, Der WahrheitsbegrifSin den formalisierten Sprachen, Studia Philosophica,
vol. 1 (1935); pp. 261-405.

[54] A. TURING; On compzitable numbers with an application to the Entscheidungsproblem,
Proceedings of the London Mathematical Society, Series 3, vol. 42 (1936137); pp. 230-265.

[55]J. D. ULLMAN, Principles of database and knowledge base systems, Computer Science
Press, 1988.

[56] M. Y VARDI;The complexity ofrelational query langziages, Proceedings of the 14th
ACM Symposium on Theory of Computing, San Francisco, 1982, pp. 137-1 46.

[57Ip , An automata-theoretic approach to linear temporal logic, Logics fov conczrr-
rency: Structure verszrs automata (F. Moller and G. Birtwistle, editors), Lecture Notes in
Computer Science, vol. 1043, Springer-Verlag, Berlin, 1996, pp. 238-266.

[58] M. Y VARDI and P. WOLPER, An automata-theoretic approach to automatic program
verijication, Proceedings of the 1st symposium on logic in compzrtev science, Cambridge, June
1986, pp. 332-344.

[591--- , Reasoning abozit infinite computations, Znforrnation and Computation, vol. 1 15
(1994), no. 1; pp. 1-37.

[60] V. VIANU,Databases andJnite-model theory, Descrtptive complexity andfinite models
(Neil Immerman and Phokion Kolaitis, editors), Dimacs Series in Discrete Mathematics
and Theoreticcal Computer Science, American Mathematical Society, 1997, Proceedings of

236 HALPERN. HARPER. IMMERMAN, KOLAITIS. VARDI. AND VIANU

a Dimacs Workshop January 14-17, 1996, Princeton University.
[61] E. P. WIGNER, The zinreasonable effectiveness of mathematics in tlze natural sciences,

Communications on Puve and Applied Mathematics, vol. 13 (1960), pp. 1-14.

COMPUTER SCIENCE DEPARTMENT

CORNELL UNIVERSITY

4144 UPSON HALL

ITHACA, NY 14853. USA

E-mail: halpern@cs.cornell.edu

COMPUTER SCIENCE DEPARTMENT

CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PA 15213-3891, USA

E-mail: rwh@cs.cmu.edu

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF MASSACHUSETTS

AMHERST. MA 01003, USA

E-mail: immerman@cs.umass.edu

COMPUTER SCIENCE DEPARTMENT

UNIVERSITY OF CALIFORNIA, SANTA CRUZ

SANTA CRUZ, CA 95064, USA

E-mail: kolaitis@cse.ucsc.edu

DEPARTMENT OF COMPUTER SCIENCE

RICE UNIVERSITY MS 132

6 100 S. MAIN STREET

HOUSTON, TX 77005-1892. USA

E-mail: vardi@cs.rice.edu

CSE 0114

UNIVERSITY OF CALIFORNIA. SAN DIEGO

LA JOLLA. CA 92093-01 14. USA

E-mail: vianu@cs.ucsd.edu

mailto:halpern@cs.cornell.edu
mailto:rwh@cs.cmu.edu
mailto:immerman@cs.umass.edu
mailto:kolaitis@cse.ucsc.edu
mailto:vardi@cs.rice.edu
mailto:vianu@cs.ucsd.edu

