
SOA Without Web Services: a Pragmatic Implementation of SOA for Financial
Transactions Systems

Ziyang Duan, Subhra Bose
Reuters America

3 Times Square, 18th Floor
New York, NY 10036

{ziyang.duan, subhra.bose}@reuters.com

Paul A. Stirpe
New York Institute of Technology

Computer Science
Old Westbury, New York 11568

pstirpe@nyit.edu

Charles Shoniregun
University of East London

School of Computing & Technology
Essex, RM8 2AS UK

C.Shoniregun@uel.ac.uk

Alex Logvynovskiy
Business, Computing & Information Management

London South Bank University
103 Borough Road

SE1 0AA, UK

Abstract

The Service Oriented Architecture (SOA) provides a
methodology for designing software systems by integrat-
ing loosely coupled services. Compared to traditional dis-
tributed object-oriented architectures, SOA is more suitable
to integrate heterogeneous systems, and more adaptable in
a changing environment. This paper presents the design
and implementation of a SOA framework for financial trans-
action applications. The framework provides an easy and
uniform way for service composition in a controlled envi-
ronment, and leverages Web service standards with efficient
communication mechanisms and durable and/or transac-
tional message queues. Specifically, the work addresses the
following issues: 1) the incorporation of existing systems
and protocols that are not Web-service compatible. This pa-
per focuses on business processes of equities transactions
using the FIX [6] protocol. 2) the configuration and de-
ployment of services and service endpoints in a flexible and
dynamic manner. 3) the capability of specifying business
processes as Web service compositions and a distributed
runtime environment that supports it. 4) the scalability,
resiliency and transactional aspects as required in criti-
cal business applications. The experience of applying the
framework in building a high performance equities trans-
action system is presented.

1 Introduction

The financial industry demands efficient, affordable, and
flexible approaches to automate and integrate their business
processes. To meet this challenge, Service Oriented Archi-
tecture (SOA) is becoming a favorite choice of software ar-
chitects who struggle to provide solutions for distributed ap-
plications, while maintaining manageable system architec-
tures. SOA’s building block is a set of loosely-coupled ser-
vices. A service provides a unit of functionality by exposing
its abstract interface on the network. The business function-
ality is implemented as coordinated interactions of services.
SOA allows heterogeneous components to be easily inte-
grated to satisfy business requirements. Furthermore, such
systems are more flexible and adaptable than traditional
object-oriented distributed systems built upon strongly cou-
pled components [12].

Many XML-based standards have been widely adopted
to support Web service specifications, interactions, discov-
ery and composition. For example, WSDL[3] provides for
interface definition and binding, and uses UDDI for service
discovery, SOAP [7] for message exchange, and BPEL[4]
for service composition. These standards lay out the foun-
dation of Web service technologies. Major development
tools and middlewares now offer supports to those stan-
dards. With the help of these tools, users can now conve-
niently create and deploy Web services, or expose the inter-
face of an existing application as a Web service.

Recently, Web services and service-oriented architec-
ture have been applied to different areas. For exam-
ple, Zimmermann et al. [14] developed a Web services-

Proceedings of the 2005 IEEE International Conference on Services Computing (SCC’05)
0-7695-2408-7/05 $20.00 © 2005 IEEE

based system to integrate inter-organizational banking sys-
tems. Petinot [11] proposed a service-oriented architec-
ture for building semantic-based information retrieval sys-
tems. Zhang et al. [13] developed a pass-through authenti-
cation Web service framework for on-line electronic pay-
ment applications. Medjahed et al. [8] implemented an
ontology-based web service composition framework for e-
government system. Fileto et al. [5] described a semantic-
based approach for Web service composition and its appli-
cation in agriculture planning.

Many commercial products have been developed to au-
tomate business process integration process through Web
service integration, for example, IBM’s Websphere, BEA’s
Web logic, Microsofts Biztalk, etc. These products pro-
vide intuitive process design tools, deployment infrastruc-
ture, and execution environments integrated with available
application servers and workflow systems, It is easy to use
these tools to design and deploy a business process by inte-
grating existing Web services together. Therefore they are
increasingly adopted in many application domains, espe-
cially those that demand a timely solution.

However, there are still many issues remaining to be re-
solved in building high performance financial transaction
systems using the existing technologies [2, 1]. Current tech-
nologies focus on providing good interoperability over the
Internet using standard protocols such as WSDL and SOAP,
whereas existing financial systems are usually based on pro-
prietary protocols and message formats. A Web service-
based system would have to translate messages from their
native format to SOAP and vice versa in order to facili-
tate interoperability. Furthermore, the protocols usually de-
fine their own way to handle various aspects of interactions,
such as authentication, reliability, maintaining sessions and
states, failure-handling, etc. To incorporate them into the
existing Web service framework would be either impossible
or produce inefficient solutions. Protocols, such as FIX [6],
are widely adopted and serve as the de facto industry stan-
dards. Thus, it is impossible to replace them with newly-
designed, Web service-compatible protocols in the foresee-
able future. In addition, the protocols and message formats
are usually designed for efficient transmission and parsing,
which is important in systems requiring high throughput
and high availability. It is difficult to satisfy these require-
ments by using SOAP and WSDL-based services, because
processing XML-based messages introduces additional la-
tency and bandwidth cost.

Reliability and transaction support are major concerns
in financial transactions systems. Though many efforts are
focused on addressing this issue, such as the proposal of
WS-Security [9] and WS-Transaction [10] standards, the
support of such features in existing web service integration
frameworks are still very primitive.

Large-scale financial transaction systems require high

throughput and scalability. At periods of peak load, the
systems are required to handle thousands of concurrent re-
quests with latencies typically less than a second. Pro-
gram trading applications demand even higher performance
requirements. However, current Web service integration
frameworks introduce additional layers and components
such as web server, SOAP translation, WSDL mapping, that
require more computation and introduce additional latency.
Though most Web service integration tools provides scala-
bility solutions, they usually require more computing power
to achieve the same level of performance compared to a tra-
ditional solution. This ultimately means higher cost in terms
of deployment and maintenance.

We designed a SOA framework for building financial
transactions systems with the above issues in mind. The
framework provides an easy and uniform way for service
composition in a controlled environment. In our framework,
we assume services are deployed within an enterprise envi-
ronment and the message payloads follow a standard, such
as FIX (Financial Information Exchange). The framework
leverages web service standards on top of efficient com-
munication mechanisms, such as durable and/or transac-
tional message queues. Thus, messages can be transported
in a more efficient manner. The framework allows existing
legacy systems based on the FIX protocol to be incorporated
in our system, as well as Web service-based systems. The
framework provides scalability, resiliency and transactional
aspects as required in critical business applications. We also
present our experience in applying the framework in build-
ing a high performance financial transactions system.

2 FIX protocol and equity transactions

The FIX (Financial Information eXchange) protocol is
a standard to facilitate electronic communications of trade
related messages. The protocol is developed as a collabo-
ration effort among major financial institutions, exchanges,
brokers, and information technology providers. It has been
widely adopted in automated trading systems. FIX origi-
nated as a protocol to support equity transactions in the US
market, and has been evolved to support international trad-
ing and more trading types.

A FIX message is a sequence of < tag >=< value >
fields delimited by the ASCII SOH (0x001) character. The
fields can be partitioned into three parts: a header, a body,
and a trailer. The tags are integers that represent predefined
field names. Each message has a message type field (tag
35) in the standard header. For example, 35=A means a
logon message, 35=7 means advertisement, 35=6 means
indication of interest, 35=D stands for a single new order.
Each type of message has a set of predefined mandatory
and optional fields in the message body, and users can also
define their own customized message fields.

Proceedings of the 2005 IEEE International Conference on Services Computing (SCC’05)
0-7695-2408-7/05 $20.00 © 2005 IEEE

Example 2.1 (Example of a FIX message)
8=FIX.4.0#9=0168#35=6#49=A#56=B#34=85#52=20050110-13:00:00

#23=13#28=N#54=1#27=1000#62=20040110-14:00:00#44=25.00

#15=USD#55=MSFT#10=130

♦
Example 2.1 is an Indication Of Interest (IOI) message sent
from A to B that indicates an interest of buying 1000 shares
of Mocrosoft stocks at price of $25.00. The interpretation
of each field is shown in table 1.

Tag Field value
8 version “FIX.4.0”
9 body length 168
35 message type IOI
49 sender comp ID A
56 target comp D B
34 sequence number 85
52 sending time 2005/1/10 13:00:00
23 IOI ID 13
28 transaction type N (new)
54 side buy
27 shares 1000
62 valid until 2004/1/10 14:00:00
44 price 25:00
15 currency US Dollar
55 symbol MSFT
10 checksum 130

A FIX session maintains a dedicated and reliable con-
nection between two FIX applications, or FIX endpoints.
All FIX messages are identified by a unique sequence num-
ber during a session. Sequence numbers are initialized
when a FIX session is established, and increment through
the session. The number is used to identify missed mes-
sages, and synchronize applications during reconnection.
Thus, messages delivery can be considered completely or-
dered. FIX applications use heartbeat messages at regular
intervals to monitor the status of communication link. In
addition, the FIX protocol provides mechanisms for authen-
tication, encryption, and message recovery.

The framework provides a platform for FIX-based eq-
uity transactions. Our platform connects hundreds of major
financial institutions and brokers located globally through
thousands of dedicated FIX endpoints, and processes tens
of millions of FIX messages per day. Business processes
of equity transactions are implemented as sequences of FIX
messages flowing between the trading partners. The pro-
cesses are composed of pre-ordering activities such as in-
dication of interest and advertised traders, order processing
activities such as create new order, order canceling and re-
placement, and post ordering activities such as execution

Service
Interface

Service
Interface

Service
Interface

State−based Transaction Managment

Database

Workflow
Management

Service
Monitoring

Endpoint
Management

Service
Internal

Service
Internal

Service
Internal

Service
InternalClient

FIX

Client
FIX

Client
WS

Client
GUI

System Boundary

Message Hub

Service
Interface

Service Inactment

reporting. The platform serves as a hub for equity trading
processes. Specifically, the platform provides the following
functionalities:

• Maintain dedicated FIX connections.

• Dynamically add new and configure existing endpoints.

• Route messages to corresponding services and process
messages according to the business logics.

• Add new services and functionalities and customize ex-
isting services according to the business requirement.

• Provide reliability and transactional correctness guaran-
tee for business processes.

• Provide failure recovery, auditing, and monitoring ca-
pabilities.

3 The SOA Framework

Architecture Overview
Figure 1 shows the overview of our system architecture.

The system is composed of the following components.

• Service Enactment provides the core functionalities for
service invocation and message routing.

• Workflow Management provides tools to specify flow
logics as service composition, and to compile the
workflows into a set of message routing rules that can
be used by the service enactment component.

• State-based Transaction Management guarantees
transactional correctness of business objects based on
their state chart model.

• Service monitoring provides tools to view the execu-
tion status of services, and handling failure situations.

Proceedings of the 2005 IEEE International Conference on Services Computing (SCC’05)
0-7695-2408-7/05 $20.00 © 2005 IEEE

• Service Configuration provides tools to dynamically
add and reconfigure service endpoints.

We hereby discuss the service management, workflow man-
agement, and transaction management in detail.

Services The service enactment component hosts a set of
services. As shown in figure 2, a service is defined by its
interface definition, the physical implementation, and the
binding between them. The interface of a service speci-
fies how a consumer should interact with it. It is platform-
neutral and independent of its implementation in order to
achieve maximum interoperability. The interface is speci-
fied following the WSDL standard. An interface definition
specifies the set of operations provided by the service. Each
operation is defined by the sequence of messages it sends
and receives.

A service is physically implemented as a software agent.
An interface is bound to a concrete implementation and
message format via bindings. The interface of a service
is then accessible via one or more endpoints based on the
binding.

In order to achieve high efficiency for service commu-
nications within the system boundary, and provide maxi-
mum interoperability with existing FIX-based trading sys-
tems, services are distinguished into two types: interface
services and internal services, as shown in figure 1.

An internal service implements a functional unit of busi-
ness logic. Internal services only interact with other in-
ternal or interface services, and do not communicate with
clients outside of the system boundary. All internal ser-
vices consume and produce messages in a predefined in-
ternal message format. Internal messages are transported
reliably through the message hub, which is discussed later.

The interface services are responsible for communica-
tions with other systems and clients. The interface services
expose the functionality of the system in different ways.
The system currently provide three types of interface ser-
vices: FIX endpoints that implement the FIX protocol and
communicate with FIX-based clients, Web service-based
interface services that allow Web service-based clients to
communicate with our system, and GUI-based interface ser-
vices that allow users to interact with the system manually
via a Web browser.

The interface services translate incoming requests into
internal message format, and dispatch the requests to the
corresponding internal services. In addition, they translate
response messages to the formats compatible with the cor-
responding client APIs and legacy systems and send them
to the target.

DOM, Message Hub

Service 1

Interface

Service

binding

Software Agent

Interface

Service

binding

Software Agent

Service 2

XML with Logical destination

SOAP with Physical target

Messages A message definition defines the abstract types
of messages exchanged between the service provider and
the consumer. In our system, a message is a SOAP docu-
ment that follows a predefined schema. As shown in figure
3, the SOAP header contains the following information:

• The type of the business process to which the messages
belongs,

• The service name, operation name, and port type of the
source and target service,

• Other optional information relevant to routing.

The SOAP body contains a sequence of transaction mes-
sages. Each message has a timestamp and a unique transac-
tion ID for transactional control purposes. Specifically, FIX
messages are represented in FixML.

To separate the logical design and physical implementa-
tion of a SOA based system, the message-based communi-
cation mechanism is abstracted into layers: the logical layer,
the physical layer, and the binding between them. As illus-
trated in figure2, the abstract definition of a message is de-
fined by its type in XML Schema. A physical instance of
a message is either a native DOM object or an XML docu-
ment compatible to the abstract definition. The source and
destination of a message are the logical address of the ser-
vice interface, which can be mapped into physical service
instances.

Endpoint addressing Each service has a logical address
and a physical address. Logically, a service is identified by
its name and characterized by its service type. The service
type specifies the set of operations that the service supports.
Each operation has one or more ports, which corresponds to
the end points of message communication. A port is identi-
fied by a unique name within the service, and is associated
with a port type that specifies the allowed type of messages
and communication patterns. Each service in the system has
one or more endpoints that sends and receives messages.
Thus, an endpoint is uniquely defined by the corresponding

Proceedings of the 2005 IEEE International Conference on Services Computing (SCC’05)
0-7695-2408-7/05 $20.00 © 2005 IEEE

<SOAP-ENV:Envelope>
<SOAP-ENV:Header>

<Type>CreateIOI</Type>
<TargetService name="IOI" operation="NewIOI"

portType="SendViaFIX"/>
<SourceService name="IOI" operation="NewIOI"

portType="SendViaFIX"/>
<ReferenceProperties>A,B,C, ... </

ReferenceProperties>
<!-- other application-specific routing-

relevant properties -->
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<SOAP-ENC:string>

<Transact>
<Header ReqID="12345" TimpStamp="

2005-01-10 09:30:00" TransactID="
6789" />

<Body type=IOI>
<fixml:IOI IOIID="100" TransType="N"

Qty="99000" Side="1" Symbol="IBM">
... ...

</fixml:IOI>
</Body>

</Transact>
<Transact> ... </Transact>

</SOAP-ENC:string>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

service name, service type, port name, and port type. Op-
tionally, services can be grouped into service sets. Services
in the same set have the same service type and therefore
support the same set of operations. Each service in the set
can be uniquely identified by the set name and the reference
property field. A message can be multicast to several end
points of services in the same set.

The physical address of a service identifies the location
of the software agent that implements it. The endpoints are
bound to the operations supported by the agent. In case of
a Web service, the endpoints are identified by their URL.
However, in our case, the software agents generally do not
communicate through web service interfaces. It is preferred
to interact via their native interface to improve performance.
For example, many internal services in the system are im-
plemented as .Net libraries. The physical address of such
services are defined by the network address, the file path,
the assembly name, and the operation name.

A logical endpoint is mapped into one or more physi-
cal endpoints in implementation. A logically unique ser-
vice may correspond to several physically deployed soft-
ware agents. Thus messages can be load-balanced to im-
prove system performance. The mapping from logical ser-
vice addresses to physical addresses is specified in the Ser-
viceMapping table. The relationships are illustrated in fig-
ure 4.

EndpointLogicalAddress

PK,FK1 ServiceName

PK PortName

FK2 PortType

ServiceType

PK ServiceType

...

PortType

PK PortType

...

EndpointPhysicalAddress

PK NetworkAddress

PK AssemblyPath

PK AssemblyName

PK MethodName

ServiceMap

FK1 ServiceName

FK1 PortName

FK2 NetworkAddress

FK2 AssemblyPath

FK2 AssemblyName

FK2 MethodName

Service

PK ServiceName

FK1 ServiceType

ServiceSet

PK SetName

PK ReferenceProperty

FK1 ServiceType

FK2 ServiceName

Service Invocation

Interface

Service

binding

Software Agent

Service A

Interface

Service

binding

Software Agent

Service B

Interface

Service

binding

Software Agent

Service C

Workflow

Router

Message hub Messages are delivered asynchronously to
their destinations through the message hub. The message
hub is implemented using transactional message queues.
The message queues are communication channels for send-
ing and receiving messages. Each physical service is
mapped to a message queue from where it receives mes-
sages. A message delivered to a service is put into the corre-
spondent message queue. Each queue has a unique network
address and name. Services deployed at the same server lo-
cation can share a message queue, but services at different
server locations must use different queues. Since queues
are not shared by locations, the address of a queue is also
viewed as the address of the services that map to the queue.

As shown is Figure 5, at each physical location, the ser-
vice enactment framework provides a router component and
a service invocation (SI) component to handle the sending
and receiving of messages, and dispatch them to the target
endpoints through the message hub.

Service invocation The SI component is responsible for
picking up incoming messages from a queue. Based on

Proceedings of the 2005 IEEE International Conference on Services Computing (SCC’05)
0-7695-2408-7/05 $20.00 © 2005 IEEE

the logical address information in the header, SI finds out
the physical address of the target endpoint, i.e., the assem-
bly and method name to be invoked, and then invokes the
method to process the message (see algorithm 3.1) q .

Algorithm 3.1 Service invocation

ServiceInvocation(Message msg)
read ServiceName, Operation, PortType from msg;
PhysicalService ps := ServiceMap.find(

ServiceName, Operation, PortType);
if (ps does not exist) error_handling;
if (NOT ps.Started)
ps.Start();
ps.invoke(ps.methodName, msg);

return;

Message routing The router is responsible for send-
ing outgoing messages to their corresponding queues of
the targeting services. The routing logic is stored in
the routing table. Each entry in the table specifies a
routing rule. Rules in the routing table are 6-tuples <
Type, Source, Pred, Target, Update >, where

• Type is the type of the business process,

• Source is the logical address of the service that gener-
ates this message,

• Pred is a predicate that evaluates to either true or false
on the message header,

• Target is the logical address of the target service, and

• Update specifies an update operation on the message
header.

Algorithm 3.2 shows the routing logic. For each outgoing
message, the router looks up all the entries in the routing ta-
ble whose type entry match the “Type” field in the message
header, and whose source field match the target address in
the header. The Pred of each matched entry is then evalu-
ated on the header. If the result is true, the router will up-
date the target address in the header to Target, the source
address to Source, and execute the Update on the header.
The message is then sent to Target.

To send the message, the physical address is first found
in the ServiceMapping table. If more than one physical ser-
vice is available, the router selects one of them based on a
load balancing algorithm. In some cases, it is necessary to
multicast a message to several different destinations. In this
case, the Target field contains the name of the ServiceSet
that contains the logical addresses of all the destinations.

Algorithm 3.2 Message routing

Routing(Message msg)
Ruleset = ∀ rule ∈ routing table {\it s.t.}

rule.Type = Msg.Header.Type and
rule.Source = Msg.Header.Target;

foreach rule in Ruleset

<process name="CreateIOI">
<message name="IOI" type="NewIOI"/>
<properties>

<property name="sender" message="IOI" xpath=
"/fixml/@senderCompId"/>

<property name="target" message="IOI" xpath=
"fixml/@targetCompId"/>

<properties>
<sequence>
<receive msg="IOI"/>
<foreach IOIMsg in IOI>

<sequence>
<invoke>IOICreate</invoke>

<foreach name="destination" from="
IOIMsg/target">
<invoke name="IOISend" message="
IOIMsg" target="destination"/>

</foreach>
<invoke name="SendStreaming" message="

IOIMsg"/>
</sequence>

</foreach>
</sequence>

</process>

if (Evaluate(rule.Pred, Msg.Header) = true)
OutMsg = Msg.Clone();

OutMsg.Header.Source = Msg.Header.Target;
OutMsg.Header.Target = rule.Target;
Evaluate(rule.Update, OutMsg.Header);
SendMessage(OutMsg)

end if
end foreach

return

The workflow component provides functionalities for
defining the control flow logic of business processes. Work-
flows are specified as XML scripts following the BPEL
standard. The basic activities are the individual services.
Services can be composed using the following constructs:
sequence, switch, and foreach. We plan to add more fea-
tures in the future, and the ultimate goal is to have a BPEL
compatible workflow implementation. Figure 6 shows the
definition of the CreateIOI workflow in our language. Each
process handles one message, and a set of properties can be
defined as XPATH queries on the message. The first receive
construct initiates a new process, and populates the property
fields in the message header. Conditions in switch can only
be specified as predicates on the property fields. Instead of
using a centralized workflow controller, a workflow speci-
fication is compiled into a set of routing rules and executed
distributedly. The compilation is done by modeling a work-
flow as a finite state machine: states are service invocations
and transitions are routing rules. The set of properties in the
foreach statement is assigned to a special field in the header

Proceedings of the 2005 IEEE International Conference on Services Computing (SCC’05)
0-7695-2408-7/05 $20.00 © 2005 IEEE

“ReferenceProperites” as list of values, and the router cre-
ates a new instance of the message for each value in the list.

The transactional correctness is guaranteed in two levels:
the service level and the business process level.

At the service level, each service can be viewed as a
transaction. Each transaction involves the following steps:

• pickup a message from the queue.

• do some computations on the message.

• save the result in database.

• send one or more messages out.

and we need to guarantee that

• messages are never lost and duplicated,

• messages in each service’s incoming queue are pro-
cessed one and only once, and

• the processing of the messages satisfies the ACID prop-
erties.

This can be achieved by employing a two-phase commit-
ment transaction control mechanism between the transac-
tional message queues and the database. However, the two-
phase commitment protocol is expensive and inefficient.
Therefore, we adopted an approach based on timestamp and
snapshot to guarantee the transactional properties. We as-
sume each message has a unique ID and timestamp. Only
messages with a newer timestamp can be committed into
the database. Thus, inconsistent and duplicate message pro-
cessing is aborted. Messages are not removed from the in-
coming queue until they are processed. Thus, uncommitted
messages will not be lost. The approach is sketch as in al-
gorithm 3.3.

Algorithm 3.3 Transactional message processing

msg = IncomingQueue.ReadHead();
do computations on msg;
begin transaction

assign a new timestamp to msg
if timestamp is newest

save msg in DB as ‘‘committed’’
else abort

end transaction
IncomingQueue.Delete(msg)
send msg to target queues
update msg in DB as ‘‘finished’’

The correctness at the business process level is guaranteed
by a state chart model of the business object. Any update
on the object corresponds to a transition in the state chart
diagram. An update is allowed only if the transition is en-
abled. Figure 7 is an example of the state chart diagram for
IOI objects.

Send

Send

Successful
Send Failed

Success

Failed

Timed Out

Cancel

Cancel

Successful

Cancel

Failed

Success

Failed

Timed Out

StatusUpdate StatusUpdate

StagedSend

Cancel

Update

Replaced Cancel

S

Stage

Replace

Replace

Send

Send

CancelReplace

Create

Expired

Expire

Create

Send

Pending

Created

 Cancel

Pending

Active

Resilience The system is comprised of loosely coupled
services typically executing in a distributed enterprise envi-
ronment, but providing transactional semantics. As such, no
loss of messages can be tolerated. The system provides for
message resiliency by the use of queues and durable queu-
ing semantics. If a process that provides message routing
(which enqueues messages) fails, the messages that it has
yet to enqueue are retained in the corresponding server’s
disk storage system. When the message router process is
restarted, it first processes any outstanding messages from
disk, prior to handling new messages that are needed to
be enqueued. Likewise, if a service invocation component
fails, the state of its’ queue is retained on disk. On process
initialization, the service invocation component processes
in order all messages existing in its’ queue, including those
retained prior to the process failure. To provide additional
resilience in the case of disk failure, the queue state can be
retained in highly reliable storage systems such as Redun-
dant Array of Independent Disks (RAID) or Storage Access
Networks (SAN) systems.

4 Implemenation Experience

We implemented the SOA framework using the Mi-
crosoft Windows 2003 and the .Net framework, and built
a FIX based financial transactions system using the under-
lying SOA framework.

As shown in Figure 8, the system contains the following
layers: the presentation layer, the interface service layer, the
internal service layer, and the database layer. The presenta-
tion layer is set of web-based user interfaces for customers
to manually manage the configuration of the system and
perform transactions. The interface service layer exposes
a set of Web service interfaces for clients to interact with
the system automatically. In addition, the interface service
layer contains hundreds of FIX endpoints that connects to

Proceedings of the 2005 IEEE International Conference on Services Computing (SCC’05)
0-7695-2408-7/05 $20.00 © 2005 IEEE

Transact DB

System
legacy

Config DB
Service

Service

Group 1
Service

Group 3

Group 2

Interface
Services

Interface
Services

Presentation

Layer

Cleint

Client

Legacy
System

thousands of clients.
Services in the system are grouped into service groups.

Each group of services is deployed in the same server. Re-
siliency and scalability are achieved by deploying the same
group of services on a cluster of server boxes. We managed
to scale our system to process 1000 transactions per second
at periods of peak load, and millions of messages per day.

One of the challenges in our implementation is efficient
message passing and transformation. To avoid unnecessary
overheads of message transformation, messages are passed
in their native format through message queues. However,
when messages go through an interface service, it is trans-
formed to a compatible format, in most cases, an XML doc-
ument. The .Net framework provides several ways to han-
dle an XML document. The first alternative is to use DOM.
However, manipulating a DOM is inefficient. In our imple-
mentation, we use a customized object model and serializa-
tion/parsing methods to handle FIX messages.

System configuration during deployment can be a chal-
lenging problem because each service may require a differ-
ent set of configuration parameters. To simplify the issue,
we centralize the management of system configuration by
using a single configuration database for the entire system.
All servers bootstrap there configuration by loading the in-
formation from the configuration database on startup. To
support the dynamic update of configuration information,
when the configuration is updated, a message is sent to a
notification service. The notification service then notifies
each server regarding the configuration update.

When an error occurs during a transaction, details of the
error are sent to an exception message queue. Messages
in the queue are then reviewed by the administrator for ap-
propriate handling. The system requires tractability of the
history of all transactions, in case disputes or legal issues
arise. The system provides an audit log service, which logs
the history of all messages. The audit log can be reviewed,
monitored, and queried.

5 Conclusions and Future Work

This paper proposed an SOA based framework for build-
ing high performance equity transaction systems. The
framework supports interoperability with trading systems
based on the FIX protocol, and also supports Web service
standards. The system allows services to be configured and
added flexibly. Business processes are specified as service
compositions based on a workflow model. The system pro-
vides transactional correctness guarantees, reliability and
fault tolerance. In the future, we plan to add more sophis-
ticated workflow and routing features to the system, and to
extend the framework to support more application domains
in the financial services market, such as fixed income and
foreign exchange.

References

[1] K. P. Birman. Like it or not, web services are distributed objects. Commun.
ACM, 47(12):60–62, 2004.

[2] K. P. Birman, R. van Renesse, and W. Vogels. Adding high availability and
autonomic behavior to web services. In 26th International Conference on Soft-
ware Engineering (ICSE 2004), pages 17–26, 2004.

[3] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services De-
scription Language (WSDL) 1.1, 2001. http://www.w3.org/TR/wsdl.

[4] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and
S. Weerawarana. Business Process Execution Language for Web Services,
Version 1.1, 2003. http://www-106.ibm.com/developerworks/
library/ws-bpel/.

[5] R. Fileto, L. Liu, C. Pu, E. D. Assad, and C. B. Medeiros. Poesia: An ontolog-
ical workflow approach for composing web services in agriculture. The VLDB
Journal, 12(4):352–367, 2003.

[6] fix.org. The FIX Protocol, 2002. http://www.fixprotocol.org/.

[7] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, C. Henrik, and F. Nielsen.
SOAP Version 1.2 Part 1: Messaging Framework, 2003. http://www.w3.
org/TR/SOAP/.

[8] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing web services
on the semantic web. The VLDB Journal, 12(4):333–351, 2003.

[9] OASIS. Web Services Security (WS-Security), 2002. http:
//www-106.ibm.com/developerworks/webservices/
library/ws-secure/.

[10] OASIS. Web Services Transactions specifications, 2002. http:
//www-106.ibm.com/developerworks/webservices/
library/ws-transpec/.

[11] Y. Petinot, C. L. Giles, V. Bhatnagar, P. B. Teregowda, H. Han, and I. Councill.
A service-oriented architecture for digital libraries. In ICSOC ’04: Proceedings
of the 2nd international conference on Service oriented computing, pages 263–
268. ACM Press, 2004.

[12] W. Vogels. Web services are not distributed objects. IEEE Internet Computing,
7(6):59–66, 2003.

[13] J. Zhang, J.-Y. Chung, and C. K. Chang. Migration to web services oriented ar-
chitecture: a case study. In SAC ’04: Proceedings of the 2004 ACM symposium
on Applied computing, pages 1624–1628. ACM Press, 2004.

[14] O. Zimmermann, S. Milinski, M. Craes, and F. Oellermann. Second genera-
tion web services-oriented architecture in production in the finance industry.
In OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN conference
on Object-oriented programming systems, languages, and applications, pages
283–289. ACM Press, 2004.

Proceedings of the 2005 IEEE International Conference on Services Computing (SCC’05)
0-7695-2408-7/05 $20.00 © 2005 IEEE

