Provenance for Database Transformations

Val Tannen
University of Pennsylvania

Joint work with

J.N. Foster T.J. Green G. Karvounarakis Z. Ives
Cornell UC Davis LogicBlox and ICS-FORTH UPenn
Data Provenance

provenance, n.

The fact of coming from some particular source or quarter; origin, derivation [Oxford English Dictionary]

• Data provenance [BunemanKhannaTan 01]: aims to explain how a particular result (in an experiment, simulation, query, workflow, etc.) was derived.

• Most science today is data-intensive. Scientists, eg., biologists, astronomers, worry about data provenance all the time.
Provenance? Lineage? Pedigree?

• Cf. Peter Buneman:

 – Pedigree is for **dogs**

 – Lineage is for **kings**

 – Provenance is for **art**

• For data, let’s be artistic (artsy?)
Database transformations?

- Queries
- Views
- ETL tools
- Schema mappings (as used in data exchange)
The story of database provenance

• As opposed to workflow provenance, another story. Both waiting to merge (recent progress)!

• Motivated by data integration [WangMadnick 90, LeeBressanMadnick 98]

• Motivated by data warehousing, “lineage” [CuiWidomWiener 00, Cui Thesis 01, etc.]

• Motivated by scientific data management, “why- and where-provenance” [BunemanKhannaTan 01, etc.]

• Excellent accounts of the story in Buneman+ PODS 08 keynote and in Tan+ tutorials, edited collections, and recent journal article
My own journey to the study of provenance

• Working on the integration of genomics databases, since 1992

• At Penn with Peter Buneman and Wang-Chiew Tan, around 1999: “provenance is a form of annotation”.
 (They also studied other forms of annotation, such as time.)
 But I was preoccupied with other things...

• At Penn with Zack Ives, around 2005, I joined his project Orchestra: motivated by data sharing

• Working in phyloinformatics, since 2006, very interesting provenance problems
Teaser

Annotations capture ...

- Provenance
- Uncertainty (conditional tables [ImielinskiLipski 84])
- Trust scores
- Security
- Multiplicity (bag semantics)
This talk is based on the following papers

“Provenance semirings”
[GreenKarvounarakis&T PODS 07]

“Update exchange with mappings and provenance”
[GreenKarvounarakisIves&T VLDB 07]

“Annotated XML: queries and provenance”
[FosterGreen&T PODS 08]

“Containment of conjunctive queries on annotated relations”
[Green ICDT 09]

See also the dissertations of T.J. Green and G. Karvounarakis, University of Pennsylvania 2009.
Rounds

• What’s with the semirings? Annotation propagation

• Housekeeping in the zoo of provenance models

• Beyond tuple annotation

• The fundamental property and its applications

• Queries that annotate

• Datalog
• What’s with the semirings? Annotation propagation
 [GK&T PODS 07, GKI&T VLDB 07]

• Housekeeping in the zoo of provenance models

• Beyond tuple annotation

• The fundamental property and its applications

• Queries that annotate

• Datalog
Propagating annotations through database operations

The annotation $p \cdot r$ means joint use of data annotated by p and data annotated by r.
Another way to propagate annotations

The annotation $p + r$ means alternative use of data
Another use of $+$

+ means alternative use of data
An example in positive relational algebra (SPJU)

For selection we multiply with two special annotations, 0 and 1

\[Q = \sigma_{C=e} \pi_{AC}(\pi_{AC}R \bowtie \pi_{BC}R \cup \pi_{AB}R \bowtie \pi_{BC}R) \]

\[
\begin{array}{ccc}
A & B & C \\
\hline
a & b & c \\
d & b & e \\
f & g & e \\
\end{array}
\]

\[
\begin{array}{ccc}
A & C \\
\hline
a & c \\
a & e \\
d & c \\
f & e \\
\end{array}
\]

\[
\begin{align*}
p & \cdot p + p \cdot p & \cdot 0 \\
p & \cdot r & \cdot 1 \\
r & \cdot p & \cdot 0 \\
(r \cdot r + r \cdot s + r \cdot r) & \cdot 1 \\
(s \cdot s + s \cdot r + s \cdot s) & \cdot 1 \\
\end{align*}
\]
Summary so far

A space of annotations, K

K-relations: every tuple annotated with some element from K.

Binary operations on K: \cdot corresponds to joint use (join), and $+$ corresponds to alternative use (union and projection).

We assume K contains special annotations 0 and 1.

“Absent” tuples are annotated with 0!

1 is a “neutral” annotation (no restrictions).

Algebra of annotations? What are the laws of $(K, +, \cdot, 0, 1)$?
Annotated relational algebra

• DBMS query optimizers assume certain equivalences:
 – union is associative, commutative
 – join is associative, commutative, distributes over union
 – projections and selections commute with each other and with union and join (when applicable)
 – Etc., but no \(R \bowtie R = R \cup R = R \) (i.e., no idempotence, to allow for bag semantics)

• Equivalent queries should produce same annotations!

Proposition. Above identities hold for queries on \(K \)-relations iff \((K, +, \cdot, 0, 1)\) is a **commutative semiring**
What is a commutative semiring?

An algebraic structure \((K, +, \cdot, 0, 1)\) where:

- \(K\) is the domain
- \(+\) is associative, commutative, with \(0\) identity
- \(\cdot\) is associative, with \(1\) identity
- \(\cdot\) distributes over \(+\)
- \(a \cdot 0 = 0 \cdot a = 0\)

- \(\cdot\) is also **commutative**

Unlike ring, no requirement for inverses to \(+\)
Back to the example

\[
\begin{align*}
R & \quad A & B & C \\
 & a & b & c & p \\
 & d & b & e & r \\
 & f & g & e & s \\
\end{align*}
\]

\[
\begin{align*}
Q & \quad A & C \\
 & a & c & (p \cdot p + p \cdot p) \cdot 0 \\
 & a & e & p \cdot r \cdot 1 \\
 & d & c & r \cdot p \cdot 0 \\
 & d & e & (r \cdot r + r \cdot s + r \cdot r) \cdot 1 \\
 & f & e & (s \cdot s + s \cdot r + s \cdot s) \cdot 1 \\
\end{align*}
\]
Polynomials with coefficients in \mathbb{N} and annotation tokens as indeterminates p, r, s capture a very general form of **provenance**.
Provenance reading of the polynomials

- three different ways to derive $d e$
- two of the ways use only r
- but they use it twice
- the third way uses r once and s once
Low-hanging fruit: deletion propagation

We used this in **Orchestra** [VLDB07] for update propagation

We used this in Orchestra [VLDB07] for update propagation

![Diagram showing deletion propagation](image)

Delete d b e from R?

Set \(r = 0 \)!
But are there useful commutative semirings?

<table>
<thead>
<tr>
<th>Semiring</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\mathbb{B}, \land, \lor, \top, \bot)$</td>
<td>Set semantics</td>
</tr>
<tr>
<td>$(\mathbb{N}, +, \cdot, 0, 1)$</td>
<td>Bag semantics</td>
</tr>
<tr>
<td>$(\mathcal{P}(\Omega), \cup, \cap, \emptyset, \Omega)$</td>
<td>Probabilistic events [FuhrRölleke 97]</td>
</tr>
<tr>
<td>$(\text{BoolExp}(X), \land, \lor, \top, \bot)$</td>
<td>Conditional tables (c-tables) [ImielinskiLipski 84]</td>
</tr>
<tr>
<td>$(\mathbb{R}_+, \min, +, \infty, 0)$</td>
<td>Tropical semiring (cost/distrust score/confidence need)</td>
</tr>
<tr>
<td>$(\mathbb{A}, \min, \max, 0, P)$ where $\mathbb{A} = P < C < S < T < 0$</td>
<td>Access control levels [PODS8]</td>
</tr>
</tbody>
</table>
• What’s with the semirings? Annotation propagation

• **Housekeeping in the zoo of provenance models**
 [GK&T PODS 07, FG&T PODS 08, Green ICDT 09]

• Beyond tuple annotation

• The fundamental property and its applications

• Queries that annotate

• Datalog
Semirings for various models of provenance (1)

Lineage [CuiWidomWiener 00 etc.]

Sets of contributing tuples

Semiring: \((\operatorname{Lin}(X), \cup, \cup^*, \emptyset, \emptyset^*)\)
Semirings for various models of provenance (2)

(Witness, Proof) **why-provenance**
[BunemanKhannaTan 01] & [Buneman+ PODS08]

Sets of witnesses (w. =set of contributing tuples)

Semiring: \((\text{Why}(X), \cup, \uplus, \emptyset, \{\emptyset\})\)
Semirings for various models of provenance (3)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>p</td>
</tr>
<tr>
<td>d</td>
<td>b</td>
<td>e</td>
<td>r</td>
</tr>
<tr>
<td>f</td>
<td>g</td>
<td>e</td>
<td>s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimal witness **why-provenance**
[BunemanKhannaTan 01]

Sets of minimal witnesses

Semiring: \((\text{PosBool}(X), \land, \lor, \top, \bot)\)
Semirings for various models of provenance (4)

\[
\begin{array}{ccc}
R & A & B & C \\
\hline
a & b & c & p \\
d & b & e & r \\
f & g & e & s
\end{array}
\quad \quad \quad
\begin{array}{cc}
Q & A & C \\
\hline
\cdots & \{r\}, \{r\}, \{r, s\}
\end{array}
\]

Trio lineage [Das Sarma+ 08]

Bags of sets of contributing tuples (of witnesses)

Semiring: \((\text{Trio}(X), +, \cdot, 0, 1)\) (defined in [Green, ICDT 09])

Notation:

\{ \} set

[] bag
Semirings for various models of provenance (5)

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>b</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>g</td>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q</th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>⋯</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>⋯</td>
<td></td>
<td>⋯</td>
</tr>
</tbody>
</table>

Sets of bags of contributing tuples

Semiring: \((\mathbb{B}[X], +, \cdot, 0, 1)\)

Polynomials with boolean coefficients \([\text{Green, ICDT 09}]\) \((\mathbb{B}[X]\text{-provenance})\)

Notation:
- \{\} set
- \[[\]\] bag
Semirings for various models of provenance (6)

R

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>p</td>
</tr>
<tr>
<td>d</td>
<td>b</td>
<td>e</td>
<td>r</td>
</tr>
<tr>
<td>f</td>
<td>g</td>
<td>e</td>
<td>s</td>
</tr>
</tbody>
</table>

Q

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>[[r,r], [r,r], [r, s]]</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provenance polynomials

[GKT, PODS 07]

(\(\mathbb{N}[X]\)-provenance)

Bags of bags of contributing tuples

Semiring:

\((\mathbb{N}[X], +, \cdot, 0, 1)\)
A provenance hierarchy

most informative

least informative

Why(X)

Lin(X) PosBool(X)

Trio(X)

B[X]

N[X]
One semiring to rule them all... (apologies!)

Example: $2x^2y + xy + 5y^2 + z$

```
\[
\begin{align*}
\mathbb{N}[X] & \quad \text{drop coefficients} \\
\mathbb{B}[X] & \quad x^2y + xy + y^2 + z \\
\text{Trio}(X) & \quad \text{drop exponents} \\
\text{Why}(X) & \quad 3xy + 5y + z \\
\text{Lin}(X) & \quad \text{drop both exp. and coeff.} \\
\text{PosBool}(X) & \quad xy + y + z \\
\text{apply absorption} \\
& \quad (ab + b = b) \\
& \quad y + z
\end{align*}
\]
```

A path downward from K_1 to K_2 indicates that there exists an onto (surjective) semiring homomorphism $h : K_1 \rightarrow K_2$
Using homomorphisms to relate models

Example: $2x^2y + xy + 5y^2 + z$

Homomorphism?

$h(x+y) = h(x) + h(y)$ \hspace{1cm} $h(xy) = h(x)h(y)$ \hspace{1cm} $h(0) = 0$ \hspace{1cm} $h(1) = 1$

Moreover, for these homomorphisms $h(x) = x$
Containment and Equivalence [Green ICDT 09]

Arrow from K_1 to K_2 indicates K_1 containment (equivalence) implies K_2 cont. (equiv.)

All implications not marked \iff are strict
• What’s with the semirings? Annotation propagation

• Housekeeping in the zoo of provenance models

• **Beyond tuple annotation** [FG&T PODS 08]

• The fundamental property and its applications

• Queries that annotate

• Datalog
Relation, attribute and field annotation (1)

\[
R^u
\]

\[
\begin{array}{ccc}
A^x & B^y & C^1 \\
\vdots & & \vdots \\
a^1 & b^1 & c^1 \\
\vdots & & \vdots \\
\end{array}
\]

\[
\pi_{AC}(\pi_{AB} R \bowtie (\pi_{BC} R \cup S))
\]

\[
\begin{array}{ccc}
A^1 & C^1 \\
\vdots & & \vdots \\
a^1 & c^1 \\
\vdots & & \vdots \\
\end{array}
\]

\[
u^2 p^2 x y^2 + uvpmxyz
\]

Neutral annotation 1 used when we don’t bother to track data.
Relation, attribute and field annotation (2)

\[\pi_{AC}(\pi_{AB}R \bowtie (\pi_{BC}R \cup S)) \]

\[u^2p^2xy^2 + uvpmxyz \]

We omit 1 for convenience. From now on 1 is the default.

Here, we track both relations, attributes A and B in \(R \), and the first field of \(m \).
Same value, different annotations (where-provenance)

\[\sigma_{C=e} \pi_{AC}(\pi_{AB} R \bowtie \pi_{BC} R) \]

Track both e’s
Different field annotations produce different tuples

What happens when we add a projection on C?

\[\pi_C \sigma_{C=e} \pi_{AC} (\pi_{AB} R \bowtie \pi_{BC} R) \]
When we don’t care to track so many details

Add a homomorphism $h(w) = h(z) = u$. (Add to language.)

$$h \left(\pi_C \sigma_{C=e} \pi_{AC} \left(\pi_{AB} R \bowtie \pi_{BC} R \right) \right)$$
Why vs. where

A provenance token on a field is treated like any other token. In the semiring framework the why-where distinction is blurred.
• What’s with the semirings? Annotation propagation

• Housekeeping in the zoo of provenance models

• Beyond tuple annotation

• **The fundamental property and its applications**
 [GK&T PODS 07, FG&T PODS 08, Green&T EDBTworkshop 06]

• **Queries that annotate**

• **Datalog**
Fundamental property

For every query q and every homomorphism of commutative semirings $h : K_1 \rightarrow K_2$ the following "commutes":

Doesn’t always work, eg. difference.
Most important source of homomorphisms

If \(K \) is a commutative semiring, then any function on tokens, \(f : X \to K \) extends uniquely to a homomorphism \(h : \mathbb{N}[X] \to K \).

(“Extends means that \(h \) coincides with \(f \) on tokens.)

Think of \(h(pr+r^2+s^2) \) as evaluating \(pr+r^2+s^2 \) in \(K \). Examples are coming up.
An application of the fundamental property:

Compositionality

Input to A: tokens $X = \{p, r, s\}$; Output of A provenance in $\mathbb{N}[X]$

Input to B: tokens $Y = \{m, n\}$; Output of B provenance in $\mathbb{N}[Y]$

Say that for data $A \rightarrow B$ \quad $p + rs = m$, \quad $prs + 2s^2 = n$

This gives $f : Y \rightarrow \mathbb{N}[X]$ which extends to $h : \mathbb{N}[Y] \rightarrow \mathbb{N}[X]$

Say that one output of B has provenance $m^2 + 2n$

Then, as an output of A composed w/ B it has provenance

$$h(m^2 + 2n) = p^2 + 4prs + r^2s^2 + 4s^2$$
More applications of the fundamental property

• Renaming provenance tokens

• Deletion: mapping some tokens to 0 (seen earlier)

• Hiding detail, increasing abstraction:
 – mapping provenance tokens, many to few (seen earlier)
 – stop tracking tokens by mapping them to 1 (neutral)
Another application: all through provenance

Because it is the free commutative semiring.

Systems (like Orchestra) can compute and maintain only polynomial provenance, which is then evaluated, as needed, to provide:

– trust scores (see next)

– access control levels (see next)

– more frugal provenance like Trio(X), $\mathbb{B}[X]$, etc.

– and even multiplicity

Because it is the free commutative semiring.

Doesn’t work if prov. is Trio(X) Works with $\mathbb{B}[X]$.

Works even with prov. in PosBool(X)

Doesn’t work if prov. is $\mathbb{B}[X]$. With Trio(X) only set-bag semantics.
Application with (dis)trust scores (1)

Semiring is \(K = (\mathbb{R}_+^\infty, \min, +, \infty, 0) \)

Tokens are \(X = \{ p, r, s \} \)

Assignment function is \(f : X \rightarrow K \) where we suppose \(p \) is completely trusted \(f(p) = 0 \), \(r \) is less trusted \(f(r) = 1.5 \), and \(s \) is untrusted \(f(s) = \infty \)

The homomorphism \(h \) that extends \(f \) computes like this:
\[
h(2r^2 + rs) = h(r \cdot r + r \cdot r + r \cdot s) =
\]
\[
= \min(f(r) + f(r), f(r) + f(r), f(r) + f(s)) =
\]
\[
= \min(1.5 + 1.5, 1.5 + 1.5, 1.5 + \infty) = 3.0
\]
Application with (dis)trust scores (2)

\((\mathbb{R}_+ \infty, \text{min}, +, \infty, 0)\)

The fundamental property

\[
\begin{array}{cc}
\text{a} & \text{b} \\
\text{d} & \text{b} \\
\text{f} & \text{g} \\
\end{array}
\]

\[
\begin{array}{c}
p \\
r \\
s \\
\end{array}
\]

\(f(p) = 0, \quad f(r) = 1.5, \quad f(s) = \infty\)

\[
\begin{array}{cc}
\text{a} & \text{b} \\
\text{d} & \text{b} \\
\text{f} & \text{g} \\
\end{array}
\]

\[
\begin{array}{c}
0 \\
1.5 \\
\end{array}
\]

“Accept tuples with score \(\leq 2.5\)”

\[
\begin{array}{cccc}
a & c & 2p^2 \\
a & e & pr \\
d & c & pr \\
d & e & 2r^2 + rs \\
f & e & 2s^2 + rs \\
\end{array}
\]

eval with homomorphisms \(h\), the extension of \(f\)

\[
\begin{array}{cccc}
a & c & 0 \\
a & e & 1.5 \\
d & c & 1.5 \\
d & e & 3.0 \\
\end{array}
\]

deleted
Application to access control

\((A, \text{min}, \text{max}, 0, P)\) where \(A = P < C < S < T < 0\)

Suppose \(p\) is public, \(r\) is secret, \(s\) is top secret

```
\[
\begin{array}{ccc}
\text{a} & \text{b} & \text{c} & \text{p} \\
\text{d} & \text{b} & \text{e} & \text{r} \\
\text{f} & \text{g} & \text{e} & \text{s}
\end{array}
\]
```

with \(p = P, r = S, s = T\)

```
\[
\begin{array}{ccc}
\text{a} & \text{c} & 2p^2 \\
\text{a} & \text{e} & pr \\
\text{d} & \text{c} & pr \\
\text{d} & \text{e} & 2r^2 + rs \\
\text{f} & \text{e} & 2s^2 + rs
\end{array}
\]
```

Fundamental property implies that applying the clearance to the database or to the query answer yields the same result. (But only the second is actually feasible!)

```
\[
\begin{array}{ccc}
\text{a} & \text{c} & P \\
\text{a} & \text{e} & S \\
\text{d} & \text{c} & S \\
\text{d} & \text{e} & S \\
\text{f} & \text{e} & T
\end{array}
\]
```

"User with secret clearance"
Another application: uncertainty (1)

- **Possible worlds** model:
 - incomplete K-database = a set of K-instances
 - probabilistic K-database = a distribution on the set of all K-instances

- Unwieldy size! Want representation systems, like the (boolean) c-tables [ImielinskiLipski 84]: tables annotated with elements from the semiring $\text{BoolExp}(X)$.

- So why not $\text{Trio}(X), \mathbb{B}[X], \text{Why}(X), \mathbb{N}[X], \text{PosBool}(X)$? (provided we stick to positive queries, SPJU, no D) $\mathbb{N}[X]$ always works. For the others it depends on K.
Another application: uncertainty (2)

- $\mathbb{N}[X]$ always works. For incomplete databases:
 - Take as representation table T a $\mathbb{N}[X]$-relation
 - For each assignment function $f : X \rightarrow K$
 - extend to a homomorphism $h : \mathbb{N}[X] \rightarrow K$
 - use h to eval. into K the polynomials annotating T
 - thus obtaining a possible world, a K-relation

- The fact that this works properly (it is a strong representation system) follows from the fundamental property!
Another application: uncertainty (3)

• For probabilistic databases follow Green’s idea of pc-tables [Green&T 06]

• Again representation tables are $\mathbb{N}[X]$-relations

• Treat variables in X as independent. For each variable assume a prob. distribution on the values in K it can take.

• This gives a probability distribution on assignment functions $f : X \rightarrow K$, therefore on the possible worlds.
\(N[X] \) always works, for the others it depends on \(K \)

Diagram:
- **\(N[X] \)**
- **\(B[X] \)**
- **\(Trio(X) \)**
- **\(\mathbb{R}_{+ \infty} \)**
- **\(Why(X) \)**
- **\(PosBool(X) \)**
- **\(B \)**
- **\(A \)**

- **Tuples have cost/score**
- **Bag instances**
- **Set instances**
- **Limited to assignments \(x \to 0 \) or \(1 \)**
- **A downward path from provenance \(P[X] \) to a blue leaf \(L \)** means that any assignment \(X \to L \) extends to a homomorphism \(P[X] \to L \)

That’s all we need!
• What’s with the semirings? Annotation propagation

• Housekeeping in the zoo of provenance models

• Beyond tuple annotation

• The fundamental property and its applications

• **Queries that annotate** [FG&T PODS 08]

• **Datalog**
Queries that annotate

• In Orchestra [GKI&T VLDB07] we annotate schema mappings with provenance “unary operations”.

• In [FGT PODS 08] we introduced into the query language an operation of “scalar multiplication”.

• The “scalar” k is from K and the “vector” S is a K-relation (or K-set). For kS each annotation in S is multiplied by k.

• We have also seen how useful homomorphisms are.

• This suggests an operation hS where the homomorphism h is applied to each annotation in S.
Extending query languages to manipulate annotation/provenance (AnnotatedSQL?)

```sql
SELECT RenameH ( r.Name AS Name, s.Project AS Project )
FROM r IN db1 Employee, s IN db2 Project
WHERE ...
DEFINE RenameH AS ( db1 -> PersonnelDB, db2 -> BillingDB )
```

The tuples in the query answer have provenances in terms of the tokens PersonnelDB and BillingDB as well as tokens from the annotations of the tuples in Employee and Project.
• What’s with the semirings? Annotation propagation

• Housekeeping in the zoo of provenance models

• Beyond tuple annotation

• The fundamental property and its applications

• Queries that annotate

• **Datalog** [GK&T PODS 07]
K-Datalog?

n-ary \(K \)-relations: functions \(R : U \rightarrow K \) \(R \) in \(K^U \)

where \(U \) is the set of all \(n \)-tuples over some domain, such that

\[
\text{supp}(R) = \{ t \mid R(t) \neq 0 \} \quad \text{is finite}
\]

The immediate consequence operator of a program \(P \) (incorporates edb) in \(K \)-relation semantics

\[
T_P : K^U \rightarrow K^U
\]

For what semirings \(K \) does \(T_P \) have a fixpoint?

Recall that \(T_P \) computes annotations that are defined by polynomials.
ω-continuous semirings

Natural preorder: \(x \leq y \) iff there exists \(z \) s.t. \(x + z = y \)

Naturally ordered semiring: when \(\leq \) is an order relation (all semirings seen here are naturally ordered)

ω-completeness: when \(x_0 \leq x_1 \leq \ldots \leq x_n \leq \ldots \) have l.u.b.'s

ω-continuity when + and \(\cdot \) preserve those l.u.b.'s
Least fixpoints and formal power series

Over \(\omega \)-continuous semirings functions defined by polynomials have least fixpoints (usual definition) hence:

\[
\text{fix}(P) = \bigcup_{k \geq 0} T^k_P(0)
\]

Most of the semirings that interest us are already \(\omega \)-continuous.

\((\mathbb{N}, +, \cdot, 0, 1)\) is not, but its “completion” \((\mathbb{N}^\infty = \mathbb{N} \cup \{\infty\}, +, \cdot, 0, 1)\) is.

For provenance, the completion of \(\mathbb{N}[X] \) is not \(\mathbb{N}^\infty[X] \). Instead of (finite) polynomials we need (possibly infinite) formal power series. They form a semiring, \(\mathbb{N}^\infty[[X]] \).
Proof semantics

By considering all (possibly infinitely many) proof trees τ and the annotations of the tuples on their leaves:

$$\text{proof}(P)(t) = \sum_{\tau \text{ yields } t} \left(\prod_{t' \text{ leaf}(\tau)} R(t') \right)$$

We have $\text{proof}(P) = \text{fix}(P)$

There is also an equivalent “least model” semantics [G09]

Also, $\text{supp}(\text{fix}(P))$ is finite, and equals the (usual) \mathcal{B}-relations semantics (set semantics).
An equivalent perspective

\[
\begin{align*}
T(X, Y) &::= E(X, Y) \\
T(X, Y) &::= T(X, Z), T(Z, Y)
\end{align*}
\]

Polynomials are the provenance of the immediate consequence operator.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>n</td>
</tr>
<tr>
<td>c</td>
<td>b</td>
<td>p</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td>r</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>s</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
x &= m + yz \\
y &= n \\
z &= p \\
u &= r + uv \\
v &= s + v^2 \\
w &= xu + wv \\
t &= zu + tv
\end{align*}
\]

Solve!
Solving in the power series semiring

\[x = m + np \]
\[y = n \]
\[z = p \]
\[v = s + s^2 + 2s^3 + 5s^4 + 14s^5 + \ldots \]
\[u = r v^* \]
\[w = r(m+np)(v^*)^2 \]
\[t = pr(v^*)^2 \]

where

\[v^* \triangleq 1 + v + v^2 + v^3 + \ldots \]

In general the coefficients are from \(\mathbb{N}^\infty \)
Decidability results

- Given $t \in q(I)$, it is **decidable** whether the provenance of t is a proper (infinite) power series. (Generalizing a result in [Mumick Shmueli 93] about bag semantics for Datalog)

- Given $t \in q(I)$, and a monomial μ, the coefficient of μ in the power series that is the provenance of t is **computable** (including when it is ∞).
• From CFG ambiguity, we know that testing whether all coefficients are ≤ 1 is undecidable.

• However, testing whether all coefficients are $\neq \infty$ is decidable.
Extensions and sequels (1)

• Implementation in ORCHESTRA
 [GKI&T VLDB 07, KarvounarakisIves WebDB 08]
 – Schema mappings are Datalog with Skolem functions, weakly acyclic recursion
 – Provenance polynomials are represented as a graph with two kinds of nodes, tuples and mappings. More economical: sharing common subexpressions

• Provenance information is data too! Provenance query language on the Orchestra graph provenance representation; also allows evaluation is particular semirings: trust, security, etc.
 [KarvounarakisIves&T SIGMOD 10]
Extensions and sequels (2)

• Complex value data, Nested Relational Calculus, trees, unordered XML and XQuery [FG&T PODS 08].

• Comprehensive study of SPJ (conjunctive queries) and SPJU (non-recursive Datalog) containment and equivalence under annotated relations semantics [Green ICDT 09]

• Relations annotated with integers (positive and negative), semantics and reformulation with views for the full relational algebra [GI&T ICDT 09]
A tiny bit of related work

• Formal languages [ChomskiSchützenberger63]

• CSP (Bistarelli et al.)

• Debugging schema mappings [ChiticariuTan06]

• “Closed” semirings used in Datalog optimization (Consens&Mendelzon)

• Lots more related work on data provenance, bag semantics, NLP, programming languages, etc.
Conclusions and Further Work

General and versatile framework.
Dare I call it “semiring-annotated databases”? Many apparent applications.
We clarified the hazy picture of multiple models for database provenance.
Essential component of the data sharing system Orchestra.

- Dealing with **negation** (progress: [Geerts&Poggi 08, GI&T ICDT 09])
- Dealing with **aggregates** (progress: [T ProvWorkshop 08])
- Dealing with **order** (speculations...)

03/24/10
EDBT Keynote, Lausanne
Thank you!