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Val Tannen

1 FO definability

In these lecture notes we restrict attention to relational vocabularies i.e., vocabularies consisting only of

relation symbols (or arity > 0) and constants (function symbols of arity 0).

We consider definability of properties of FO models by FO sentences. Recall that in Problem 8 of Homework

1 you showed that finiteness, and hence “infiniteness”, cannot be captured by a single sentence, although

the latter can be captured by the infinite set of sentences Λ
def
= {λn | n ≥ 2} with λn saying “there are at

least n distinct elements”:

λn
def
= ∃x1, . . . , xn Distinct(x1, . . . , xn)

Distinct(x1, . . . , xn)
def
=

∧
1≤i<j≤n

xi 6= xj

Since we already know (Theorem 1.3 in lecture notes 3) that the data complexity of FOL model checking

is in LOGSPACE, we could use common complexity-theoretic assumptions (such as LOGSPACE 6=NP) to

conclude that NP-complete properties of finite graphs such as Hamiltonicity, clique or independent set

existence, etc. are not FO-definable. However, we might be interested in asking if properties that can be

checked much more efficiently such as connectivity, acyclicity, etc. are FO definable or not.

With an empty vocabulary, consider the following parity query defined on finite FO models A with universe

A:

Even(A) =

{
true if |A| is even

false if |A| is odd

We ask whether there exists an FO sentence σ such that that for any finite model A we have Even(A) = true

iff A |= σ. If so, we say that parity is definable by σ over finite models.

Proposition 1.1 Parity is not FO definable.

Proof We extend the query to Evenext defined on all models by giving it an arbitrary value on infinite

models. Note that Even is FO definable over finite models iff Evenext is FO definable over all models.
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Now suppose that Evenext is defined by the FO sentence σ and consider

Σ1 = {σ} ∪ Λ Σ2 = {¬σ} ∪ Λ

Every finite subset of Σ1 is satisfiable, therefore, by the Compactness Theorem, Σ1 has a model. This

model is infinite since it is a model of Λ. Then, by the Löwenheim-Skolem Theorem, Σ1 has a countably

infinite model, call it A1. Similarly, Σ2 has a countably infinite model A2.

Because A1 and A2 have the same cardinality, there exists a bijection between their universes. Because

the vocabulary is empty this bijection is a model isomorphism. But isomorphic models satisfy the same

FO sentences. Hence A1 (say) is a model of both σ and ¬σ. Contradiction. 2

The proof we just saw is quite particular. It is not clear how to extend it to non-empty vocabularies and

in fact:

Exercise 1.1 Show that the parity query is FO definable over finite models if the vocabulary contains at

least a binary relation symbol.

As we shall see, an important result is that parity of finite linear (total) orders is not FO definable. This

result assumes a vocabulary consisting of a binary relation symbol, <, but it also restricts the class of

models over which the question is asked to those finite models in which < is a total (linear) ordering.

Although the axioms of linear ordering can be stated in FOL, the parity of the number of elements cannot.

A class of structures of great interest are graphs, both directed (digraphs) and undirected. Digraphs (loops

are allowed) are FO models over the vocabulary consisting of a binary relation symbol, E, and E(x, y) is

interpreted as “there is an edge from vertex x to vertex y”. An important result is that reachability in

finite digraphs is not FO definable.

Undirected simple graphs (no loops, no parallel edges) can also be captured with a binary relation symbol,

E, but it is the formula x 6= y & [E(x, y)∨E(y, x)] that is interpreted as “{x, y} is an edge with endpoints

x and y”. Alternatively, undirected simple graphs can be captured, like linear orders, by FOL axioms that

say that E is irreflexive and symmetric. Regardless, none of the following properties are FO definable over

finite simple graphs:

• The graph is connected.

• The graph is acyclic.

• The graph is a tree.

• The graph is bipartite (2-colorable).

• The graph is Eulerian.

• The graph is planar.
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In general, compactness arguments can be used to show that these properties are not FO definable over

all graphs, finite or infinite.

Exercise 1.2 Use a compactness argument to show that acyclicity is not FO definable over all undirected

simple graphs.

The Compactness Theorem does not hold over finite models: every finite subset of Λ above has a finite

model but Λ itself does not. Using the a compactness argument over all models does not necessarily help

with non-definability over finite models/graphs (the parity query above was an exception). 1

We develop different techniques that work well with finite models and we shall do so in the next section.

First some definitions and notations that are quite general:

Definition 1.1

• If A is a model with universe A, we denote the interpretation in A of a constant c by cA ∈ A and

the interpretation in A of an m-ary relation symbol R by RA ⊆ Am.

• Two models are isomorphic, written A ' B if there exists a bijection f between their universes that

preserves the interpretation of the constants, f(cA) = cB and of the relation symbols, f(RA) = RB.

• The class of models of an FO sentence is closed under isomorphism. This motivates the following: a

Boolean query on a class of models M is a function Q that maps models in M to {true, false} such

that if A ' B then Q(A) = Q(B). Clearly, every FO sentence defines a Boolean query on any class

of models. The converse fails, as we have seen with the parity query.

• Two models A and B are elementarily equivalent, written A ≡ B if for any FO sentence σ we have

A |= σ iff B |= σ.

Proposition 1.2 There exist (infinite) models that are elementarily equivalent but not isomorphic.

Proof Let A be an uncountable model with a countably infinite vocabulary. Th(A) is countably infinite

and by the Löwenheim-Skolem Theorem it has a countably infinite model, B. Since B |= Th(A) it follows

that Th(B) = Th(A) (why?). 2

1This statement is somewhat unfair. Here, from an anonymous donor, is a quick sketch of a compactness based proof that

none of connectivity, acyclicity, and “treeness” and “bipartiteness” are definable over finite graphs. Let S be the sentence

saying that a graph is simple with exactly two nodes of degree one and all other nodes of degree two, let An be the sentence

saying there is no cycle of length n, for n ≥ 3, and let Dn be the sentence saying that the distance between the two nodes

of degree one is at least n. Let T be the theory axiomatized by {S} ∪ {An, Dn | n ≥ 3}. Let κ be an uncountable cardinal.

Note that every model of T of cardinality κ consists of two one-way infinite simple chains and κ many bi-infinite simple

chains. Hence, for every uncountable κ, T is κ-categorical, and hence complete. Let θ be an FO sentence in the language of

graphs. Either θ or its negation is a consequence of T . Suppose it’s θ (the argument is the same in the other case). Then by

compactness, θ is a consequence of S and finitely many of the An and Dn’s. So for large enough i, θ has models which consist

of 1) a single finite chain (of length at least i), and 2) the disjoint union of a single finite chain and arbitrarily many cycles of

lengths at least i. Thus θ has finite models which are both connected and not connected, acyclic and not acyclic, trees and

non-trees, and bipartite and non-bipartite.

3



Exercise 1.3 Assume a finite relational vocabulary. Show that for any finite model A there exists a

sentence σA such that for any model B we have B |= σA iff B ' A. It follows that over a finite relational

vocabulary any two finite models that are elementarily equivalent are also isomorphic. (This last also holds

for infinite vocabularies. This is a a harder but worthwhile exercise. Hint: First show that the models

have the same number of elements, say n. If the models are not isomorphic, then none of the n! bijections

between them is an isomorphism. Use this to construct a sentence that distinguishes them.)

2 Ehrenfeucht-Fräıssé games

The Ehrenfeucht-Fräıssé (EF) game is as follows. There are two players, called Spoiler and Duplicator.

The board of the game consists of two structures A and B. The goal of Spoiler is to show that these two

structures are different; the goal of Duplicator is to show that they are the same.

In the classical EF game, the players play a certain number of rounds. Each round consists of the following

steps:

1. Spoiler picks a structure (A or B) and makes a move by picking an element of that structure: either

a ∈ A or b ∈ B.

2. Duplicator responds by picking an element in the other structure.

Suppose that Spoiler and Duplicator play n rounds and let a = (a1, . . . , an) and b = (b1, . . . , bn) be the

(not necessarily distinct!) moves made by the players on A, respectively B. Who has won? To define this,

we need a crucial definition: that of a partial isomorphism.

Definition 2.1 (Partial isomorphism). Let A, B be two σ-structures, and a = (a1, . . . , an) and b =

(b1, . . . , bn) be two tuples of elements from A and B respectively. Then (a, b) defines a partial isomorphism

between A and B if the following conditions hold:

• For every i, j ≤ n,

ai = aj iff bi = bj .

• For every constant symbol c from σ, and every i ≤ n,

ai = cA iff bi = cB.

• For every m-ary relation symbol R from σ and every sequence (i1, . . . , im) of (not necessarily distinct)

numbers 1 ≤ i1, . . . , im ≤ n,

(ai1 , . . . , aim) ∈ RA iff (bi1 , . . . , bim) ∈ RB.

If we extend the mapping ai 7−→ bi, i ∈ [1..n] with cA 7−→ cB for each constant c such that cA 6∈ a we

obtain an isomorphism between the substructures of A, respectively B generated by a, respectively b, hence

the name.

4



Definition 2.2 (Who wins) The game run (a, b) has been won by Duplicator if it defines a partial iso-

morphism. Otherwise, this game run was won by Spoiler.

Definition 2.3 We write A ∼n B if Duplicator has a winning strategy for A and B that works in any

n-round game.

Observe that A ∼n B implies A ∼k B for every k ≤ n.

Although it is not at all obvious that ∼n is transitive, it can, in fact, be shown that ∼n is an equivalence

relation on structures. This can be shown directly, or it can be seen to follow from Theorem 2.1 below.

Definition 2.4 (Quantifier rank). The quantifier rank of a formula qr(σ) is its depth of quantifier

nesting. That is:

• If σ is atomic, then qr(σ) = 0.

• qr(σ1 ∨ σ2) = qr(σ1 ∧ σ2) = max(qr(σ1), qr(σ2)).

• qr(¬σ) = qr(σ).

• qr(∃xσ) = qr(∀xσ) = qr(σ) + 1.

We also define FO[k] as the set of all FO sentences of quantifier rank up to k and A ≡k B to mean that

for any FO[k] sentence σ we have A |= σ iff B |= σ.

Theorem 2.1 (Ehrenfeucht-Fräıssé). For any two models A and B we have A ≡k B iff A ∼k B.

We shall sketch the proof in the next section. For full details you can consult Libkin’s book (see course

bibliography). I also strongly recommend Kolaitis’s chapter “On the expressive power of logics on finite

models” in “Finite Model Theory and Its Applications”, Grädel et al., Springer 2007.

No finiteness assumption is made about the models in Theorem 2.1. In fact, the key feature of EF games

is that they capture the combinatorial content of FO quantification and thus can be used to characterize

definability over an arbitrary class of FO models. For non-definability results we will use the following:

Corollary 2.2 Let Q be a Boolean query defined on a class of models M. Suppose that for every k ∈ N
there exist two models Ak,Bk ∈M such that

• Ak ∼k Bk, however

• Q(Ak) 6= Q(Bk).

Then Q is not FO definable over models in M.
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Using this corollary it can be shown that parity is not FO definable over finite models with empty vocabulary

and also that the property of being Eulerian is not definable over finite undirected simple graphs. For the

latter use the family of graphs with nodes {a, b, c1, . . . , cn} and with edges {{a, ci}, {b, ci}, i = 1, . . . , n}.

For n ≥ 1 the linear order model (Ln, <) where < is a binary relation symbol is defined as follows: the

universe is [1..n] and < is interpreted as the usual strict ordering of natural numbers.

It can be shown that L6 6∼3 L7 but L7 ∼3 L8 (play these EF games!). More generally, on such structures

EF games can be completely characterized:

Theorem 2.3 Let k,m, n be positive integers. The following are equivalent:

(i) Lm ∼k Ln

(ii) m = n or, both m,n ≥ 2k − 1

Exercise 2.1 Prove Theorem 2.3 by induction on min(m,n). Hint: Along the way, show the following:

for every s ≥ 1, Lm ∼s+1 Ln iff

• ∀a ∈ Lm ∃b ∈ Ln L
>a
m ∼s L

>b
n & L<a

m ∼s L
<b
n , and

• ∀b ∈ Ln ∃a ∈ Lm L>a
m ∼s L

>b
n & L<a

m ∼s L
<b
n

Corollary 2.4 The parity query is not definable over linear orders.

Now, using a reduction from this non-definability result we can show that reachability is not definable over

finite digraphs:

Corollary 2.5 Consider the relational vocabulary with a binary relation symbol E and two constants c1 and

c2. The finite models corresponding to this vocabulary are finite digraphs with edges E and two distinguished

nodes c1, c2. The property “c2 is reachable from c1 via a directed path” is not FO-definable.

Proof We set up the following “FO-reduction” from parity of finite linear orders Ln to reachability in

finite digraphs. The nodes of the digraph are the same as the elements of Ln, c1 is 1, c2 is n, and there is

an edge i→ j iff i+ 2 = j. Now notice that c2 is reachable from c1 in the resulting digraph iff n is odd.

Notice also that the components of this reduction can be described by FO formulas:

first: first(x)
def
= ∀y x ≤ y

last: last(x)
def
= ∀y y ≤ x

successor: succ(x, y)
def
= x < y ∧ (∀z x < z ⇒ y ≤ z)
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plus2: plus2 (x, y)
def
= ∃z succ(x, z) ∧ succ(z, y)

Therefore, if reachability of c2 from c1 is FO-definable in finite digraphs with edge relation E by some sen-

tence σ(E, c1, c2) then parity (even) of finite linear orders would also be FO-definable, by ¬[∃x1, x2 first(x1)∧
last(x2) ∧ σ′] where σ′ is obtained from σ by substituting every occurrence of ck with xk, k = 1, 2 and

further substituting every occurrence of an atomic formula E(t1, t2) with the formula plus2 (t1, t2) (since

the vocabulary is relational, t1, t2 are variables or constants) . 2

Exercise 2.2 Using reductions from the non-definability of parity over linear orders show that connectivity,

acyclicity, “treeness”, and “bipartiteness” are not definable over finite undirected simple graphs.

3 Proof sketch for the Ehrenfeucht-Fräıssé Theorem

As reasoning about winning strategies is more complicated, it will be helpful to replace ∼k with the

following:

Definition 3.1 The family of back-and-forth relations, 'k is defined inductively as follows:

• A '0 B iff A and B satisfy the same atomic sentences.

• A 'k+1 B iff

forth for every a ∈ A there exists b ∈ B such that (A, a) 'k (B, b), and

back for every b ∈ B there exists a ∈ A such that (A, a) 'k (B, b).

Here, A and B have the same vocabulary V, while (A, a), respectively (B, b), is a c-expansion (see Exercise

2.1 in lecture notes 3) of the model A, respectively B, when a fresh constant c is added to V. Therefore,

although this is not explicit in the notation, each back-and-forth relation depends not only on a k but also

on a vocabulary, and is defined among pairs of models with that vocabulary.

Lemma 3.1 For any two models A and B we have A ∼k B iff A 'k B.

The proof is straightforward by induction on k. However, because of the “vocabulary-switch” in the

definition of 'k we have to make sure that the induction hypothesis is strong enough, so what we actually

prove is

∀k ∀V ∀A,B A ∼k B ⇔ A 'k B

This observation applies as well to the other proofs by induction involving 'k in the rest of these lecture

notes.

Lemma 3.2 For any two models A and B we have that A 'k B implies A ≡k B.
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Proof We prove by induction on k the statement:

∀k ∀V ∀A,B ∀σ ∈ FO[k] A ∼k B ⇒ (A |= σ ⇔ B |= σ)

base case Sentences in FO[0] are boolean combinations of atomic sentences. Since A and B agree on

atomic sentences they also agree of their boolean combinations.

induction step Sentences in FO[k + 1] are boolean combinations of atomic sentences and quantified

sentences. Therefore it suffices (why?) to prove the statement for σ = ∃xϕ(x) where ϕ(c) ∈ FO[k] over

the vocabulary expanded with a fresh constant c.

If A |= ∃xϕ(x) then there exists a ∈ A such that (A, a) |= ϕ(c). By the forth property there exists

b ∈ B such that (A, a) 'k (B, b). By induction hypothesis (B, b) |= ϕ(c) hence B |= ∃xϕ(x). The converse

implication is the same, using the back property. 2

To finish the proof of Theorem 2.1 we need the converse of Lemma 3.2. For this we will develop in the

next section an interesting characterization of the equivalence classes of ≡k.

4 Rank-k types and what’s left from the EF Theorem

Definition 4.1 Let A be a model. Define the rank-k type of A as

Tpk(A)
def
= {σ ∈ FO[k] | A |= σ}

An equivalence class modulo ≡k is characterized by a common type: A ≡k B iff Tpk(A) = Tpk(B).

Note that if T is a rank-k type, it is satisfiable hence consistent, in fact “maximally” so: for any σ ∈ FO[k]

we have σ 6∈ T iff ¬σ ∈ T .

Next, perhaps surprisingly, we show that every rank-k type can be captured/described by a single sentence.

Recall that that a boolean expression is an irredundant disjunctive normal form (IDNF) if it is a DNF

in which the boolean terms (disjuncts) have distinct literals and that no term implies another (i.e., there

are no two terms u and v such that all the literals of u appear among the literals of v). It is well-known

that every boolean expression is logically equivalent to one in IDNF and that two logically equivalent

IDNFs are syntactically the same up to reordering terms and literals in each term. Thus IDNFs serve as

a syntactically unique normal forms for boolean expressions.

Definition 4.2 (quick and dirty) An FO[0] sentence is a boolean combination of atomic sentences. We

define its normal form as the unique IDNF with which it is logically equivalent.

An FO[k + 1] sentence is a boolean combination W of either atomic sentences or sentences of the form

Qxϕ(x) where Q ∈ {∃, ∀} and ϕ(c) ∈ FO[k] for a fresh constant c. We put (recursively) ϕ(c) in normal

form for FO[k] sentences then we replace c back with x and we put the resulting boolean combination in

IDNF. This defines the normal forms for FO[k + 1] sentences.
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We denote by NF [k] the set of sentences in FO[k] that are in normal form. In NF [k] we identify sentences

up to renaming of bound variables or to reordering literals/terms.

(Note that we did not take a detour through prenex normal forms. That’s because they don’t have the

same quantifier rank.)

Lemma 4.1 Recall that we are working with a finite relational vocabulary. For fixed k:

1. NF [k] is finite.

2. Every sentence in FO[k] is logically equivalent to a unique sentence in NF [k].

Thus, we can say that up to logical equivalence FO[k] contains only finitely many sentences.

Definition 4.3 Now, let T be a rank-k type, i.e., T = Tpk(A) for some model A. Because NF [k] is finite

we can associate with T the sentence

αT =
∧
{σ | σ ∈ T ∩NF [k]}

This is the single sentence that captures/describes T : if σ ∈ T then its normal form appears as a conjunct

in αT while if σ 6∈ T then the normal form of ¬σ does the same.

Clearly, T1 = T2 implies αT1 = αT2 (up to a possible reordering of the conjuncts).

Exercise 4.1 Prove the following

1. αTpk(A) ∈ Tpk(A).

2. If T1, T2 are rank-k types then αT1 = αT2 implies T1 = T2.

3. A ≡k B iff αTpk(A) = αTpk(B) iff A |= αTpk(B)

4. If T is a rank-k type and σ ∈ FO[k] then σ ∈ T iff αT ` σ and σ 6∈ T iff αT ` ¬σ.

Now we can finish the proof of the EF Theorem (Theorem 2.1).

Lemma 4.2 For any two models A and B we have that A ≡k B implies A 'k B.

Proof The proof is again by induction on k with the same kind of strengthening of the induction hypothesis:

∀k ∀V ∀A,B A ≡k B ⇔ A 'k B

The base case is immediate. For the induction step assume A ≡k+1 B and let a ∈ A.
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Let T be the rank-k type of the expansion (A, a), where the vocabulary was expanded with the fresh

constant c and let αT be the sentence that describes this type. To emphasize the possible occurrences of c

in αT we write αT (c). By Exercise 4.1 we have αT (c) ∈ FO[k] and (A, a) |= αT (c).

Let x be a fresh variable and consider the sentence ∃xαT (x). Since (A, a) |= αT (c) we also have A |=
∃xαT (x). Since αT (c) ∈ FO[k] we have ∃xαT (x) ∈ FO[k + 1].

Since A ≡k+1 B we now have B |= ∃xαT (x). Therefore, there exists a b ∈ B such (B, b) |= αT (c). But

αT (c) describes the rank-k type of (A, a). Thus, by Exercise 4.1, (B, b) ≡k (A, a). By induction hypothesis

(B, b) 'k (A, a) and according to the definition of A 'k+1 B we are done. 2

We can extract a bit more out of rank-k types. It has been already clear that

Proposition 4.3 There are only finitely many types, hence finitely many equivalence classes modulo ≡k

(we say that the equivalence relation ≡k is of finite index).

Moreover, we can now show that the non-FO-definability criterion in Corollary 4.4 is not only sufficient,

but also necessary:

Corollary 4.4 Let Q be a Boolean query defined on a class of models M. Then Q is FO-definable if and

only if there exists k ∈ N such that for any two models A,B ∈M A ∼k B implies Q(A) = Q(B).

Proof By the EF Theorem we can replace ∼k with ≡k. Then one of the implications in the iff becomes

trivial. For the converse note that the premise says that there exists a k such that ≡k is a refinement of

the equivalence relation determined by Q hence {A | Q(A) = true} is a union of ≡k-equivalence classes.

By Proposition 4.3 this union is finite. Each of the equivalence classes corresponds to a rank-k type, and

therefore it is described by a sentence of the form αT . The disjunctions of these (finitely many) sentences

is an FO sentence that defines Q. 2

5 Hanf-locality

As you have probably guessed from Exercise 2.1 the combinatorics of showing ∼k can be quite hard. It

makes sense to gather the hard part of such proofs into a powerful sufficient criterion that we can then use

easily to show non-FO-definability of various properties. Hanf-locality is one such criterion.

Definition 5.1 (Gaifman graph) Given a model A over a relational vocabulary V, its Gaifman graph

is the undirected graph whose nodes are all the elements of A and such that there is an edge between a1
and a2 iff a1 = a2 or there exists R ∈ V and a tuple t ∈ RA such that both a1, a2 occur in t.

So the Gaifman graph of a model cannot have parallel edges but it has all loops. I am not sure what

are the technical reasons behind the latter, but here we will consider only applications in which A is an
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undirected simple graph itself and for these I believe that it is sufficient to assume that the Gaifman graph

is the graph itself. So from now on all the models are undirected simple graphs and we don’t talk about

the Gaifman graph anymore.

Recall that in a graph the distance between two nodes is the length of a shortest path between them (and

it is ∞ if none such exists). The ball of radius r centered at node a is the set of all nodes at distance up to

r from a. Define the neighborhood of radius r around node a, notation Nr(a) to be the subgraph induced

by the ball of radius r centered at a. The following definition relies in essential way on graph isomorphisms

between such neighborhoods.

Definition 5.2 Two graphs A and B are Hanf-equivalent with radius r and threshold t, notation A 'H
r,t B

if

• for all a ∈ A the sets {a′ ∈ A | NAr (a′) ' NAr (a)} and {b ∈ B | NBr (b) ' NAr (a)} either have the

same size or both have size > t, and

• for all b ∈ B the sets {b′ ∈ B | NBr (b′) ' NBr (b)} and {a ∈ A | NAr (a) ' NBr (B)} either have the

same size or both have size > t.

I have yet to understand how to take advantage of the threshold condition (if you wish to learn more see

Section 4.5 in Libkin’s book). Thus I will state the Hanf-locality in a weaker form that corresponds to a

“threshold of ∞”. We will denote with 'H
r the corresponding Hanf-equivalence.

Theorem 5.1 (Hanf Locality for FOL) For any finite relational vocabulary and any k there exists a

radius r such that for any two graphs A,B we have that A 'H
r B implies A ≡k B.

This form of the Hanf-locality theorem is known as uniform since r depends only on k (a bound on r can

be also shown: r ≤ 3k). Its proof, as a consequence of the EF Theorem, is quite involved in its analysis of

the “combinatorics of neighborhoods”. We have seen in class a “soft” proof, relying mostly on compactness

arguments, of a non-uniform version of the Hanf-locality Theorem (we state this also for a “threshold of

∞):

Theorem 5.2 (Non-uniform Hanf Locality for FOL) Assume again a finite relational vocabulary.

For every sentence σ and every degree bound d, there is a locality radius r such that for every pair of

models A,B with Gaifman graphs of degree bounded by d, if A 'H
r B, then A |= σ iff B |= σ.

Note that in the non-uniform version r depends on d while in in the uniform version it does not. (The

dependence of r on the sentence, rather than just on the quantifier rank, is not fundamental since we have

seen that, up to logical equivalence, there are only finitely many sentences in FO[k].)

The Hanf Locality Theorem can be used to formulate a sufficient criterion for non-FO-definability of a

query Q in a way similar to how the EF Theorem is used: for any r supply two large enough graphs A,B
such that A 'H

r B but Q(A) 6= Q(B). Also, we have seen in class how to use locality to prove that planarity

is not FO-definable on undirected simple graphs.

11



Exercise 5.1 Show that connectivity is not FO-definable on undirected simple graphs. Hint: Make A a

union of two “large enough” disjoint cycles and B one large enough cycle. Carefully describe the size of

the cycles in terms of r and count the sizes of the sets involved in Hanf-equivalence.

Exercise 5.2 Show that bipartiteness (2-colorability), acyclicity and treeness are not FO-definable on undi-

rected simple graphs.

Hanf-locality can also be used to show that certain queries cannot be defined in certain query languages,

provided that an analog of the Hanf-locality Theorem is shown for those query languages.

Definition 5.3 A query Q is said to be Hanf-local if there exists a radius r such that for any two graphs

A,B we have that A 'H
r B implies Q(A) = Q(B).

Then the strategy is to show that all the queries defined in query language are Hanf-local. By the exercises

above, it follows that the language cannot define connectivity, etc. Dong, Libkin and Wong have used

this strategy to show that an idealized version of SQL (with bag semantics and aggregates) cannot define

transitive closure.
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