
Friendly Logics, Fall 2015, Lecture Notes 4

Val Tannen

1 Arithmetic vocabularies

In this section we discuss a FO language for arithmetic that will subsequently be used for the fundamental

results of Gödel et al. Consider first the vocabulary consisting only of the binary function + (we use the

syntax t1 + t2 instead of +(t1, t2)). As usual, we also assume that equality is in our language. Notice that

some of the other arithmetic operations and can already be defined as “shorthand” for formulas with +,

albeit in predicate form, e.g.:

ordering: t1 ≤ t2
def
= ∃x t1 + x = t2

strict ordering: t1 < t2
def
= t1 ≤ t2 ∧ t1 6= t2

zero: zero(x)
def
= ∀y x ≤ y

one: one(x)
def
= ∀y, z y < x ∧ z < x⇒ y = z

successor: succ(x, y)
def
= x < y ∧ (∀z x < z ⇒ y ≤ z)

These shorthands are correct with respect to the truth of these FO formulas in the (standard) model

(N,+). For example

N, x |→n |= one(x) iff n = 1

Here is a more general definition:

Definition 1.1 A k-ary relation R ⊆ Nk is definable in the model (N,+) if there exists a formula

ϕ(x1, . . . , xk) such that

∀n1, . . . , nk ∈ N (n1, . . . , nk) ∈ R iff N, x1 |→n1, . . . , xk |→nk |= ϕ(x1, . . . , xk)

Therefore, the predicates for ordering, zero, one, and successor are definable from just +.

It is awkward to have zero, one, and successor in predicate form. So we will assume that we have available

a constant symbol 0 and a unary function symbol succ and that their use is allowed by the following

shorthands: for any formula ϕ(x)

ϕ(0)
def
= ∃x zero(x) ∧ ϕ(x)

ϕ(succ(t))
def
= ∃y succ(t, y) ∧ ϕ(y)

1

Alternatively, we can assume that we have available two constants 0 and 1 with shorthands as the first one

above. Of course we could define 1
def
= succ(0), or, alternatively, succ(t)

def
= t+ 1. Whichever convention

we adopt, we need the following:

Definition 1.2 (Numerals) For each natural number, n ∈ N, we have in our language for arithmetic a

term n, called the numeral corresponding to n, such that N, x |→m |= x = n iff m = n.

Indeed, we already have 0. For n > 0 we have, in the two alternatives we discussed

n
def
= succ(· · · succ(0) · · ·) (n successors)

or

n
def
= (· · · (0 + 1) · · ·) + 1 (n 1′s)

Once we have the numerals we can restate definablity in terms of truth of sentences:

∀n1, . . . , nk ∈ N (n1, . . . , nk) ∈ R iff N |= ϕ(n1, . . . , nk)

and thus we can talk about a predicate on natural numbers being definable in Th(N,+), the theory

consisting of the set of sentences that are true in (N,+).

There is a glaring omission in the examples above: multiplication. Is multiplication is definable in

Th(N,+)? The answer is negative, and it follows from the decidability of Th(N,+) (Presburger) in contrast

to the undecidability of Th(N,+, ·) (Gödel-Church-Kleene). 1

Note that multiplication can be expressed with primitive recursion in terms of addition:

m · 0 = 0

m · succ(n) = (m · n) +m

and that something very similar holds for expressing exponentiation in terms of multiplication:

mˆ0 = 1

mˆsucc(n) = (mˆn) ·m

Therefore, it is interesting to note that

Proposition 1.1 (Gödel) Exponentiation is definable in Th(N,+, ·). (In fact, exponentiation is even

provably representable in a finite axiomatization (no induction) called Robinson Arithmetic.)

For here on, we will assume a language for arithmetic that has +, hence numerals, and ·. We will use

Th(N) as a shorter notation for Th(N,+, ·).
1Th(N,+) is also called Presburger Arithmetic, after the Polish mathematician Mojżesz Presburger. For a proof its

decidability you can consult either Enderton’s textbook or Sipser’s textbook. The undecidability of Th(N,+, ·) is shown later

in these notes.

2

2 Arithmetization of syntax (Gödel numbering and representability)

Formulas and proofs are strings and we rely on our knowledge of Computability Theory on strings. So

how do these relate to arithmetic?

Gödel showed how the string manipulations manifested in logical systems can be encoded by (+, ·)-FOL

formulas that talk about natural numbers. The encoding trick that he used is the following: if we consider

strings over, say, {a, b, c}, we first associate numbers (> 0) to the letters, say a 7−→ 1, b 7−→ 2, c 7−→ 3, and

then we encode a (non-empty) string by

](d1d2 · · · dn)
def
= 2k13k2 · · · pknn

where pn is the n’th prime number and di 7−→ ki. For example](bbacabc) = 22325173111132173 . A string

u is therefore encoded as a natural number](u) (the Gödel number of u).

In view of the well-known theorem on the unique prime factorization of natural numbers, Gödel’s encoding

is injective. It is also total computable, the set of natural numbers that are Gödel numbers of some string is

decidable, and on that set we can define a computable “decoding” function that inverts Gödel’s encoding.

This establishes a nice correspondence between strings and numbers.

But not nice enough for the pedagogical needs of these notes. In fact, in Computer Science we are used to

the development of Computability Theory using strings and Turing machines. The same concepts can be

developed using natural numbers under the preferred name Recursion Theory. To make use in the study

of arithmetic theories of the computability results we are familiar with, it is convenient to assume that we

have some Gödel numbering that is, of course, computable and has an additional property:

∀n ∈ N](n) = n

i.e., the Gödel number of a numeral (which is a string) is the number corresponding to the numeral. This

makes the encoding surjective (but not injective), with a computable right inverse. 2

By composing Gödel numbering with numeral representation we obtain the following:

Definition 2.1 (Gödel numerals) To any string u we associate its G”odel numeral, with notation

pwq
def
=](w), which is a term in our arithmetic language.

So strings can be represented in arithmetic theories as Gödel numberals. By the way, we can now see that

we need arithmetic theories with multiplication. Since Gödel’s encoding involves primes, the multiplication

function symbol will be used extensively (the same for exponentiation but we saw in Proposition 1.1 that it

can be dispensed of). By the way, for a glimpse on how to use multiplication, note the following statement,

which says that infinitely many twin primes exist (open, famous conjecture):

∀n∃p ∀x, y [p > n ∧ (x, y > 1⇒ (x · y 6= p ∧ x · y 6= p+ 2))]

2The original Gödel numbering is injective but not surjective. I am aware of alternative Gödel numberings that are bijective,

and thus cannot have the property I need. I am assuming that this property can be made true at the same time as all other

properties of Gödel numbers needed in the proof of Theorem 2.1 below.

3

Given a scheme for Gödel numbering, we can now try to capture sets of strings using arithmetic FO

theories, that is, subsets T ⊆ Th(N) that are closed under FO provability, i.e., ∀σ T ` σ ⇒ σ ∈ T .

In addition to Presburger Arithmetic and Th(N) itself, arithmetic FO theories of interest include Peano

Arithmetic (PA), which is axiomatized by Peano’s axioms with the induction axiom schema restricted to

FO formulas, Robinson Arithmetic (Q), which has a finite axiomatization (no induction axiom schema),

and something called Primitive Recursive Arithmetic (PRA) of which we shall speak no more.

For reference, here is a version of Peano’s axioms:

∀x succ(x) 6= 0 ∀x, y succ(x) = succ(y) ⇒ x = y

∀x x+ 0 = x ∀x, y x+ (succ(y)) = succ(x+ y)

∀x x · 0 = 0 ∀x, y x · (succ(y)) = (x · y) + x

ϕ(0) ∧ (∀x ϕ(x) ⇒ ϕ(succ(x))) ⇒ (∀y ϕ(y))

where ϕ(x) is any FO formula with one free variable.

Definition 2.2 Let T be an arithmetic FO theory. Let L ⊆ Σ∗ be a language, and f : Σ∗ → Σ∗ be a total

function. Let ϕL be a formula with exactly one free variable, and θf be a formula with exactly two free

variables.

L is definable in Th(N) by ϕL if ∀w ∈ Σ∗ w ∈ L ⇔ N |= ϕL(pwq)

L is weakly represented in T by ϕL if ∀w ∈ Σ∗ w ∈ L ⇔ ϕL(pwq) ∈ T

L is strongly represented in T by ϕL if ∀w ∈ Σ∗ w ∈ L ⇒ ϕL(pwq) ∈ T ∧ w 6∈ L ⇒ ¬ϕL(pwq) ∈ T

f is functionally represented in T by θf if ∀w ∈ Σ∗

(i) θf (pwq, pf(w)q) ∈ T ∧

(ii) ∀y [θf (pwq, y) ⇒ y = pf(w)q] ∈ T

Since tuples of strings can be encoded as strings we will feel free to assume that the definition generalizes

to predicates on tuples of strings and to total functions of multiple variables. Also,

Note that the definition above makes sense only if T is consistent (it does not equal the set of all sentences!),

in which case strong representability implies weak representability (by the same formula). Note also that

strong representability in Th(N) coincides with definability.

Gödel’s insight was to show that the predicate BewPA(σ, π) which holds iff π is a proof of the sentence

σ in PA, the function ConclPA(π) that extracts the sentence that π proves, and the closely related pred-

icate ProvPA(σ) which holds iff σ is provable in PA 3 are all representable in PA (respectively, strongly,

functionally, and weakly). In fact, Gödel proved that an entire class of decidable predicates, namely those

3Actually Gödel used a fragment of the formal system designed by Russel and Whitehead in “Principia Mathematica”.

4

captured by primitive recursion, including BewPA(), are strongly representable in PA. Of course, Gödel did

not have a definition of general computability 4 in 1930. However, Gödel’s paper already contained enough

ingredients which, when combined with a definition of computability, allowed Church and Kleene to show

the following: 5

Theorem 2.1 (Gödel-Church-Kleene) Any decidable language/predicate is strongly representable in

PA.

Corollary 2.2 Any r.e. language/predicate is weakly representable in PA and definable in Th(N) (by the

same formula).

Proof If L is r.e. then there exists a decidable predicate R such that u ∈ L iff there exists a v s.t. R(u, v).

By Theorem 2.1, R is strongly representable by some formula ϕR(x, y). Let ϕL(x) ≡ ∃y ϕR(x, y). We show

that ϕL both weakly represents L in PA and defines L in Th(N).

If u ∈ L then R(u, v) for some v hence PA ` ϕR(puq, pvq) so PA ` ∃y ϕR(puq, y) and therefore N |=
∃y ϕR(puq, y).

If u 6∈ L then for all v it is not the case that R(u, v), i.e., for all v PA ` ¬ϕR(puq, pvq). Now we use the fact

that our Gödel numbering is surjective. For any n ∈ N there is some vn such that n =](vn), 6 therefore

pvnq = n. It follows that for all n ∈ N we have PA ` ¬ϕR(puq, n), hence N |= ¬ϕR(puq, n). It follows that

N 6|= ∃y ϕR(puq, y) and therefore PA 6` ∃y ϕR(puq, y). 2

The argument above is straightforward because it is using the soundness of PA in N. To show the weak

representability of r.e. sets without any reference to soundness, we would assume that PA is consistent,

and, for the last part, that it is ω-consistent. 7 That’s what Gödel did.

Next we have a corollary that connects computability to functional representability. We state the corollary

for functions of two arguments but it clearly holds for functions of any number of arguments.

Corollary 2.3 Any total computable function is functionally representable in PA.

Proof We will prove it for two arguments but the proof clearly generalizes to any number of arguments.

Let f : Σ∗ × Σ∗ → Σ∗ be a total computable function.

Consider the predicate F (u, v, w) iff f(u, v) = w. Since f is total computable, F is decidable. By Theo-

rem 2.1 there exists a formula ϕF (x, y, z) that strongly represents F , that is:

∀u, v, w ∈ Σ∗ f(u, v) = w ⇒ PA ` ϕF (puq, pvq, pwq) ∧ f(u, v) 6= w ⇒ PA ` ¬ϕF (puq, pvq, pwq)

4Logicians were already aware of examples of (total) computable functions that were not primitive recursive (Su-

dan/Ackermann).
5The proof of this theorem is where all the hard work is done so of course I will skip it! I agree with Smorynski who says

about such a proof that its details are great fun to work out but very boring to read.
6In fact, by the earlier assumption, we can even take vn = n.
7Namely that PA does not simultaneously prove ¬ϕ(0),¬ϕ(1), . . . and ∃xϕ(x).

5

Can we use ϕF to functionally represent f? This would clearly take care of the condition (i), but not of

(ii). Why? Intuitively, PA cannot “insure” that to prove universal statements it suffices to verify them for

numerals. (In fact, there exist models of PA that are not isomorphic to the natural numbers, the so-called

non-standard models of arithmetic.)

However, the following trick fixes the problem. Take

θf (x, y, z) ≡ ϕF (x, y, z) ∧ ∀z′[z′ < z ⇒ ¬ϕF (x, y, z′)]

We need to show that for all u, v ∈ Σ∗ we have

(i) PA ` ϕF (puq, pvq, pf(u, v)q) ∧ ∀z′[z′ < pf(u, v)q⇒ ¬ϕF (puq, pvq, z′)]

(ii) PA ` ∀z [ϕF (puq, pvq, z) ∧ ∀z′[z′ < z ⇒ ¬ϕF (puq, pvq, z′)] ⇒ z = pf(u, v)q]

We prove (i). Clearly PA ` ϕF (puq, pvq, pf(u, v)q) by the strong representability of F , so we only have to

show

(i2) PA ` ∀z′[z′ < pf(u, v)q⇒ ¬ϕF (puq, pvq, z′)]

The key observation (which suggested the trick in the definition of θf) is the following. For any natural

number n > 0, we have

(∗) PA ` ∀z′ [z′ < n⇔ z′ = 0 ∨ · · · ∨ z′ = n− 1]

We skip the proof of this observation.

Now let n =](f(u, v)). If n = 0 the statement (i2) is vacuously provable. Suppose n > 0. Then for any

m < n we have m 6= f(u, v) (here we use m =](m)) and (i2) follows again from (∗) combined with the

strong representability of F .

Note that the argument we just made also gives the following stronger fact: for any n ≤](f(u, v)) we have

PA ` ∀z′[z′ < n⇒ ¬ϕF (puq, pvq, z′)]

From this (ii) follows by contradiction and two cases: z < pf(u, v)q is one case, z > pf(u, v)q is the other.

Details are omitted. 2

The theorem and the two corollaries above continue to hold if we replace PA with one of the weaker

theories, Q or PRA. A more interesting observation is the proofs are constructive (effective). By this we

mean that the proof of Theorem 2.1 actually shows how to compute the representing formula ϕL taking as

input the axioms and proof rules of PA (or Q, or PRA) together with a description of a TM that decides

L. It is then clear, from the proofs of Corollaries 2.2 and 2.3 that the representing formulas there are also

computable.

Now given a PA proof π we can compute the sentence that π proves and it is decidable whether that

sentence is a given one, σ. Moreover the set of sentences provable in PA is r.e. (as is the case with every

theory axiomatized by a decidable set of axioms). Therefore, we have Gödel’s insight that what the PA

proof system does can be captured “inside” PA:

6

Corollary 2.4 BewPA(σ, π) is strongly representable in PA. ConclPA(π) is functionally representable in

PA. ProvPA(σ) is weakly representable in PA and the same formula defines it in Th(N).

We shall see later how to exploit this for Gödel’s incompleteness theorems. We end this section with a

discussion of the converses of the representability results above.

Proposition 2.5 Let T be an r.e. arithmetic FO theory. Any language weakly representable in T is r.e.

If moreover T is consistent then any language strongly representable in T is decidable.

Proof Let L be weakly represented by ϕL in T . Then L ≤m T via the reduction w 7−→ ϕL(pwq) and since

T is r.e. L must be r.e. too.

Now assume that T is consistent. Then, any language strongly represented by a formula is also weakly

represented by that formula hence it is r.e. But it follows from the definition of strong representability

that if L is strongly representable then so is its complement L, in fact by the negation of the formula used

for L. Therefore, both L and L are r.e. so L is decidable. 2

Now, because PA is consistent 8 and r.e. we have that a language is decidable iff it is strongly representable

in PA and is r.e. iff it is weakly representable in PA, a logical characterization of the two main concepts

of Computability Theory (and such results can be extended beyond r.e.-ness, leading to the Arithmetic

Hierarchy of languages).

3 The computability perspective on Gödel’s First

Theorem 2.1 and Corollary 2.2 already lead to a form of Gödel’s First Incompleteness Theorem, just by

using the tools of computability.

Theorem 3.1 (Computability Formulation of Gödel’s First) Th(N) is not r.e. It follows that there

exists an unprovable (in PA) but true sentence (hence PA cannot prove its negation either).

Proof Recall that K is the complement of the Halting Problem. We show that K ≤m Th(N) and the

result follows.

Since K is r.e., it follows from Corollary 2.2 that K is definable in Th(N), i.e., there exists a formula χ(x, y)

such that for any TM and any input, M halts on w iff N |= χ(p〈M〉q, pwq). Therefore

〈M,w〉 7−→ ¬χ(p〈M〉q, pwq)

provides the desired reduction K ≤m Th(N).

8Wait a minute, PA is consistent? Wasn’t that Hilbert’s Second Problem? And wasn’t Hilbert’s Program shattered by

Gödel? We stated that PA is consistent simply because its proof system is sound in the model N. This a perfectly correct

statement in the math that we use to conduct our meta-study of logic (presumably Zermelo-Fraenkel set theory). But this is

not what Hilbert wanted, he wanted a proof of consistency by “finitistic” means. This was not made clear in his statement of

the Second Problem but he explained it later.

7

Now, since PA (the theory) is r.e. there exists some true (in Th(N)) sentence σ that is not provable in PA.

But then, ¬σ is untrue and therefore cannot be provable either, since PA is sound. 2

This theorem implies not only that PA does not provide a complete axiomatization of Th(N), but, moreover,

that no reasonable (with a decidable set of axioms) axiomatization can be complete.

The second part of theorem is closer to Gödel’s meaning of “incompleteness”, but, still, this is not quite

the form in which Gödel proved his result. He took a particular proof system and computably constructed

a sentence which was not provable and whose negation was unprovable too. The meaning of his sentence

was “I am not provable”! We will get to Gödel’s construction in the next section, however Computability

Theory has a way to constructing such a sentence also, using Kleene’s Recursion Theorem. As shown in

Sipser’s textbook, this theorem allows us to program Turing machines to “obtain their own description”.

Consider the following machine, called S:

S: “on any input

obtain own description 〈S〉
construct sentence ρ ≡ ¬χ(p〈S〉q, pw0q) (χ(x, y) as in the proof of Theorem 3.1; w0 arbitrary string)

enumerate all PA proofs

if a proof of ρ is found halt

otherwise, go on forever” (since there are infinitely many proofs in PA)

Proposition 3.2 The sentence ρ constructed by S is true but unprovable in PA.

Proof Since χ weakly represents K, N |= ρ iff S does not halt on w0. But S halts on w0 (or any other

input) iff PA ` ρ. Therefore N |= ρ iff PA 6` ρ. By the soundness of PA, the only way out of this is when

ρ is true but unprovable. 2

Notice that ρ does not say “I am not provable”, but rather “S does not halt on w0”. However, as we saw,

ρ ends up being true iff it is unprovable.

4 Too much self-awareness (fixed points and reflection)

One of the consequences of Kleene’s Recursion Theorem is that total computable functions have fixed

points. In the computability approach based on lambda calculus, this result has a particularly nice formu-

lation with the existence of a fixed point combinator (I am not sure about its history). Gödel had the

insight that PA has the following provable fixed point property:

Lemma 4.1 (Fixed-point) Let ϕ(x) be any formula with exactly one free variable x. Then, there exists

(can be computed!) a sentence σ such that

PA ` σ ⇔ ϕ(pσq)

8

Proof Let S (for “substitution”) be a function such that S(ϕ(x), t) = ϕ(t) for any formula ϕ(x) with one

free variable and any term t. When the arguments are not of this form we make sure S returns some fixed

string that is not a sentence. Therefore S is total computable and by Corollary 2.3 there exists a formula

that functionally represents it. Testing whether the arguments of S are formulas/terms is decidable, hence

strongly representable, hence we can construct a formula θ with three free variable that has the following,

more precise properties, for any ψ(x) and t

(i) θ(pψ(x)q, ptq, pψ(t)q)

(ii) PA ` ∀z [θ(pψ(x)q, ptq, z) ⇒ z = pψ(t)q]

Let ϕ(x) be any formula with exactly one free variable. Using θ as above, consider the formula

χ(x) ≡ ∀z[θ(x, x, z)⇒ ϕ(z)]

We claim that we can take σ, the desired provable fixed point of ϕ(x), to be σ ≡ χ(pχ(x)q).

To show that it is a provable fixed point we restate (i) and (ii) for ψ(x) ≡ χ(x) and t ≡ pχ(x)q, therefore

ψ(t) ≡ σ, while using the property](n) = n that our Gödel numbering has to replace ppχ(x)qq with just

pχ(x)q:

(i) PA ` θ(pχ(x)q, pχ(x)q, pσq)

(ii) PA ` ∀z [θ(pχ(x)q, pχ(x)q, z) ⇒ z = pσq]

And using these one can conclude

PA ` σ ⇔ ϕ(pσq)

Left to right is immediate using (i). Right to left is a bit more subtle, and we skip it. 2

Here is an immediate application of the fixed point lemma:

Theorem 4.2 (Tarski’s Undefinability) Th(N) is not definable in N.

Proof Suppose τ(x) defines truth, i.e., defines the set of sentences Th(N). Applying Lemma 4.1 to the

formula ¬τ(x) we obtain obtain a sentence σT such that (using soundness of PA)

N |= σT ⇔ ¬τ(pσTq)

σT says “I am false”. Liar’s Paradox! Therefore there is no sentence σT . Therefore there is no formula τ .

2

You noticed that we did not need the “provable” aspect of the fixed points in Lemma 4.1. In fact, the

essential idea behind Tarski’s Theorem can be expressed using a diagonalization argument. As a warm-

up, you should recall Cantor’s proof by diagonalization that 2N is not countable. You can also read in

9

Sipser’s textbook how to regard the proof of the undecidability of the Halting Problem as a diagonalization

argument.

Alternative Proof by diagonalization of Tarski’s Undefinability Theorem (4.2 above).

Actually, what we will prove is that the truth of formulas with one free variable on numerals is not

definable. This implies that the truth of sentences is also undefinable (but this last step seems to require

the definability of some computable syntactic manipulations).

Suppose there is a formula τ(x, y) such that for any formula ϕ(x) and any numeral n we have

N |= ϕ(n) iff N |= τ(pϕ(x)q, n)

Now take κ(x) ≡ ¬τ(x, x). This is the “diagonal” construct because κ(x) “differs” from any given ϕ(x)

“on” the numeral nd = pϕ(x)q. Indeed, N |= ϕ(nd) iff N |= τ(pϕ(x)q, pϕ(x)q) while N |= κ(nd) iff N |=
¬τ(pϕ(x)q, pϕ(x)q) 2

Because all r.e. sets are definable (Corollary 2.2) we have:

Corollary 4.3 (Computational form of Gödel’s First Again) Th(N) is not r.e.

Now we turn to the proof-theoretic form of Gödel’s First, and this will allow us to derive also Gödel’s

Second.

Recall that ProvPA(σ) is r.e. so it is weakly representable in PA, and definable in N by some formula ξ(x).

Let’s introduce the notation 2σ for the sentence ξ(pσq). By weak representability we have the following

“self-awareness” property of PA:

Lemma 4.4 (Reflection Property)

∀σ PA ` σ iff PA ` 2σ.

(PA proves a sentence iff it “knows” that it proves that sentence!)

Now apply Lemma 4.1 to ¬ξ(x).

Lemma 4.5 (Gödel’s sentence) There exists (can be effectively constructed!) a sentence σG such that

PA ` σG ⇔ ¬2σG

A subtlety: the existence of the Gödel’s sentence shows that the reflection property cannot hold in the

stronger form ∀σ PA ` σ ⇔ 2σ as this would imply PA inconsistent.

Theorem 4.6 (Proof-Theoretic Formulation of Gödel’s First) Let σG be the sentence constructed

above. Then PA proves neither σG nor ¬σG.

10

Proof Suppose PA ` σG. Then PA ` ¬2σG by Lemma 4.5 and PA ` 2σG by Lemma 4.4. Hence PA is

inconsistent. Contradiction.

Suppose PA ` ¬σG. Then PA ` 2σG by Lemma 4.5 and further PA ` σG by Lemma 4.4. Again PA is

inconsistent. Again contradiction. 2

In the first proof of Tarski’s Theorem, the emergence of the Liar’s paradox was solved by the non-existence

of the sentence σT . Gödel’s sentence σG does exist, in fact we will use it for the proof of Gödel’s Second.

The resolution of the apparent paradox that it creates is that the sentence is not provable. 9

5 Gödel’s Second

Reasoning as in the proof of Theorem 4.6 can actually be performed inside PA. This is because PA is strong

enough to have the following “self-awareness” properties (that were abstracted by Hilbert and Bernays from

Gödel’s proof):

Lemma 5.1 (Hilbert-Bernays derivability conditions) PA has the following properties:

D1 For any sentence σ, if PA ` σ then PA ` 2σ (reflection)

D2 For any sentence σ, PA ` 2σ ⇒ 22σ (PA “knows” it has the reflection property).

D3 For any sentences ρ and σ, PA ` 2(ρ⇒ σ)⇒ 2ρ⇒ 2σ (PA “knows” it can do modus ponens).

We saw reflection before. We skip the proof of the rest.

We can express the consistency of PA as an arithmetic FO sentence:

ConsPA ≡ ¬2false

Theorem 5.2 (Gödel’s Second) PA 6` ConsPA.

Proof Let σG be Gödel’s sentence constructed earlier. Recall that PA ` σG ⇔ ¬2σG, in particular

PA ` σG ⇒ (2σG ⇒ false).

By D1, PA ` 2(σG ⇒ (2σG ⇒ false)). Then by D3 and (regular) modus ponens PA ` 2σG ⇒ 2(2σG ⇒
false). Next we apply D3 and regular modus ponens on the conclusion of the previous implication obtaining

PA ` 2σG ⇒ 22σG ⇒ 2false, and since 2false is equivalent to ¬ConsPA , PA ` 2σG ⇒ 22σG ⇒
¬ConsPA .

By D2 we also have PA ` 2σG ⇒ 22σG. In boolean logic (even minimal logic!) from p ⇒ (q ⇒ r) and

p⇒ q we can deduce p⇒ r. 10 Hence PA ` 2σG ⇒ ¬ConsPA so PA ` ConsPA ⇒ ¬2σG.

9Does there exist a true but unprovable sentence, as in Theorem 3.1? Yes, because one of σG or ¬σG must be true. Which

one?
10Inhabited by the S combinator!

11

By the fixed point equivalence PA ` ConsPA ⇒ σG and since by Gödel’s First PA 6` σG we conclude that

PA 6` ConsPA . 2

The following is an apparent generalization of Gödel’s Second:

Theorem 5.3 (Löb) For any sentence σ, if PA ` 2σ ⇒ σ then PA ` σ

We skip the proof but we show

Corollary 5.4 (Gödel’s Second again) PA 6` ConsPA.

Proof Take σ ≡ false in Löb’s theorem. Obtain that if if PA ` ConsPA then PA ` false. Since PA is

consistent, PA 6` ConsPA . 2

12

