
Friendly Logics, Fall 2015, Lecture Notes 3

Val Tannen

1 Model checking for FOL

Given a vocabulary V, the model checking 1 problem consists of deciding if A |= σ for an FOL
V-sentence σ and a finite V-structure (model) A.

Definition 1.1 We shall be interested in the complexity of the model checking problem, in fact in
three different situations:

Combined complexity The input is (A, σ), its size is | A | + | σ |.

Expression complexity A is fixed, the input is just σ.

Data complexity σ is fixed, the input is just A.

For this problem to make sense the finite V-structure A must admit a finite description. Clearly,
the universe of A is required to be finite. Moreover, we can allow the vocabulary V to be infinite
with the understanding that for the A |= σ model checking problem the description of A only
includes representations for the (finitely many) symbols in V that actually occur in the sentence σ.

Since Turing machines take strings as inputs we must be clear about describing A as a string, and
the resulting size |A|. We fix an enumeration of the elements of the (non-empty) universe of A:
a1, a2, . . . an then we represent (encode) the model on Turing machine tapes with respect to this enu-
meration. One way to do this is to represent ak by the number k, in binary, therefore by using log k
bits. We then encode tuples and then relations using some separating symbols. The tuples in a re-
lation will be ordered lexicographically, based on the ordering of domain elements given by the enu-
meration. For example, consider the enumerated domain a, b, c. Then R = {(c, b), (a, c), (a, b)} S =
{(c, a, c), (a, a, b)} can be encoded by the string R/0-1/0-10/10-1/S/0-0-1/10-0-10/. The inter-
pretation of function symbols of arity m is represented as m+1-relations in which the tuples group
the arguments and the corresponding result of the function. Another possible encoding observes
that the enumeration of the elements of the universe induces, lexicographically, an enumeration of
the, say, r-tuples, and then relations of arity r can be encoded as strings of bits of length nr and
functions of arity r can be encoded as strings of bits of length nr+1. In any case, we make the size
of the universe, in unary (to avoid pathologies) part of the representation. In both representations
that we described |A| is O(s nr) where n is the size of the universe, s is the number of vocabulary
symbols that occur in σ and r is the “maximum arity” of these symbols, i.e., the maximum among

1This name comes from automated verification. In fact, model checking for many verification logics is a particular
case of FOL model checking.

1

relation arities, function arities +1, and 1 (if the sentence has no symbols). Note that for data
complexity the sentence is fixed and therefore |A| is polynomial in n.

We begin with with the quantifier-free case and it will be useful to consider a slightly more general
problem, involving formulas and valuations rather than just sentences: decide if A, v |= ψ where
ψ is a quantifier-free formula and v is a valuation defined for a set of variables that includes the
free variables of ψ. In this case, we consider v, together with ψ, to be the input for expression
complexity.

Theorem 1.1 The data complexity of quantifier-free formula checking is in LOGSPACE. The
expression and combined complexities of the same problem are in PTIME.

Proof Recall the fixed enumeration of the universe elements and observe that we can lookup
information in the description of A using pointers of size log |A|. This is polynomial for expression
and combined complexity and logarithmic for data complexity.

The procedure uses these pointers to evaluate the functional terms in the formula, determining the
truth value of the atoms, and evaluating the resulting boolean expression. Term evaluation is done
akin to arithmetic expression evaluation, using a stack, but we make sure it is a stack of pointers,
not a stack of values. This gives us the PTIME expression and combined complexities. For data
complexity observe that the stack size depends on the sentence but not on the model. This gives
the LOGSPACE bound on data complexity. 2

Remark It has been shown that boolean expressions can be evaluated in LOGSPACE. (Indeed,
to evaluate, e.g., a ∨ b we do not need to record both the value of a and b. We would not be
evaluating b at all if a resulted in true.) Therefore, in the absence of function symbols, for a
fixed vocabulary consisting only of relation symbols and constants, the expression and combined
complexity of quantifier-free model checking are also in LOGSPACE 2

Theorem 1.2 The data complexity of FOL model checking is in LOGSPACE. The expression and
combined complexities of FOL model checking are PSPACE-complete.

Proof First we put the sentence in prenex form 3. Let Q1x1 · · ·Qkxk ψ be the result.

We evaluate this sentence in A using k nested loops iterating each of x1, . . . , xk through all the
elements of the universe of A. If xi is universally quantified then the loop corresponding to xi
computes a big conjunction (disjunction if existentially quantified). In the innermost loop we
evaluate A, v |= ψ where v is the valuation recording the current values of x1, . . . , xk. If m is the
number of elements of A then the time complexity of doing all this is

O(mk poly(|A|, |ψ|))

where “poly” is a two-variable polynomial. For the space complexity, note that we can keep track
of the current v by using k pointers of size logm. Thus the space complexity adds O(k logm) to

2However, it seems that we cannot evaluate functional terms in LOGSPACE. (Think what goes wrong with the
stack-based procedure.) It is known that there exist context-free languages that are NLOGSPACE-complete. I
suspect, but I don’t know, that such languages can be reduced to the problem of functional term evaluation.

3I don’t know if this can be done in LOGSPACE but for data complexity the sentence is fixed. It certainly can
be done in low degree PTIME hence PSPACE.

2

the space complexity of the quantifier-free case. This gives LOGSPACE for data complexity and
PSPACE for expression and combined complexities.

To show PSPACE-completeness we reduce from TQBF, the problem of checking the truth of a
(fully) quantified boolean formula. This is essentially the same reduction performed in the proof
of Corollary 2.3 in Lecture Notes 2.

Given a fully (no free propositional variables) quantified boolean formula γ
def
= Q1p1 · · ·Qkpk β

we construct the FO sentence σ
def
= Q1x1 · · ·Qkxk β over a vocabulary with one unary predicate

symbol R where β is obtained by replacing each pi with R(xi). Clearly γ is true iff B |= σ where B
is defined in the proof of Corollary ??. Since B is a fixed model, this gives a lower bound for both
combined complexity and expression complexity. 2

2 Database dependencies and the BSR class

Definition 2.1 A relational vocabulary is an FO vocabulary with relational symbols of arity ≥ 1,
with constants (i.e., function symbols of arity 0), with equality, but without function symbols of
arity ≥ 1.

Integrity constraints in relational databases can be expressed in FOL over relational vocabularies:

Equality-generating dependencies (egd): key constraints and other functional dependencies.
Example: ∀x, y1, y2R(x, y1) ∧R(x, y2)⇒ y1 = y2.

Tuple-generating depedencies (tgd): foreign key constraints and other inclusion dependencies,
multivalued dependencies, join dependencies, etc. Examples: ∀x, y R(x, y) ⇒ ∃z S(y, z),
∀x, y, z R(x, y) ∧ S(y, z)⇒ T (x, y, z).

Database people study the implication problem for such depedencies, namely the decidability and
complexity of ∆ |=fin δ where ∆ is a finite set of dependencies, δ is a single dependency and where

the logical consequence is over all finite models (because databases are finite, you see).

Implication is undecidable in general but there are important decidable cases. A tgd is full if there
are no existential quantifiers in the conclusion of the implication. Inclusion dependencies are not
full but functional and multivalued/join dependencies are. In particular the latter dependencies
are expressed by universal sentences over relational vocabulary. Thus, the decidability (but not
the exact complexity, because of the special form of the quantifier-free portion) of the implication
problem for egds plus full tgds follows from the following.

Theorem 2.1 The Bernays-Schönfinkel-Ramsey (BSR) class of sentences, i.e., sentences over a
relational vocabulary with quantifier prefix ∃∗∀∗, has the small model property. Specifically, any
satisfiable sentence in this class is satisfiable in a model with at most max(1,m) elements, where
m is the number of existential quantifiers in the sentence.

Before we prove the theorem we explain how this applies to the implication problem for certain
database dependencies, and an even more general class of sentences.

3

Corollary 2.2 Let’s define (for local purposes only) a generalized full dependency (gfd) to be a
universal sentence over a relational vocabulary. It is decidable whether ∆ |=fin δ where ∆ is a finite
set of gfds, δ is a single gfd and where the logical consequence is over all finite models.

Proof Because ∆ is finite, ∆ |=fin δ is equivalent to the finite validity of a sentence of the form

σ ⇒ δ where σ is a gfd hence the finite validity of a sentence ∀y ∃x ϕ ⇒ ψ, (ϕ,ψ quantifier-free),
hence the finite unsatisfiability of ∃y ∀x ϕ ∧ ¬ψ. This last is decidable by Theorem 2.1. (Similarly,
logical consequence over all models is also decidable.) 2

Proof of Theorem 2.1. We further assume, w.l.o.g., that the relational vocabulary does not
contain constants. Indeed, the constants can be eliminated in favor of additional existentially
quantified variables: σ(c) is satisfiable iff ∃xσ(x) ∧ x = c is satisfiable iff ∃xσ(x) is satisfiable.
(This also explains why constant symbols are not necessary in the classification presented by the
Börger-Grädel-Gurevich monograph.)

In our proof we will make use of the inverse transformation, replacing existentially quantified
variables with constants. Essentially the same argument straightforwardly establishes the following:

Exercise 2.1 Let σ be a sentence of the form ∃x1, . . . , xm ϕ(x1, . . . , xm) over an FO vocabulary
V (where ϕ is not necessarily quantifier-free). Let c1, . . . , cm be fresh constant symbols and let

V def
= V ∪ {c1, . . . , cm}. Then, the V-sentence σ is satisfied in a model A iff the V-sentence

ϕ(c1, . . . , cm) is satisfied in some “expansion” of A to a V-model obtained by keeping the same
universe and the same interpretation of the symbols in V and adding interpretations for c1, . . . , cm.
(We call this a c1, . . . , cm-expansion of A).

Thus, a BSR sentence ∃x1, . . . , xm ∀y ϕ(x1, . . . , xm, y) is satisfied in some modelA iff ∀y ϕ(c1, . . . , cm, y)
is satisfied in some c1, . . . , cm-expansion of A. Let a1, . . . , am (not necessarily distinct) be the in-
terpretations of c1, . . . , cm in this expansion. Consider the model, let’s call it B, with universe
{a1, . . . , am} (eliminate duplicates) in which every symbol in V is interpreted by restriction to this
universe. (Warning: this works only because V is a relational vocabulary without constants. In-
deed, the subset {a1, . . . , am} of A may not be “closed” under functions, nullary or otherwise.)
Note that the interpretation of the expansion symbols, c1, . . . , cm also belongs to the universe of B.

Now our result follows from the following fact of larger utility:

Exercise 2.2 This holds for arbitrary vocabularies (so bring the function symbols back in!). A
submodel (substructure) of a model A is a model whose universe is a subset of the universe of
A that is closed under the interpretation of the function symbols (including constants) and thus
allows the interpretation of all symbols (not just relation symbols) by restriction. Prove that if a
universal sentence is true in A then it is true in any of its submodels. Explain why this fails for
existential sentences.

Therefore the universal sentence ∀y ϕ(c1, . . . , cm, y) is satisfied in the c1, . . . , cm-expansion of B and
it follows that ∃x1, . . . , xm ∀y ϕ(x1, . . . , xm, y) is satisfied in B. Finally, we note that B has at most
m elements.

What if m = 0? Then the definition of B above is wrong because models are not allowed to have
empty universe. However, as the following shows, we can always find a model with one element.

4

Exercise 2.3 If a universal sentence over a relational vocabulary with at most one constant is
satisfiable then it is satisfiable in a model with one element.

Corollary 2.3 The satisfiability of Bernays-Schönfinkel-Ramsey sentences is decidable in NEXP-
TIME (in fact it is NEXPTIME-complete but we skip the proof of that).

Proof Given a BSR sentence σ ≡ ∃x1, . . . , xm ∀y ϕ(x1, . . . , xm, y) let V be the set of relations
symbols that actually appear in σ. Note that V is finite so a finite model over V has a finite
description. The algorithm starts by guessing a V-model A whose universe has size at most n =
max(1,m) and further guessing an interpretation of the constants c1, . . . , cm in A. If r is the
maximum arity of the relation symbols in V then A has a representation of size O(nr). This is
polynomial in n but, unfortunately, exponential in r. And r can be as big as the size of ϕ (give or
take a couple of symbols). Therefore, in the worst case the guess is of size exponential in |σ|.

We now have to check whether ∀y ϕ(c1, . . . , cn, y) is true in A. We can see directly that this can be
done in EXPTIME by cycling through all the possible valuations of in the model’s universe (there
are exponentially many such valuations) and for each of them check whether the quantifier-free
formula ϕ(c1, . . . , cn, b) is true. By Theorem 1.1 (for combined complexity) this can be done in
PTIME[|ϕ|, |A|], thus in EXPTIME in |σ|. 2

If you look carefully at the bounds given by the argument above you can see it proves a NTIME[|σ|O(|σ|)],
thus an NTIME[2O(|σ| log |σ|)] bound. This is still NEXPTIME of course but it turns out that a more
careful analysis gives an NTIME[2O(|σ|)] bound.

Note also that these bounds can be improved when the maximum arity of the relation symbols
is a constant. This is an eminently reasonable assumption in databases (where we say that the
“schema” is fixed). If this is the case then the model A in the proof has a representation that
is of size polynomial in n, hence in |σ|. Under this assumption, to decide the satisfiability of a
BSR sentence we just have to guess a model with a polynomial-size representation and then by
Theorem 1.2 (for combined complexity) we can check in PSPACE if the sentence ∀y ϕ(c1, . . . , cn, y)
is true in that model. This gives an NPSPACE algorithm, but NPSPACE=PSPACE. Is this the
best we can do? That is, is the satisfiability of BSR sentences with relation symbols of bounded
arity PSPACE-complete? The quantifier prefix suggests otherwise. Indeed:

Theorem 2.4 Let r be an arbitrary but fixed natural number and let BSRr be the class of BSR
sentences in which all relation symbols have arity ≤ r. Then, deciding the satisfiability of BSRr

sentences is Σp
2-complete.

Proof To see membership in Σp
2 we repeat the proof of Corollary 2.3 observing however that now

the model that we guess has size O(nr) and that checking truth in the model was already in coNP,
because each of the valuations y 7−→ b was of polysize.

To show Σp
2-hardness we reduce from the Σ2SAT problem (check the truth of (closed) quantified

boolean formulas of the form ∃p1, . . . , pm ∀q1, . . . , qn ϕ(p1, . . . , pm, q1, . . . , qn) in the same way in
which we reduced from TQBF in the proof of Theorem 1.2. 2

5

3 Essentially finite classes of sentences

You might have noticed the sentences in the decidable classes have either an unbounded number
of quantifiers or an unbounded number of relation symbols. Moreover, as we have seen, assuming
an unbounded number of constants leads us to sentences with unboundedly many existential quan-
tifiers. But what is the status of, say, sentences with quantifier prefix, say, ∀2∃13, with a binary
relation symbol, with, say, 17 unary relation symbols, and with equality? These sentences do not
belong to the maximal decidable Gödel/Kalmár/Schütte class, because of equality and they do not
belong to one of the minimal undecidable (Goldfarb) classes.

It turns out that if we put finite bounds on the parameters like these, we get classes of sentences
for which the satisfiability problem is described as “trivial”. But maybe not obviously trivial :)
and certainly not trivial in a practical sense, as we shall see.

Definition 3.1 A class of sentences is essentially finite if it is defined by a fixed finite quantifier
prefix and a fixed finite relational vocabulary (no function symbols of arity ≥ 1).

Proposition 3.1 Let C be an essentially finite class of sentences. Then, there exists a finite set
of sentences F ⊆ C and a total computable function f : C → F such that σ is equivalent to f(σ).

Proof Fix an essentially finite class of sentences C. Suppose the prefix of the sentences in C has n
quantifiers, then fix n variable names x1, . . . , xn. Since the vocabulary is relational and finite there
are only finitely many atomic formulae that can be build from it and the variables x1, . . . , xn. Out
of these atomic formulas we can build only finitely many quantifier-free formulas in irredundant
CNF. This gives our finite set of sentences F . 2

Corollary 3.2 The satisfiability of sentences in an essentially finite class can be decided in LOGSPACE.

Proof The decidability is immediate because F is finite. Indeed, consider a table in which we
associate with each sentence in F the information whether it is satisfiable or not. This finite table
exists and therefore can be hard-coded into the decision procedure. (Warning: it is not computed
by the decision procedure, and, in fact, it cannot be, as it this would contradict the undecidability
of satisfiability for some of the minimal reduction classes.) Then, given σ ∈ C compute f(σ) ∈ F
and use it to look up the status of its satisfiability in the table.

The membership in LOGSPACE is really a corollary to the proof of the proposition and requires
the observation that the ordering x1, . . . , xn of the variables and a total ordering of the vocabulary
induces (lexicographically) a total ordering on the atomic formulas, hence a total ordering of CNF
clauses of these, hence a total ordering of the sentences in F . This total ordering can be used to
look up the satisfiability status for each sentence. We also need to verify that the index of the
sentence in the ordering, as well as the lookup can be computed in LOGSPACE. 2.

4 Horn and Krom logics (unfinished)

Theorem 4.1 HORNSAT is in PTIME. (In fact, it is PTIME-complete under LOGSPACE re-
ductions but we skip the proof of that.)

6

Theorem 4.2

(a) The satisfiability of BSR-Horn sentences is in EXPTIME. (In fact, it is EXPTIME-complete
but we skip the proof of that.)

(b) The satisfiability of BSR sentences without constants and with prefix ∃∀∗ (just one existential)
is NP-complete.

(c) The satisfiability of BSR-Horn sentences without constants and with prefix ∃∀∗ (just one
existential) is PTIME-complete.

∃2∀∗-KROM-HORN is PSPACE-complete

∀∃∗∀-KROM-HORN is a reduction class

∀∃∀-KROM sat is decidable and NLOGSPACE-complete

∃∗∀∗∃∗-KROM sat is decidable and EXPTIME-complete

7

