Friendly Logics, Fall 2015, Homework 2

- **Problem 1** We discussed in class that both Gödel's sentence σ_G and its negation are unprovable and one of them must be true so there must be some true but unprovable sentence. In fact, we *can* say more. σ_G asserts its own unprovability and so ... it is the one that should be true! Show that this is indeed so.
- **Problem 2** Prove Löb's Theorem: for any sentence τ if $PA \vdash \Box \tau \Rightarrow \tau$ then $PA \vdash \tau$. Hints: Use the fixed point lemma (lemma 4.1) in lecture notes 4 to construct σ_L such that $PA \vdash \sigma_L \Leftrightarrow$ $\Box \sigma_L \Rightarrow \tau$. After re-reading the proof of Gödel's Second, use the Hilbert-Bernays derivability conditions (lemma 5.1) to show that $PA \vdash \Box \sigma_L \Rightarrow \Box \tau$. Then do more work :)
- **Problem 3** Show that the parity query *is* FO definable over finite models if the vocabulary contains at least a *binary relation symbol*.
- **Problem 4** Use a compactness argument to show that acyclicity is not FO definable over *all* undirected simple graphs.
- **Problem 5** Assume a vocabulary with just one binary relation symbol *E*. Prove that for any finite model \mathcal{A} there exists a sentence $\sigma_{\mathcal{A}}$ such that for any model \mathcal{B} we have $\mathcal{B} \models \sigma_{\mathcal{A}}$ iff $\mathcal{B} \simeq \mathcal{A}$.
- **Problem 6** Let k, m, n be positive integers. Prove that the following are equivalent:
 - (i) $L_m \sim_k L_n$
 - (ii) m = n or, both $m, n \ge 2^k 1$

Hints: by induction on $\min(m, n)$, showing, along the way, that for every $s \ge 1$, $L_m \sim_{s+1} L_n$ iff

- $\forall a \in L_m \exists b \in L_n \ L_m^{>a} \sim_s L_n^{>b} \& L_m^{<a} \sim_s L_n^{<b}$, and • $\forall b \in L_n \exists a \in L_m \ L_m^{>a} \sim_s L_n^{>b} \& L_m^{<a} \sim_s L_n^{<b}$
- Problems 7-10 Using reductions from the non-definability of parity over linear orders show that connectivity (P7), acyclicity (P8), "treeness" (P9), and "bipartiteness" (P10) are not definable over finite undirected simple graphs.