
Friendly Logics, Fall 2005 (partial lecture notes)

Val Tannen

1 Preliminaries

Do you know the answer to the following questions?

• What is a language of strings (words) over an alphabet?

• What is an r.e. language?

• What is a computable function?

• What is a decidable language?

• What is a co-r.e. language? How do r.e. and co-r.e. languages relate to decidable languages?

• Is the Halting Problem r.e.? Is it decidable?

• Can you think of an undecidable language that is not defined in terms of Turing Machines?

• What is a many-one reduction?

• What is an r.e.-complete (or co-r.e.-complete) language?

• What is a first-order (FO) vocabulary?

• What is an FO formula? What is an FO sentence?

• What is an FO structure (also called model, interpretation, or instance)?

• If A is a structure and ϕ is a sentence, what does A |= ϕ (read A is a model of ϕ) mean?

• If Γ is a set of sentences and ϕ is a sentence, what does Γ |= ϕ (read ϕ is a logical consequence
of Γ) mean?

• What is a valid sentence?

• What is a satisfiable sentence?

• What is an FO proof?

• If Γ is a set of sentences and ϕ is a sentence, what does Γ ` ϕ (read ϕ is provable from Γ)
mean?

1

If you don’t, review computability from your favorite text and/or logic from a good book such as:

“Logic for Computer Science”, J. Gallier, (Wiley 1986), out of print but available online with the
latest revisions at http://www.cis.upenn.edu/~jean/gbooks/logic.html

“A mathematical introduction to logic”, H. B. Enderton, Harcourt/Academic Press, 1972 and 2000.

“Introduction to mathematical logic”, E. Mendelson, various publishers, 1964, 1979, 1987, and
1997.

“Computability and logic”, G. Boolos and R. Jeffrey, Cambridge Univ. Press, 1974 and 1980.

2 Unfriendly Aspects of First-Order Logic, in General

Our starting point is the semantics of first-order logic(FOL), specifically logical consequence
assertions. These have the form Γ |= ϕ where ϕ is an FO sentence and Γ is set of FO sentences.
For example, we can think of Γ as an “axiomatization” of a mathematical theory or as part of
a “modelization” of a physical or informatic system. So our initial question is: what kind of
computing can we do with logical consequence assertions?

Some theories are axiomatized by finite sets of axioms but most make use of so-called axiom
schemes, which are finite descriptions of infinite sets of axioms. Thus, we will consider so-called
recursively axiomatized theories, given by a Γ that is decidable. 1

Starting with the work of Frege, several equivalent proof systems for FOL were formalized by
Hilbert and others. Answering a question of Hilbert, Gödel showed that the intuition captured by
the proof systems was correct:

Theorem 2.1 (Gödel’s Completeness Theorem) Γ |= ϕ iff Γ ` ϕ.

The FOL proof systems and, in fact, any reasonable proof system has a nice computational nature:
proofs are finite objects, it is decidable whether a finite object is a correct proof and the sentence
proven by a proof can be computed from it. This implies that {(Γ, ϕ) | Γ ` ϕ} is r.e. By Gödel’s
Completeness Theorem and defining

VALID def= {ϕ | |= ϕ }

we have in particular:

Corollary 2.2 VALID is r.e.

This is good, but even better would be if we could actually decide first-order provability (hence
logical consequence). This question, known as the Entscheidungsproblem 2, and again asked by
Hilbert, has a negative answer:

1Note that when Γ is finite Γ |= ϕ is equivalent to |= Γ → ϕ (interpreting Γ as the conjunction of its elements).
2“Decision problem” in German. At the beginning of the 20th century most papers on mathematical logic were

in German.

2

Theorem 2.3 (Church/Turing’s Undecidability Theorem) VALID is undecidable.

We still wish to find cases in which logical consequence is decidable. and there are two strategies we
use in what follows: to restrict ourselves to FO sentences of a special form and to restrict ourselves
to special classes of models.

An obvious restriction of the second kind is to look at validity over finite models. In fact, in
computer science we are concerned mostly with finite structures so this is very natural. Define

FIN-VALID def= {ϕ | A |= ϕ for all finite A}

Exercise 2.1 Give an example of an FO sentence that is finitely valid but not valid.

Unfortunately, finite validity is also unfriendly! We have:

Theorem 2.4 (Trakhtenbrot’s Theorem) FIN-VALID is undecidable.

In fact, FIN-VALID is not even r.e.! This is easy to see if we look at the satisfiability property.

Recall that a sentence ϕ is (finitely) satisfiable if there exists a (finite) model A such that A |= ϕ.
Note that ϕ is satisfiable iff ¬ϕ is invalid and ϕ is valid iff ¬ϕ is unsatisfiable. Hence, it follows
from the Church/Turing and Trakhtenbrot theorems that satisfiability and finite satisfiability are
both undecidable. Moreover, it follows from Gödel’s Completeness Theorem that

Corollary 2.5 The set of satisfiable FO sentences is co-r.e.

The situation with finite satisfiability is quite different:

Proposition 2.6 The set of finitely satisfiable FO sentences is r.e.

Proof Isomorphic models satisfy the same sentences so it’s sufficient to consider finite models
whose universe (domain) is of the form {1, 2, . . . , n}. We can enumerate all pairs consisting of such
a finite model and an FO sentence, and output the sentence if it holds in the model. (This assumes
that for finite models A |= ϕ is decidable; see Theorem 6.2.) 2

Note that although finite satisfiability is r.e., it is nonetheless undecidable, as follows from Trakht-
enbrot’s Theorem. Moreover,

Corollary 2.7 FIN-VALID is not r.e.

Proof If FIN-VALID was r.e. then finite satisfiability would be co-r.e., hence also decidable,
by Proposition 2.6. This would make FIN-VALID decidable which contradicts Trakhtenbrot’s
Theorem. 2

Therefore, FOL “ in finite models” is worse than standard FOL: it does not even admit a complete
proof system!

3

3 The Church-Turing and Trakhtenbrot Theorems

Here is a proof of Theorem 2.3.

Recall the String Rewriting Problem in my [[lecture notes on computability]]. A many-one ⇐
reduction K ≤ SRP is given there, showing that SRP is undecidable.

Here we show that SRP ≤ VALID .

We will describe the total computable function that performs the reduction SRP ≤ VALID by
the FC-program that computes it. This program will take an input of the form 〈R, u, v〉 where R
is a finite set of string rewrite rules over an alphabet Σ and u, v are strings over Σ and produce an

output of the form φ. In order for this to be a many-one reduction, we need u
R
−→→ v iff |= φ .

First, the reduction will have to construct the first-order language over which φ is built. This will
contain a binary a binary predicate symbol, Rew . Moreover, let Σ be the alphabet over which
the strings in R and u, v are built. For each σ ∈ Σ, the first-order language will contain a unary
function symbol fσ. Finally, we have a constant symbol c. From each rewrite rule r ∈ R,

r : σ1 · · ·σm −→ τ1 · · · τn

the reduction will construct a sentence

Φr
def= ∀x Rew(fσ1(· · · fσm(x) · · ·) , fτ1(· · · fτn(x) · · ·))

and then, if R = {r1, . . . , rk} , the reduction will construct

ΦR
def= Φr1 ∧ · · · ∧ Φrk

Moreover, if u ≡ δ1 · · · δp and v ≡ ε1 · · · εq , the reduction will construct

Φu,v
def= Rew(fσ1(· · · fσm(c) · · ·) , fτ1(· · · fτn(c) · · ·))

We also need to say something that ensures that the meaning of the predicate symbol Rew always
“simulates” a rewriting relation. Taking

ΦRew
def= (∀x Rew(x, x)) ∧ (∀x, y, z Rew(x, y) ∧ Rew(y, z)→Rew(x, z)) ∧

∧
∧

σ∈Σ

(∀x, y Rew(x, y)→Rew(fσ(x), fσ(y)))

the reduction will finally construct

φ
def= ΦR ∧ ΦRew →Φu,v

This is clearly defining a total computable function. It remains to show that u
R
−→→ v iff |= φ .

Claim 1. u
R
−→→ v ⊃ |= φ

Proof of Claim 1. By soundness, it is sufficient to show u
R
−→→ v ⊃ |−− φ . This is shown by

induction on the length of the rewriting sequence from u to v. More precisely, one can show that

4

• for any w ∈ Σ∗, |−− ΦR ∧ ΦRew →Φw,w

• for any r ∈ R,w1, w2 ∈ Σ∗, if w1
r−→ w2 then |−− ΦR ∧ ΦRew →Φw1,w2 , and

• for any w1, w2, w3 ∈ Σ∗, if |−− ΦR ∧ ΦRew →Φw1,w2 and |−− ΦR ∧ ΦRew →Φw2,w3

then |−− ΦR ∧ ΦRew →Φw1,w3 .

The details are omitted. End of Proof of Claim 1.

Claim 2. |= φ ⊃ u
R
−→→ v

Proof of Claim 2. Since |= φ then R |= φ where R is the following structure: the underlying

set is Σ∗, Rew is interpreted as the rewrite relation
R
−→→, fσ is interpreted as the function that

concatenates σ at the beginning of its argument, and c is interpreted as nil, the empty string.

Clearly R |= ΦR ∧ ΦRew . Since we also have R |= φ , it follows that R |= Φu,v hence u
R
−→→ v .

End of Proof of Claim 2.

End of proof.

Note that the first-order language needs to contain at least one binary predicate symbol, one
constant symbol, and a number of unary function symbols for the previous proof to go through.
It turns out that the number of function symbols can be reduced to two, since the String Rewrite
Problem over the alphabet {0, 1} is undecidable (to see this, recall that strings over an arbitrary
alphabet can be encoded as strings of bits).

We now turn to Trakhtenbrot’s Theorem (Theorem 2.4). In [[Libkin’s]] “Elements of Finite ⇐
Model Theory”, pp 165–168, it is shown how to compute from the description of a Turing Machine
M a FO sentence ϕM such that M halts on the empty string input iff ϕM is finitely satisfiable.
Like K, Kε is undecidable, (in fact, it is r.e.-complete, just like K). It follows that

FIN-SAT def= {ϕ | there exists a finite A such that A |= ϕ}

is undecidable. Using the reduction ϕ 7−→ ¬ϕ we conclude that FIN-VALID and therefore
FIN-VALID are also undecidable.

Exercise 3.1 Show how to modify the proof of Trakhtenbrot’s Theorem in Libkin’s book in order
to prove the Church-Turing Theorem.

Exercise 3.2 VALID and FIN-SAT are both r.e.-complete hence many-one reducible to each other.
Describe as best you can two total computable functions that realize these two many-one reductions.

4 Reduction Classes

Let us now look at the other strategy for finding decidable cases of logical consequence: restricting
the class of sentences.

Unfortunately, we begin with a disappointment: even for (apparently) simple classes of sentences
validity is undecidable.

5

Definition 4.1 A class C of FO sentences is called a reduction class if there is a computable
function f that maps arbitrary FO sentences into C-sentences such that ϕ is valid iff f(ϕ) is valid.
It follows from the Church/Turing Theorem that the validity problem for C is also undecidable.

Intuitively, reduction classes have a validity problem that is “as hard as” the validity problem for
all of FOL. Even before the Church/Turing result, various reduction classes were exhibited (note
that you don’t really need a formalized definition of computability for such results). We give an
example in what follows.

Definition 4.2 A formula of the form ϕ
def= Q1x1 · · ·Qnxn ψ where each Qi is either ∀ or ∃ and

ψ is quantifier-free is called a prenex formula. If the quantifiers are all ∀ (all ∃) then ϕ is called a
universal formula (an existential formula).

In what follows, by equivalent sentences we mean two sentences that are logical consequences of
each other. This is denoted ϕ |==| ψ and it holds iff |= ϕ↔ ψ.

Lemma 4.1 For each sentence we can compute (in PTIME) an equivalent prenex sentence.

Proof “Pull out” the quantifiers by repeatedly using transformations like

¬∃xϕ 7−→ ∀x¬ϕ ϕ ∧ (∀xψ) 7−→ ∀x(ϕ ∧ ψ) (∀xϕ) → ψ 7−→ ∃x(ϕ→ ψ)

etc., while renaming bound variables to avoid unintended scope capture. 2

Exercise 4.1 Analyze the complexity of the algorithm sketched above; for any FO sentence it
computes an equivalent prenex FO sentence. You can choose the data structure used to represent
sentences.

Lemma 4.2 (Skolem) Let V be a vocabulary and let V be its extension with countably many fresh
function symbols of each arity (including nullary functions i.e. constants). For each prenex sentence
ϕ over V we can compute (in PTIME) a sentence Sk(ϕ) over V such that

• Sk(ϕ) is a universal sentence.

• ϕ is true in the V-restriction of any model of Sk(ϕ).

• Any model of ϕ can be extended, keeping the same universe (domain), to a V-structure that
satisfies Sk(ϕ). (Hence, ϕ is satisfiable iff Sk(ϕ) is satisfiable.)

Proof Eliminate the existential quantifiers from left to right in the prenex sentence repeating the
transformation

∀x1 · · · ∀xn∃y ϕ(y) 7−→ ∀x1 · · · ∀xn ϕ(f(x1, . . . , xn))

where f is a fresh functions symbol.

6

For example:

Sk(∃u ∀x∃v ∀y ∃wR(u, v) ∧ f(x,w) = g(v)) def= ∀x∀y R(r, s(x)) ∧ f(x, t(x, y)) = g(s(x))

2

Sk(ϕ) is unique up to some renaming so it is called the Skolem Normal Form of ϕ. The transfor-
mation ϕ 7−→ Sk(ϕ) is called skolemization. Symbols like r, s and t in the proof example are called
Skolem functions.

Exercise 4.2 Analyze the complexity of the algorithm sketched above; for any prenex FO sentence
it computes an equivalent Skolem normal form FO sentence. Again, you can choose the data
structure used to represent sentences.

Theorem 4.3 The existential sentences form a reduction class.

Proof Given an FO sentence ϕ and assuming that the transformations to prenex form are implicit,
observe that ¬Sk(¬ϕ) is an existential sentence that is valid iff ϕ is valid. 2

Warning! Our definition of reduction class is for the validity decision problem. It is more common
to define reduction classes for the satisfiability decision problem. If the class is closed under negation
the two coincide. But classes defined by the quantifier structure of prenex formula are typically not
closed under negation! For example, the theorem above is often stated as “the universal sentences
form a reduction class (wrt decidability of satisfiability)”.

5 The Finite Model Property

Although finite validity has bad computational properties for the class of all FO sentences, the
r.e.-ness of finite satisfiability can be exploited for classes of restricted FO sentences.

Definition 5.1 A class of sentences has the finite model property if any satisfiable sentence in
the class is also finitely satisfiable.

The class of all FO sentences does not have the finite model property. Indeed, it is fairly easy to
concoct sentences that are satisfiable but not finitely satisfiable . Such sentences are called infinity
axioms. In fact, if the class of all FO sentences would have the finite model property then the next
result would contradict the undecidability results shown earlier!

Proposition 5.1 Let C be a class of sentences that is decidable (i.e., it is decidable whether an
FO sentence ϕ is in C). If C has the finite model property then satisfiability of C-sentences is
decidable.

Proof Recall that for the class of all FO sentences satisfiability is co-r.e. and finite satisfiability
is r.e. Since C is decidable it enjoys the same properties. But for the sentences in C satisfiability
and finite satisfiability coincide! Hence they are both r.e. and co-r.e. and thus decidable. 2

7

The decision procedure provided by the previous proof is very inconvenient: it consists of trying,
in parallel, to finitely satisfy the sentence and to prove its negation (if the sentence is satisfiable
then the first thread succeeds; if not then the second thread does). A better procedure is given by
the following.

Definition 5.2 A class of sentences has the small model property if there is a total recursive
function u such that any satisfiable sentence in the class has a model with less than u(| ϕ |) elements.
(Here | ϕ | denotes the size of ϕ.)

The small model property implies the finite model property. However, a decidable class of sentences
with the small model property has a decision procedure for satisfiability that is potentially simpler.
There is no need for the annoying attempt to prove the negation of a sentence ϕ; it suffices to check
all models with less than u(| ϕ |) elements.

Note that we only said potentially simpler: it all depends on how easy to compute u is. Indeed,
if C is decidable then the finite model property implies the small model property! Consider the
following algorithm for u:

On input n, generate the (finitely many) sentences in C of size n. For each of them, in
parallel, check for finite satisfiabilty and try to prove the negation, and thus compute
either the size of a model or 0 (if unsatisfiable). Return as u(n) the largest of these.

Using this u the small model property gives a decision procedure that is just as incovenient as the
one given by the finite model property. If we consider classes C that are not decidable a general
observation is that there exist such classes that have the finite model property but do not have the
small model property: simply take the class of all finitely satisfiable sentences. Indeed, suppose
there is a total recursive function u such that any satisfiable sentence ϕ in this class has a model
with less than u(| ϕ |) elements. But all the sentences in this class are satisfiable! Hence ϕ is finitely
satisfiable iff it has a model with less than u(| ϕ |) elements. This would make finite satisfiability
decidable. [[Thanks to Madhu and Scott]]. ⇐

Anyway, what happens for concrete classes of sentences is that a better and more specific u is
derived which moreover gives a useful complexity upper bound for the decision procedure. Here is
an example:

Theorem 5.2 The existential FO sentences have the small model property. In fact, any satisfiable
existential sentence ϕ has a model with at most | ϕ | elements.

Proof Let ϕ def= ∃x1 · · · ∃xm ψ be an existential sentence where ψ is quantifier-free. We replace
each non-variable functional term occurring in ψ with a fresh existentially quantified variable and
an additional equality atom. We do this bottom-up for all subterms, including constants, so if
t ≡ f(t1, . . . , tk) is such a term and t1, . . . , tk are replaced by y1, . . . , yk then t is replaced by a
fresh variable y and we add the equality atom f(y1, . . . , yk) = y. Therefore, ϕ is transformed into
a sentence ϕ of the form

ϕ
def= ∃x1 · · · ∃xm ∃y1 · · · ∃yn ψ ∧ f1(. . .) = y1 ∧ · · · ∧ fn(. . .) = yn

8

where f1, . . . , fn are the functional symbol ocurrences in ψ (we treat constants as nullary functions).

For example, ∃xR(x, f(c, x)) is transformed into ∃x∃y1∃y2R(x, y2) ∧ c = y1 ∧ f(y1, x) = y2.

It is not hard to see that ϕ and ϕ hold in the same models and that if ϕ is satisfiable then it has a
model with at most m+ n elements. Since n ≤| ψ | we conclude that if ϕ is satisfiable then it has
a model with at most | ϕ | elements. 2

Corollary 5.3 Satisfiability of existential sentences is NP-complete.

Proof For membership in NP, let the sentence be ϕ def= ∃x1 · · · ∃xm ψ(x1, . . . , xm). We guess a
model A with less then | ϕ | elements, we also guess a valuation v that maps each of x1, . . . , xm to
some element of A, and then we check A, v |= ψ. Checking the truth of a quantifier-free formula
can be done in PTIME in the size of the formula, see Theorem 6.1.

For NP-hardness we provide a reduction from boolean satisfiability. Given a boolean formula β

with propositional variables p1, . . . , pn we construct the existential sentence ϕ def= ∃x1 · · · ∃xn β over
a vocabulary with one unary predicate symbol R where β is obtained by replacing each pi with
R(xi). Now consider the “binary” model B whose universe is {0, 1} and where R is interpreted as
{1}. Clearly β is satisfiable iff B |= ϕ. It is also easy to see that if ϕ is satisfiable then it holds true
in B. Therefore, β is satisfiable iff ϕ is. 2

And this finally gives a class of sentences for which the validity problem is decidable:

Corollary 5.4 Validity of universal sentences is decidable and coNP-complete.

This means that the satisfiability of existential sentences is also decidable and in fact NP-complete.
(Note that Theorem 4.3 says that validity is undecidable for this same class.)

For certain simple existential sentences satisfiability is trivially decidable: they are in fact all
satisfiable!

Exercise 5.1 An existential-conjunctive sentence is a sentence of the form ∃x1 · · · ∃xn ϕ where ϕ
is a conjunction of atomic formulas (equalities are allowed). Prove that any existential-conjunctive
sentence is satisfiable in a model with one element.

Such sentences are related to the conjunctive queries that we will study later.

6 Model Checking for FOL

Given a vocabulary V, the model checking 3 problem consists of deciding if A |= ϕ for an FOL
V-sentence ϕ and a finite V-structure A.

We shall be interested in the complexity of the model checking problem, in fact in three different
situations:

3This name comes from automated verification. We shall see later that model checking for many verification logics
is a particular case of FOL model checking.

9

Combined complexity The input is (A, ϕ), its size is | A | + | ϕ |.

Expression complexity A is fixed, the input is just ϕ.

Data complexity ϕ is fixed, the input is just A.

We must be clear about what is meant by | A |. This is the size of the complete description of
A. But how do we give such a description as input to a Turing machine? We fix an enumeration
of the elements of the (non-empty) universe of A: a1, a2, . . . an then we represent (encode) the
model on Turing machine tapes with respect to this enumeration. Specifically, we represent ak

by the number k, in binary, therefore by using log k bits. We encode tuples and then relations
using some separating symbols. The tuples in a relation will be ordered lexicographically, based on
the ordering of domain elements given by the enumeration. For example, consider the enumerated
domain a, b, c. Then R = {(c, b), (a, c), (a, b)} S = {(c, a, c), (a, a, b)} can be encoded by the
string R/0-1/0-10/10-1/S/0-0-1/10-0-10/. The interpretation of function symbols of arity m
is represented as m + 1-relations in which the tuples group the arguments and the corresponding
result of the function. Finally, we make the size of the universe, in unary (to avoid pathologies)
part of the representation.

If the universe of A has n elements and if the vocabulary contains an m-ary relation symbol R
then the model description contains the encoding of as many as nm tuples. In general, for a fixed
vocabulary | A | is no more than polynomial in the size of the universe of A.

We begin with with the quantifier-free case and it will be useful to consider a slightly more general
problem, involving formulas and valuations rather than just sentences: decide if A, v |= ψ where
ψ is a quantifier-free formula and v is a valuation defined for a set of variables that includes the
free variables of ψ. In this case, we consider v, together with ψ, to be the input for expression
complexity.

Theorem 6.1 The data complexity of quantifier-free formula checking is in LOGSPACE. The
expression and combined complexities of the same problem are in PTIME.

Proof The procedure relies on evaluating the functional terms in the formula, determining the
truth value of the atoms, and evaluating the resulting boolean expression. Term evaluation is done
akin to arithmetic expression evaluation, using a stack. This gives us the PTIME expression and
combined complexities. For the data complexity note that the size of the stacks does not depend
on | A |. We just need to lookup tuples in the description of A and this can be done with pointers
of size log | A |. This gives the LOGSPACE bound on data complexity. 2

Remark It has been shown that boolean expressions can be evaluated in LOGSPACE. (Indeed,
to evaluate, e.g., a ∨ b we do not need to record both the value of a and b.) We would not be
evaluating b at all if a resulted in true. Therefore, in the absence of function symbols, i.e., when the
vocabulary consists only of relation symbols and constants, the expression and combined complexity
of quantifier-free model checking are also in LOGSPACE 4

4However, it seems that we cannot evaluate functional terms in LOGSPACE. (Think what goes wrong with the
stack-based procedure.) It is known that there exist context-free languages that are NLOGSPACE-complete. I am
still trying to find out whether such languages can be reduced to the problem of functional term evaluation.

10

Theorem 6.2 The data complexity of FOL model checking is in LOGSPACE. The expression and
combined complexities of FOL model checking are PSPACE-complete.

Proof First we put the sentence in prenex form 5. Let Q1x1 · · ·Qkxk ψ be the result.

We evaluate this sentence in A using k nested loops iterating each of x1, . . . , xk through all the
elements of the universe of A. If xi is universally quantified then the loop corresponding to xi

computes a big conjunction (disjunction if existentially quantified). In the innermost loop we
evaluate A, v |= ψ where v is the valuation recording the current values of x1, . . . , xk. If m is the
number of elements of A then the time complexity of doing all this is

O(mk poly(| A |, | ψ |))

where poly is a two-variable polynomial. For the space complexity, note that we can keep track
of the current v by using k pointers of size logm. Thus the space complexity adds O(k logm) to
the space complexity of the quantifier-free case. This gives LOGSPACE for data complexity and
PSPACE for expression and combined complexities.

To show PSPACE-completeness we reduce from QBF, the problem of checking the truth of a
(fully) quantified boolean formula. This is essentially the same reduction performed in the proof
of Corollary 5.3.

Given a fully (no free propositional variables) quantified boolean formula γ
def= Q1p1 · · ·Qkpk β

we construct the FO sentence ϕ def= Q1x1 · · ·Qkxk β over a vocabulary with one unary predicate
symbol R where β is obtained by replacing each pi with R(xi). Clearly γ is true iff B |= ϕ where B
is defined in the proof of Corollary 5.3. Since B is a fixed model, this gives a lower bound for both
combined complexity and expression complexity.

7 First-Order Queries

A relational database schema is a non-empty set Σ of relation symbols with their arities. Relational
database formalisms also permit constants. In fact, we fix a countably infinite set ID whose elements
we call constants. These constants can appear in formulas, in other words we work with the FO
vocabulary Σ ∪ ID.

For semantics it is more covenient—although not essential—to give a treatment a little different
than that of standard FOL. Namely the set ID is also understood as the sole universe of discourse for
the interpretation of formulas. A relational database instance for a given schema Σ (a Σ-instance)
is a first-order structure whose domain, or universe, is ID and in which the relation symbols are
interpreted by finite relations, while the constants are interpreted as themselves.

For a given schema Σ , consider queries of the form {x | ϕ} where x is a tuple of variables or
constants 6 and ϕ is a first-order formula with equality over Σ such that the free variables of ϕ

5I don’t know if this can be done in LOGSPACE but for data complexity the sentence is fixed. It certainly can
be done in low degree PTIME hence PSPACE.

6For these general FO queries, we could, without loss of generality, assume that the tuple x consists of distinct
variables. This is not the case when we discuss conjunctive queries without equality atoms as we shall see later.

11

occur in x. The inputs of the query are the Σ-instances. For each input I, the output of the query
q ≡ {x | ϕ} is the n-ary relation (where n is the length of x)

q(I) = {v(x) | valuation v such that I, v |= ϕ}.

Exercise 7.1 We also allow the case when n = 0, that is x is the empty tuple, denoted (). What
can the output of the query be in this case?

But what is a database? Clearly, we expect it to be finite so we would only consider the case when
the schema, Σ, is finite. The database consists of interpretations for the schema symbols, hence it
is a finite collection of finite relations. A database cannot encompass the entire domain ID which is
infinite. Let I be an instance. The active domain of I, notation adom(I), is the set of all elements
of ID that actually appear in the interpretations in I for the relation symbols. While ID is infinite,
adom(I) is always finite. Moreover, given a query q ≡ {x | ϕ}, we will denote by adom(q) the
(finite) set of constants that occur in ϕ or x.

It is our expectation that the database I together with the query q completely determine the output
q(I). In particular, only the elements in adom(I)∪ adom(q) can appear in the output. This is not
the case for all FO queries. For example, the outputs of {x | ¬R(x)} or {(x, y) | R(x) ∨ S(y)} are
in fact infinite! More subtly, the following query is also problematic: {x | ∀yR(x, y)}. Here the
output contains only elements from adom(I) but whether a tuple is in the output or not depends
on the set of elements we let y range over. These two queries are “dependent on the domain”.

To capture this precisely, given a query q ≡ {x | ϕ}, for any instance I and any D such that
adom(I)∪ adom(q) ⊆ D ⊆ ID, we denote by q(I/D) the output of the query on the input obtained
by resticting the domain to D.

Definition 7.1 A query q is domain independent if for any I and any D1, D2 where adom(I) ∪
adom(q) ⊆ Di ⊆ ID, i = 1, 2 we have q(I/D1) = q(I/D2).

Exercise 7.2 Give an example of a query q, an instance I and a D where adom(I) ∪ adom(q) ⊆
D ⊆ ID, such that q(I/D), q(I/adom(I) ∪ adom(q)) and q(I/ID) are all distinct.

It is generally agreed that in a reasonable query language, all the queries should be domain inde-
pendent. Therefore, general first-order queries do not make a good query language. Worse

Theorem 7.1 It is undecidable whether a first-order query is domain independent.

Proof We reduce FIN-VALID to the problem of domain-independence and then the result follows
from Trakhtenbrot’s Theorem. The reduction maps

ϕ 7−→ q ≡ {x | ¬ϕ ∧ ¬R(x)}

where R is a unary relation symbol that does not occur in ϕ. So q′s schema consists of the relation
symbols in ϕ plus R. 7

7As stated earlier, Trakhtenbrot’s Theorem assumes a general FO vocabulary. It can be shown however that the
class of pure (no function symbols) sentences is a reduction class for validity and, in fact, finite validity. It follows
that finite validity of pure sentences is also undecidable.

12

If ϕ is finitely valid then q’s output is always empty hence q is domain-idependent. If ϕ is not
finitely valid then ¬ϕ is true in some finite structure A. We put the elements of the universe of A
in one-to-one correspondence with some elements of ID and consider a database instance I for the
schema of q. In I the relation symbols in ϕ are interpreted according to the correspondence with
A while R is interpreted as the empty set, hence q(I/D) = D for any D ⊇ adom(I). It follows
that q is not domain-independent. 2

So what do we do to get a reasonable query language? It is possible to define decidable safety
restrictions on general first-order formulas such that the safe queries are domain independent and
moreover for any domain independent query there exists an equivalent safe query. But the safety
restrictions are ugly! Instead, we will present a different kind of query language, based on algebraic
operations rather than first-order logic. And we will show that for any domain independent first-
order query there exists an equivalent expression in this algebra. In fact, SQL is inspired by this
algebra!

8 Relational Algebra

The relational algebra is a many-sorted algebra, where the sorts are the natural numbers. The idea
is that the elements of sort n are finite n-ary relations. Recall the domain ID. The carrier of sort
n of the algebra is REL(IDn) (the set of finite n-ary relations on ID).

If f is a many-sorted k-ary operation symbol that takes arguments of sorts n1, . . . , nk (in this order)
and returns a result of sort n then we write its type as follows: f : n1 × · · · × nk −→ n0, and we
simplify this to n for nullary (k = 0) operations.

The operations of the algebra, with their types and their interpretation over the relational carriers
are the following:

constant singletons {c} : 1 (c ∈ ID)

selection1 σn
ij : n −→ n (1 ≤ i < j ≤ n) interpreted as σn

ij(R) = {x ∈ R | xi = xj}.

selection2 σn
ic : n −→ n (1 ≤ i ≤ n, c ∈ ID) interpreted as σn

ic(R) = {x ∈ R | xi = c}.

projection πn
i1...ik

: n −→ k (1 ≤ i1, . . . , ik ≤ n, not necessarily distinct)
interpreted as πn

i1...ik
(R) = {xi1 , . . . , xik | x ∈ R}.

cartesian(cross-) product ×mn : m× n −→ m+ n
interpreted as ×mn (R,S) = {x1, . . . , xm, y1, . . . , yn | x ∈ R ∧ y ∈ S}.

union ∪n : n× n −→ n interpreted as ∪n (R,S) = {x | x ∈ R ∨ x ∈ S}.

difference −n : n× n −→ n interpreted as −n (R,S) = {x | x ∈ R ∧ x 6∈ S}.

Relational algebra expressions are built, respecting the sorting, from these operation symbols, using
the relational schema symbols as variables.

Note that an obvious operation, intersection, is missing. Of course, intersection can be defined
from union and difference, by De Morgan’s laws. Interestingly, we also have the following:

13

Exercise 8.1 Show that intersection is definable just from cartesian product, selection, and pro-
jection.

Given a relational schema Σ, a relational algebra query is an algebraic expression constructed from
the symbols in Σ and the relational algebra operation symbols, for example if R,S are binary, the
expression π2414(σ13(R× S))− (R×R) defines a query that returns a 4-ary relation (we omit the
operation’s superscripts because they can usually be reconstructed and we use infix notation for
the binary operations). Given a database instance I as input, such a query e returns a relation
e(I) as output.

Clearly, each of the operations of the relational algebra maps finite relations to finite relations, even
when the domain of the instance is infinite. In fact, using a definition similar to the one given for
first-order queries, the algebra queries are all obviously domain-independent.

Exercise 8.2 What corresponds in the relational algebra to the FO queries whose output tuple is
empty? What happens to the projection operation when k = 0?

Next, we show that the relational algebra and the domain-independent first-order queries have the
same expressive power.

Theorem 8.1 There exists an (easily) computable translation that takes any relational algebra
query into an equivalent domain-independent first-order query.

Proof Sketch By induction on the structure of algebraic expressions. For example, R translates
to {x | R(x)} while {c} translates to {x | x = c}. Here is another case, corresponding to selection1.
Suppose that e translates to q ≡ {x | ϕ}, such that for any instance I, q(I) = e(I). Then σij(e)
translates to q′ ≡ {x | ϕ ∧ xi = xj}. If q is domain-independent then so is q′. Moreover, for
any instance I q′(I) = σij(e)(I). (It is instructive to do the cases corresponding to projection and
cartesian product yourselves.) 2

The converse is slightly more delicate. Because the set of domain-independent FO queries is not
decidable, we cannot define a translation just for these queries. Therefore, we will define a trans-
lation for all FO queries, such that domain-independent FO queries are translated to equivalent
algebraic queries. In fact, we will prove a slightly more general result that will also allow us to
transfer undecidability and lower bound results from logic over finite models to databases.

Theorem 8.2 There exists a computable translation that takes any first-order query q over the
schema Σ into a relational algebra query e over the schema Σ ∪ {D} where D is a fresh unary
relation symbol, such that for any Σ ∪ {D}-instance I, we have

e(I) = q(I/D)

(Abuse of notation: we denote the interpretation of D in I also by D.)

Proof Sketch We give the translation by induction on the structure of FO formulas.

14

Queries defined by atoms such as {x1, . . . , xn | xi = c} and {x1, . . . , xn | xi = xj} translate
to σij(Dn), respectively σic(Dn), where Dn ≡ D × · · · × D. Another case: if {x1, . . . , xn | ϕ}
translates to e then {x1, . . . , xn | ¬ϕ} translates to en

AD
− e.

Finally, here is the existential quantifier case. If {x1, . . . , xm, z, y1, . . . , yn | ϕ} translates to e then
{x1, . . . , xm, y1, . . . , yn | ∃z ϕ} translates to π1···m(m+2)···(m+n+1)(e). (It is instructive to do the cases
corresponding to the relational atom, the conjunction, and the universal quantifier cases.) 2

Corollary 8.3 There exists a computable translation that takes any first-order query q into a
relational algebra query e over the same schema such that for any instance I, we have

e(I) = q(I/adom(I) ∪ adom(q))

(which further equals q(I) whenever q is domain-independent).

Proof Indeed, the active domains can be computed in the relational algebra:

Lemma 8.4 For every schema Σ there is a relational algebra expression eInstAD (using just cartesian
product, projection and union) such that for any Σ-instance I, eInstAD (I) is the active domain of I.

The proof of the lemma is obvious. Now using the translation provided by the theorem, replace in
e the symbol D with the relational algebra expression eInstAD ∪ {c1} ∪ · · · ∪ {cn} where c1, . . . , cn =
adom(q). 2

It is possible to define a notion of satisfiability for FO queries and also one of equivalence. But the
familiar undecidability demons are still present.

Definition 8.1 A relational algebra expression e is satisfiable if there exists an instance I such
that e(I) 6= ∅.

Corollary 8.5 Satisfiability of relational algebra queries is undecidable.

Proof By reduction from the problem of finite satisfiability of FO sentences (whose undecidability
follows immediately from Trakhtenbrot’s Theorem). Specifically, we will give a computable trans-
lation that takes any first-order sentence ϕ over a vocabulary V with just relational symbols and
constants into a relational algebra query e over the schema V ∪ {D} where D is a fresh unary
relation symbol, such that ϕ is finitely satisfiable iff e is satisfiable.

We use the translation in the theorem for the query q ≡ { () | ϕ }. The result is a 0-ary relational
algebra expression over V∪{D}. Suppose ϕ is true in the finite V-structure A. We put the elements
of the universe of A in one-to-one correspondence with some elements of ID and consider a database
instance I for the schema V ∪ {D} where the relation symbols and constants in ϕ are interpreted
according to the correspondence with A while D is interpreted as the subset of ID that corresponds
to the universe of A. Clearly q(I/D) = { () } so e(I) = { () } and e is satisfiable.

Conversely, suppose e(I) 6= ∅ for some V ∪ {D}-instance I. It follows that q(I/D) 6= ∅. That
means that ϕ is true in the finite structure with universe D (actually, the interpretation of D in I)
with the interpretation of the symbols in V restricted to D. 2

Exercise 8.3 Define equivalence of relational algebra queries and prove that it is undecidable.

15

9 Complexity of FO Queries

How fast can FO (first-order) queries be evaluated? This is essentially the model checking problem
that we have studied earlier. However, we need to take a little care because, as we have defined
them, database instances are not the same as arbitrary first-order finite models.

Recall that we have assumed that ID is countably infinite. Let us fix an enumeration 8 of its
elements, a0, a1, a2, We then represent (encode) the interpretation of the relational symbols
with respect to this enumeration, just as we did in section 6, with the notable exception that there
is no representation of the “size of the universe” (since it is infinite).

Although queries compute functions from input instances to output relations, it is more common
to study the complexity of an associated decision problem.

Definition 9.1 The recognition problem asks if a tuple u is in q(I) where q is a query and I an
instance. As for model checking, consider as inputs 〈I, u, q〉 or 〈I, u〉 which jointly encode instances,
tuples and queries.

Theorem 9.1 For any (fixed) query q the language {〈I, u〉 | u ∈ q(I)} is in LOGSPACE. Using
the same terminology as in model checking, we say that the data complexity of FO queries is in
LOGSPACE.

Proof Sketch This is essentially Theorem 6.2 but we must recall that for model checking the
universe of the structure is also part of the input while here it is not. However, given the instance,
it is possible to cycle in LOGSPACE through the active domain, perhaps more than once through
some elements. Since q is domain independent, we need only evaluate it over the active domain.
As for u there are two possible ways of dealing it. Can you figure them out? 2

Note. The LOGSPACE bound is somewhat conservative. Although we do not know how to de-
scribe more accurately the sequential complexity of FO queries, we do have a better description of
its parallel complexity. The class AC0 consists (roughly) of the languages decided by a parallel ran-
dom access machine (PRAMs) with polynomially many processors in constant time. (“Roughly”,
because the precise definition requires that the machine be constructed “uniformly” from the input.)

Theorem 9.2 The parallel data complexity of FO queries is in AC0.

No proof.

Theorem 9.3 The language {〈I, u, q〉 | u ∈ q(I)} is PSPACE-complete. (We say that the com-
bined complexity of FO queries is PSPACE-complete.)

No proof but look again at Theorem 6.2 and at the discussion in the proof of Theorem 9.1 above.
8The result of our queries does not depend on the choice of the enumeration; we say that the queries are

generic. Genericity, regardless of the query language, can be defined precisely (in essence it means invariance under
isomorphisms).

16

Exercise 9.1 Does the reduction from QBF in the proof of Theorem 6.2 produce domain-independent
queries? If not, fix it so it does.

10 Conjunctive Queries

Conjunctive queries are first-order queries of a particular form: {x | ∃yϕ} where ϕ is a conjunction
of atoms. Example: {(x, z) | ∃y R(x, y)∧z = y∧S(y, x)}. This query is clearly domain-independent,
but the following are not: {(x, y) | R(x)}, {(x, y) | ∃z R(x) ∧ y = z} Therefore, we need some
additional restrictions to make sure we get only domain-independent queries.

Definition 10.1 A tableau T is a set of atoms (relational or equality) that is range-restricted, that
is, for any variable x ∈ var(T) either T ` x = c for some constant c or T ` x = x′ for some variable
x′ that occurs in a relational atom in T .

Here T ` e = e′ means that e = e′ can be derived from the formulas in T via reasoning in FO logic.
By completeness, this is the same as T |= e = e′. It is clear that the relational atoms in T do not
matter and that this kind of consequence is easily decidable, hence so is T ` e = e′.

Definition 10.2 A conjunctive query is a given by a pair 〈u, T 〉 where T is a tableau and u is a
tuple of variables or constants (the “output” tuple) 9 such that var(u) ⊆ var(T). The corresponding
FO query is {u | ∃yT} where y = var(T) \ var(u) and where we “read” T as the conjunction of its
elements.

The range-restriction condition on the tableau part ensures domain-independence (see exercise
below).

Here are two examples written in a Prolog-like, or “rule-based”, formalism:

ans(x, y) :− R(x, z), x = c, S(x, y, z)
ans(c, y) :− R(c, z), S(c, y, z)

In the spirit of rule-based/logic programming, the output tuple of conjunctive queries is sometimes
called the “head” of the query and the tableau part the “body” of the query.

Notice that the two queries given above are equivalent. It is natural to ask if we can always get
rid of equality atoms in a conjunctive query. It turns out that this is the case iff the query is
“satisfiable” (see below). Note however that the transformation may introduce constants in the
head (as above) or may equate some of the variables in the head, eg.,

ans(x, y) :− R(x), x = y

ans(x, x) :− R(x)

For conjunctive queries without equality atoms we cannot assume without loss of generality that
the output tuple consists of distinct variables.

9Without loss of generality we can assume that the output tuple consists of distinct variables.

17

We have stated that conjunctive queries are particular cases of FO queries and this defined their
semantics. However, it is worthwhile observing that I, v |= ∃yT iff I, β |= T for some extension β
of v. More precisely:

Definition 10.3 If T is a tableau and I and instance, a valuation for T in I is a function β :
var(T) −→ ID. We extend β to map any constant to itself. Moreover, we say that that the
valuation β satisfies T if

• for any atom R(e) ∈ T the relation RI contains β(e), and

• for any atom e = e′ ∈ T ′ we have β(e) = β(e′).

Proposition 10.1 For any conjunctive query q = 〈u, T 〉 and any instance I

q(I) = {β(u) | valuation β satisfies T in I}.

Here is a quick application of this proposition.

Exercise 10.1 Prove that all conjunctive queries are domain-independent.

Another application is to characterize and decide satisfiability for conjunctive queries.

Proposition 10.2 A conjunctive query q = 〈u, T 〉 is unsatisfiable iff T ` c1 = c2 for two distinct
constants c1, c2. In particular, satisfiability is easily decidable.

Proof By proposition 10.1 q is satisfiable iff there exists an instance and a valuation that satisfy
T . If T ` c1 = c2 then any valuation must equate c1 and c2 which is impossible if they are distinct.
This gives us one direction of the proposition. For the converse, suppose that c1 ≡ c2 whenever
T ` c1 = c2. Then, for any x ∈ var(T) there is at most one constant c such that T ` x = c. Let γ
map every variable in x ∈ var(T) to such a unique c if it exists. If it doesn’t, let γ map x to a fixed
constant c0 that we choose apriori. Extend γ to map any constant to itself. Build an instance I0

as follows:
RI0 def= {γ(e) | R(e) ∈ T}

We claim that γ is a valuation that satisfies T . The relational atoms are satisfied by construction.
If x = c ∈ T then γ(x) = c = γ(c). If x1 = x2 ∈ T then (1) either T ` x1 = c for some c in which
case we also have T ` x2 = c and therefore γ(x1) = c = γ(x2), (2) or γ(x1) = c0 = γ(x2). 2

Note that proposition 10.2 implies that satisfiability depends only on the tableau part of the query.
We can therefore talk about (un)satisfiable tableaux.

Exercise 10.2 Prove that any equality-free conjunctive query is satisfiable.

Exercise 10.3 Prove that for any satisfiable conjunctive query there is an equality-free conjunctive
query equivalent to it.

18

Proposition 10.1 also implies that conjunctive queries are in NP, which is (probably!) better than
general FO queries which are PSPACE-complete (all this is for combined complexity):

Theorem 10.3 The combined complexity of the recognition problem for conjunctive queries is NP-
complete.

Proof Since the queries are domain-independent, it is sufficient for the valuations to take values
in adom(I) ∪ adom(q) instead of all of ID. Note that the size of such a valuation is polynomial.
Then, to test if a ∈ q(I) where q = 〈u, T 〉, we can guess such a poly-size finite valuation β and
check in polynomial time that it satisfies the relational and equality atoms of T and that a = β(u).
Hence the problem is in NP.

To prove NP-hardness, we reduce CLIQUE to our problem. Given a graph G and a number n > 1,
consider the relational schema with just one binary relation symbol E and construct the instance
IG that corresponds to the set of edges (pairs of vertices) of the graph G. Then consider the query
〈 (), Tclique 〉 where () is the empty (0-ary) tuple, var(Tclique) = {x1, . . . , xn} and

Tclique =
∧

1≤i6=j≤n

E(xi, xj)

Clearly G has a clique of size n iff () ∈ 〈 (), Tclique 〉(IG). 2

Exercise 10.4 The reduction above from CLIQUE is specifically for combined complexity. Prove,
with a reduction from 3-colorability, that the expression complexity of the recognition problem is
also NP-hard. (It is of course in NP, same proof as above.)

The conjunctive queries correspond to a specific fragment of the relational algebra, namely the
fragment that uses only the selection, projection, and cartesian product operations. We call this
fragment the SPC algebra.

Theorem 10.4

1. There is an effective translation that takes every conjunctive query into an equivalent SPC
algebra expression.

2. There is an effective translation that takes every SPC algebra expression into an equivalent
conjunctive query.

Proof Sketch For example, the query ans(c, y) :− R(c, z), S(c, y, z) is translated to the expression
π14(σ1c(σ3c(σ25(R×S)))). This suggests the idea behind the translation in part (1) of the theorem:
start with the cartesian product of the occurrences of the relations in the body, continue with selec-
tions determined by the equality atoms, by the use of the same variable in several relational atoms
and by the occurrence of constants in the relational atoms, and end with a projection corresponding
to the positions of the variables that appear in the output. For part (2) the translation is defined by
induction on SPC algebraic expression and I am going to skip it. Notice however that conjunctive
queries always translate into SPC expressions of a special form: a cartesian product followed by

19

several selections followed by a projection. This is a normal form for SPC algebra expressions. By
composing the two translations in this theorem we can translate any SPC expression into a normal
form. 2

Via the translation to the SPC algebra we see that conjunctive queries correspond closely to certain
SQL programs. For example, the query ans(x, y) :− R(x, z), x = c, S(x, y, z) corresponds to

select r.1, s.2
from R r, S s
where r.1=c and s.1=r.1 and r.3=s.2

Such SQL programs, in which the “where” clause is a conjunction of equalities arise often in
practice. So, although restricted, conjunctive queries are important. But the best evidence for
their importance comes from the fact that conjunctive query equivalence is decidable. Indeed,
recall that we had an exercise that stated equivalence of relational algebra expressions (therefore
FO queries) is undecidable. The decidability of conjunctive query equivalence plays an important
role in query optimization.

Definition 10.4 A query q is contained in another query q′, written q v q′, if for any instance I
we have q(I) ⊆ q′(I). Moreover, q and q′ are equivalent, written q ≡ q′ if both q v q′ and q′ v q.

Exercise 10.5 Prove that for conjunctive queries containment is reducible to equivalence. Is this
the case just for conjunctive queries?

In showing that containment of conjunctive queries is decidable we use the following concept:

Definition 10.5 Given two conjunctive queries q = 〈u, T 〉 and q′ = 〈u′, T ′ 〉 a homomorphism
h : q′ −→ q is a mapping h : var(T ′) −→ var(T) ∪ ID, extended to map any constant to itself, and
such that

• for any atom R(e′) ∈ T ′ we have T ` R(h(e′)),

• for any atom e′1 = e′2 ∈ T ′ we have T ` h(e′1) = h(e′2), and

• T ` h(u′) = u

The following is immediate:

Lemma 10.5

1. The identity mapping q −→ q is a homomorphism.

2. Homomorphisms compose.

There are obvious similarities between homomorphisms and valuations. This is not accidental be-
cause there is a tight connection between tableaux and database instances. In fact, this connection
is the key to the “good behavior” of conjunctive queries.

20

To every satisfiable tableau T we associate a database instance Inst(T) as follows. T (or, more
precisely, the set of equality atoms in T) determines an equivalence relation on the set of variables
and constants occurring in T , var(T)∪adom(T). Specifically, e is equivalent to e′ iff T ` e = e′. Let
us denote by ê the equivalence class of the variable or constant e. Because T is satisfiable, such an
equivalence class can contain at most one constant. We are going to define Inst(T) by interpreting
the relation symbols as sets of tuples of such equivalence classes 10. Now for any relation symbol
R we define

ê ∈ RInst(T) iff T ` R(e)

If ê = ê′ then T ` R(e) iff T ` R(e′) hence this definition does not depend on the choice of
representatives from the equivalence classes.

Conversely, to every database instance I we associate a tableau Tab(I) as follows. The variables of
the tableau are the elements of adom(I) and the tableau consists of all the relational atoms R(a)
such that RI (a) holds in I. This tableau is as big as the database itself! Note that there are no
equality atoms.

Lemma 10.6

1. Let q = 〈u, T 〉 and q′ be two conjunctive queries. Then, there is a homomorphism from q′ to
q iff û ∈ q′(Inst(T)).

2. Let q be a conjunctive query, I an instance and a ∈ adom(I). Then a ∈ q(I) iff there is a
homomorphism from q to 〈a,Tab(I) 〉.

Proof Sketch For (part 1) let q′ = 〈u′, T ′ 〉.

First assume h : q′ −→ q. Let the valuation ĥ : var(T ′) −→ adom(Inst(T)) be defined by ĥ(x′) =
ĥ(x′). Using the properties of the homomorphism h, it is straightforward to check that ĥ satisfies
the tableau T ′. It follows that ĥ(u′) ∈ q′(Inst(T)). But ĥ(u′) = ĥ(u′) = û.

Conversely, assume û ∈ q′(Inst(T)). Then, there exists a valuation β : var(T ′) −→ adom(Inst(T))
that satisfies T ′ and such that β(u′) = û. Define h : var(T ′) −→ var(T) ∪ ID by choosing h(x′)
to an element of the equivalence class β(x′). Again, it is straightforward to check that h is a
homomorphism.

(Part 2) follows from (part 1) once we observe that since Tab(I) has no equality atoms there is an
isomorphism between Inst(Tab(I)) and I such that â corresponds to a. 2.

Theorem 10.7 q v q′ iff there is a homomorphism from q′ to q.

Proof Let q = 〈u, T 〉 and q′ = 〈u′, T ′ 〉.
10There is a difficulty here, but it is easily overcome. We have said that our database instances are built over ID

and these equivalence classes are not elements of ID. Well, we can identify the equivalence classes that contain a
constant with that unique constant. We can also identify the equivalence classes that contain only variables with
some elements of ID, chosen outside of adom(T) (this is why we took ID to be an infinite set).

21

First assume q v q′. Since the identity is a homomorphism, we have by lemma 10.6 (part 1),
û ∈ q(Inst(T)). Hence û ∈ q′(Inst(T)) and again by lemma 10.6(part 1) there is a homomorphism
from q′ to q.

Conversely, assume that h : q′ −→ q is a homomorphism. We wish to show that for any instance
and any a ∈ adom(I) (this is sufficient because conjunctive queries are domain-independent) we
have a ∈ q(I) ⇒ a ∈ q′(I).

By lemma 10.6 (part 2) if a ∈ q(I) then there is a homomorphism g : q −→ 〈a,Tab(I) 〉. But ho-
momorphisms compose so g ◦h : q′ −→ 〈a,Tab(I) 〉 is also a homomorphism. Again by lemma 10.6
(part 2) we have a ∈ q′(I). 2.

Since there are only finitely many mappings between variables, containment is decidable. In fact:

Corollary 10.8 Testing q v q′ is NP-complete.

Proof By the theorem, this is equivalent to guessing a mapping (clearly of poly-size) from var(q′)
to var(q) and then checking (clearly in poly-time) that it is a homomorphism. Hence the problem
is in NP.

For NP-hardness, we reduce the recognition problem for conjunctive queries to a containment.
Indeed, by lemma 10.6 (part 2) a ∈ q(I) iff there is a homomorphism from q to 〈a,Tab(I) 〉. By
the theorem, this in turn is equivalent to the containment 〈a,Tab(I) 〉 v q. 2.

11 Conjunctive Query Minimization

In this section we restrict ourselves to conjunctive queries whose tableau consists only of relational
atoms. The treatment can be generalized to deal with equality atoms but the complications might
obscure the beauty of the results.

The problem of query minimization is the following: given q find an equivalent query qm that
is “minimal”. Of course we have to define what “minimal” means, but the intention is that qm
executes as fast as possible. Without going into the subtleties of how to measure/estimate running
time for queries, we shall accept the fairly obvious statement that the presence of additional atoms
slows down a query. This will give us a partial ordering on queries and then we will look for queries
that are minimal with respect to this partial ordering. Formally:

Definition 11.1 Given a conjunctive query q = 〈u, T 〉 a subquery of q is a conjunctive query of
the form 〈u, S 〉 where S ⊆ T .

If qs is a subquery of q then there is an obvious homomorphism (x 7−→ x) from qs to q, hence
q v qs. We will be interested in the cases when qs v q also holds, hence qs is actually equivalent to
q. It is easy to check that “q1 is a subquery of q2 and q1 ≡ q2” is a partial ordering on queries. The
queries that are minimal in this partial ordering shall be called “locally minimal” because none of
their atoms can be removed while preserving equivalence.

22

Definition 11.2 The query q is locally minimal if no strict subquery of q is equivalent to q. (Equiv-
alently, the only subquery of q equivalent to q is q itself.)

In a first approximation, we could say that to minimize a query q we should try to find locally
minimal queries equivalent to q. Obviously, such queries exist because in the partial order we have
just defined all descending chains are finite. But “how many” such queries are there? It is trivial
that they form an r.e. set: just enumerate all queries up to isomorphism and test each one for
local minimality and equivalence to q. But what we wish for is the following situation: there are
only finitely many (up to renaming the variables, of course) locally minimal queries equivalent to
a given query q and there is an algorithm for computing them. Indeed, we shall see that this is the
case, and, as a nice bonus, it will turn out that there is, in fact, only one such query!

Consider a homomorphism h : q′ −→ q where q = 〈u, T 〉 and q′ = 〈u′, T ′ 〉. From the definition of
homomorphism, the underlying mapping between variables h : var(T ′) −→ var(T) also induces a
mapping T ′ −→ T , where R(x) 7−→ R(h(x)). With a slight abuse of notation, we shall denote this
mapping between atoms also by h.

Lemma 11.1 Let h be a homomorphism.

1. If h is injective on variables then h is injective on atoms.

2. If h is surjective on atoms then h is surjective on variables.

The proof is omitted (but note that (2) makes use of the range-restriction property). Both converses
are false.

Exercise 11.1 Give a homomorphism that is a counterexample to both the converse of (1) and of
(2).

Definition 11.3 An isomorphism is a homomorphism that is a bijection on both variables and
atoms. (In view of the lemma above injectivity on variables + surjectivity on atoms suffice.) The
notion of isomorphic queries captures our intuition of queries that are the same up to renaming of
the variables.

Lemma 11.2 A query q is locally minimal iff any homomorphism q −→ q is an isomorphism.

Proof First, let q = 〈u, T 〉 and suppose any homomorphism q −→ q is an isomorphism. Let
qs = 〈u, S 〉 be a subquery of q such that q ≡ qs. Since qs v q there must exist a homomorphism
h : q −→ qs. But h can also be seen as a homomorphism q −→ q and therefore it must be an
isomorphism. Then, T = h(T) ⊆ S ⊆ T hence S = T and qs is the same as q. Thus, we have shown
that q is locally minimal.

Conversely, suppose that q = 〈u, T 〉 is locally minimal and let h : q −→ q be a homomorphism.
The pair 〈u, h(T) 〉 satisfies the range-restriction condition (u = h(u) ⊆ h(T)) and therefore
q′ = 〈u, h(T) 〉 is a conjunctive query, in fact a subquery of q. Because of h we have qs v q and

23

hence qs ≡ q. Since q is locally minimal q′ must be the same as q hence h(T) = T . So h is a
surjection T −→ T . It follows that it is also a surjection var(T) −→ var(T). But both T and
var(T) are finite sets hence h is also injective, on both variables and atoms. It follows that h is an
isomorphism. 2

Theorem 11.3 Let q be a query. Any locally minimal query equivalent to q is isomorphic to some
subquery of q.

Proof Let q′ = 〈u′, T ′ 〉 be locally minimal and equivalent to q = 〈u, T 〉. We have a pair of
homomorphisms h : q′ −→ q and g : q −→ q′. It follows from lemma 11.2 that g ◦ h : q′ −→ q′ is an
isomorphism. Since g ◦ h is injective, h must be injective too.

Consider 〈u, h(T ′) 〉, a subquery of q (range-restriction is checked as before). This query is iso-
morphic to q′ via h : q′ −→ 〈u, h(T ′) 〉 which is injective and also surjective on atoms hence on
variables. 2

Therefore, minimization can be handled algorithmically: compute all the subqueries of the given
query q and retain the locally minimal ones that are equivalent to q. But we can do better. The
same theorem implies the following:

Corollary 11.4 If q, q′ are both locally minimal and equivalent then they are isomorphic.

Proof By the theorem, q′ is isomorphic to some subquery qs of q. By the local minimality of q,
qs must in fact be q. 2

First, this corollary clarifies the role of the alternative notion of “global” minimality. A query
is globally minimal if it has the minimum number of atoms among all queries equivalent to it.
Global minimality clearly implies local minimality and for any query there always exists a globally
minimal one equivalent to it. Using the corollary, any locally minimal query is isomorphic to
a globally minimal query equivalent to it hence it is globally minimal itself. We see that this
alternative notion of minimality coincides with the one we have used.

Second, it follows from this corollary and the theorem that for any query q there is (up to isomor-
phism) exactly one locally minimal query equivalent to q which is moreover a subquery of q. This
is called the core of q and, as we saw, minimization turns out to be the same as computing the
core.

Lemma 11.2 can be used to design an “incremental” algorithm for computing the core:

input: q = 〈u, T 〉.
qs := 〈u, T 〉
while there exists some homomorphism h : qs −→ qs that is not an isomorphism

do qs := 〈u, h(T) 〉
output: qs

24

At each step, h(T) is a proper subset of T otherwise h is surjective on atoms and hence an iso-
morphism (by the same argument as in the proof of lemma 11.2). Hence the algorithm always
terminates.

Clealry q ≡ qs is an invariant of the loop in the algorithm. Therefore the algorithm returns a
subquery qs of q that is equivalent to q and such that any homomorphism h : qs −→ qs is an
isomorphism. By lemma 11.2 the returned query qs is also locally minimal and hence it is the core
of q.

Exercise 11.2 Minimize the following query:

ans(x, y, z) :− R(x, y2, z2), R(x1, y, z1), R(x2, y2, z), R(x, y1, z1), R(x2, y1, z)

25

12 Dependencies

Dependencies are first-order sentences of a particular form (see below). This form is the result of
successive generalizations of various definitions of integrity constraints, i.e., assertions that database
instances are expected to satisfy in order to agree with the semantic intuition of the db designers.

Definition 12.1 A conjunctive containment dependency (ccd) is a sentence of the form

(d) ∀x(B → ∃yC)

where B and C are tableaux, which are “read” as the conjunction of their elements, and where
x ⊆ var(B) and y ⊆ var(C). Because (d) is a sentence, we must also have var(B) ⊆ x and
var(C) ⊆ x ∪ y.

The name “ccd” is justified by the following:

Proposition 12.1 Let q = (u, T) and q′ = (u′, T ′) be two conjunctive queries such that the tuples
u and u′ have the same width. Let {u | ∃zT} (where z = var(T) \ u) and {u′ | ∃z′ T ′} (where
z′ = var(T ′) \ u′) be the same queries expressed as FO queries. Then

cont(q, q′) def= ∀u∀z(T → ∃u′∃z′ T ′ ∧ u = u′)

is a ccd such that for any instance I we have

q(I) ⊆ q′(I) iff I |= cont(q, q′).

It follows that q v q′ iff |= cont(q, q′).

Proof Omitted.

Proposition 12.2 Let d def= ∀x(B → ∃yC) be a ccd and define

front(d) def= (x, B) and back(d) def= (x, B ∪ C)

Then, front(d) and back(d) are conjunctive queries (as FO queries they would be written {x | B}
and {x | ∃yB ∧ C}) such that

I |= d iff front(d)(I) ⊆ back(d)(I).

It follows that d is true in all instances iff the containment front(d) v back(d) holds. (By the
way, note that we have back(d) v front(d) because B is a subset of B ∪ C which gives a trivial
homomorphism.)

Proof Omitted.

Corollary 12.3 Testing whether a ccd holds in all instances is decidable, and in fact NP-complete.

26

Exercise 12.1 Show that the problem of testing containment of two conjunctive queries remains
NP-complete even when the first query is such that all its variables appear in the output tuple (no
existentially quantified variables in the corresponding FO formulation).

We are, however, interested in a more general, and harder question: given a set of dependencies
D and two queries q, q′ is it decidable whether D |= q v q′ ? And further, we are interested
in algorithms for minimizing conjunctive queries in the presence of dependencies. The following
examples illustrate this.

Example 12.1 Consider the query

ans(y, z) :− R(x, y, z′), R(x, y′, z)

As is, it cannot be minimized. But if we assume the dependency (a key)

∀x, y1, z1, y2, z2(R(x, y1, z1) ∧R(x, y2, z2)∧ → y1 = y2)

then in all instances in which this dependency holds the query is equivalent to

ans(y, z) :− R(x, y, z′), R(x, y, z)

which can be minimized to a join-less projection:

ans(y, z) :− R(x, y, z)

Example 12.2 Consider the query

ans(x, y) :− R(x, y), S(y, z)

As is, it cannot be minimized. But if we assume the dependency (like a foreign key)

∀x, y(R(x, y) → ∃z S(y, z))

then in all instances in which this dependency holds the query is equivalent to

ans(x, y) :− R(x, y)

Note In the rest of this section “query” means conjunctive query and “dependency” means
conjunctive containment dependency.

Toward a decision procedure for conjunctive query equivalence under ccd’s we develop a technique
called the “chase”.

In its simplest form, the chase is easy to understand. Consider a query (in FO form) q and a
dependency d as follows:

q
def= {x | ∃yB} d

def= ∀x∀y(B → ∃zC).

When a query and a dependency are syntactically related in this manner a chase step from q with
d, written q d→ q′, produces the query

q′
def= {x | ∃y∃zB ∧ C}

27

Notice that we have q′ v q and if I |= d then q(I) ⊆ q′(I), hence d |= q ≡ q′.

An even simpler example of chase step is front(d) d→ back(d) for any dependency d.

To define the chase step for arbitrary queries and dependencies we need to talk about homomor-
phisms of tableaux. This is the same as what was defined earlier as homomorphism of queries,
except that we do not need the third condition (that relates the output variables).

Definition 12.2 Consider the dependency d def= ∀x(B → ∃yC) and a tableau T . We say that the
chase with d is applicable to T if there exists a homomorphism h : B −→ T that cannot be extended
to B ∪C, i.e., there is no homomorphism h′ : B ∪C −→ T that is equal to h on var(B). When the
chase is applicable, the result of one step of chase of T with d is the tableau T ′ def= T ∪C[x := h(x)]
and we write T d→ T ′.

In defining the chase result we assume that y is disjoint from var(T). If this is not the case we
rename the bound variables y. For example, we will certainly need such renaming in a sequence of
multiple chase steps with the same dependency.

Recall our earlier construction that associates to every satisfiable tableau T a database instance
Inst(T).

Lemma 12.4 If the chase with d is not applicable to a satisfiable tableau T then Inst(T) |= d.

Proof We prove the contrapositive. Suppose Inst(T) 6|= d.Then, there exists a mapping (a val-
uation) β : x −→ dom(Inst(T)) that satisfies the atoms in B and such that there is no extension
β′ : x∪y −→ dom(Inst(T)) that additionally satisfies the atoms in C. Define h : var(B) −→ var(T)
by choosing h(x) to be some variable in the equivalence class β(x). It is straightforward to check
that h is a homomorphism of tableaux. This homomorphism cannot be extended to B ∪C because
the extension would yield an extension of β that satisfies C. It follows that the chase with d is
applicable to T . 2.

Definition 12.3 We define the chase on conjunctive queries using their underlying tableaux: if
q

def= (x, T) and T d→ T ′ then q
d→ q′ where q′ def= (x, T ′).

Lemma 12.5 If q d→ q′ then d |= q ≡ q′.

Proof Since the tableau of q is a subset of the tableau of q′ we have a trivial homomorphism
q −→ q′ hence q′ v q.

It remains to prove that if I is an instance such that I |= d then q(I) ⊆ q′(I). Let d = ∀x(B →
∃yC), q = (u, T), and q′ = (u, T ′). Let h : B −→ T be the homomorphism used in the chase step
hence T ′ = T ∪C[x := h(x)]. Since the output tuple is the same and T ⊆ T ′ it suffices to show that
any valuation in I that satisfies T can be extended to a valuation that satisfies T ′. Let β : T −→ I
be such a valuation. It follows that β ◦ h : B −→ I satisfies B in Iand since I |= d β ◦ h can be
extended to a valuation γ that satisfies C in I. Now define β′ : C[x := h(x)] −→ I as follows:

28

if z ∈ y then β′(z) def= γ(z) but if z ∈ h(x) then β′(z) def= β(z). Thus β′ extends β and what’s
left is to check that β′ satisfies T ′. Clearly β′ satisfies the atoms that are also in T . Now suppose,
(keeping the notation simple) that R(h(x), y) is an atom in C[x := h(x)] obtained from the atom
R(x, y) in C, where x ∈ x, y ∈ y. We have (β′(h(x)), β′(y)) = (β(h(x)), γ(y)) = (γ(x)), γ(y)) ∈ RI
because γ satisfies C. Similarly for equality atoms. 2.

Definition 12.4 Let q be a conjunctive query and D a set of dependencies. A terminating chase
sequence of the query q with dependencies from D is a sequence of chase steps

q
d1→ q1

d2→ q2 · · ·
dn→ qn

such that d1, . . . , dn ∈ D and such that no chase with dependencies from D is applicable to qn.

Theorem 12.6 Let q, q′ be two conjunctive queries and let D be a set of dependencies such that
there exists a terminating chase sequence of q with D. Let qn be the last chase result in the sequence.
Then

D |= q v q′ iff qn v q

Proof One of the implications follows from the fact that D |= q ≡ qn (see the lemma above).

For the other implication, let Tn be the tableau underlying qn and let In
def= Inst(Tn). If Tn

is unsatisfiable the qn returns the empty set on all inputs hence it is contained in any query, in
particular q. Assume that Tn is satisfiable. By the other lemma above, In |= D, hence In |= q v q′.

Now let q def= (u, T) and q′ def= (u′, T ′) Note that T ⊆ Tn because each chase step just adds atoms.
So there is a mapping σ : var(T) −→ dom(In) that associates each variable to its equivalence class,
σ(x) = x̂. It follows that û = σ(u) is in q(In) and therefore also in q′(In). Hence there must exist
a mapping β : var(T ′) −→ dom(In) such that β(u′) = û. It is now straightforward to show that
we have a homomorphism q′ −→ qn. 2.

Hence, we will be interested in terminating chase sequences. There exist sets of dependencies for
which no chase sequence terminates. Consider

(d1) ∀x, y(R(x, y) → ∃z S(z, y))
(d2) ∀x, y(S(x, y) → ∃z R(y, z))

Up to renaming the fresh variables there is just one chase sequence for the tableau consisting of
the atom R(u0, u1) , and it is infinite:

Chase step with adds the atom
(d1) S(v1, u1)
(d2) R(u1, u2)
(d1) S(v2, u2)
(d2) R(u2, u3)
· · · · · ·

Definition 12.5 A dependency is full if it does not have any existentially quantified variables.

29

Lemma 12.7 Any chase sequence with full dependencies terminates.

Proof Let d = ∀x(B → C) be a full dependency. To each satisfiable tableau T we associate a pair
of natural numbers (m,n) such that

m is the number of equivalence classes on var(T)∪ adom(T) determined by the T ` e = e′ equiva-
lence relation (recall the construction of Inst(T)).

n is the number of k-tuples built from the same equivalence classes but do not hold in Inst(T),
where k ranges of the arities of the relation symbols in the schema.

We order these pairs lexicographically, i.e., (m1, n1) < (m2, n2) iff m1 < m2 or m1 = m2 and
n1 < n2. Clealry, there cannot be infinite strictly descending sequences of pairs in this ordering.
Now the result follows from the following claim:

Suppose that T d→ T ′ and let (m,n) and (m′, n′) be the pairs of numbers associated to T and T ′

respectively. Then (m,n) > (m′, n′).

Indeed, suppose we have an equality atom that is provable from T ′ but not from T . Then m > m′.
Otherwise, T and T ′ determine the same equalities so Inst(T) and Inst(T ′) are built on the same
set of equivalence classes and m = m′. Let h : B −→ T be the homomorphism used in T

d→ T ′.
By definition of the chase step, h is not a homomorphism from B ∪ C to T . So there must exist
an atom R(e) ∈ C such that T 6` R(h(e)) while, of course, R(h(e)) ∈ C[x := h(x)] ⊆ T ′. Hence
R(ĥ(e)) holds in Inst(T ′) but not in Inst(T) so n > n′. 2.

Corollary 12.8 If the dependencies in D are full then testing D |= q v q′ is decidable.

Even when the dependencies are not full there are more general conditions on sets of dependencies
that guarantees termination.

First a bit of terminology: for a dependency ∀x(B → ∃yC) we call B the premise of the dependency
and C the conclusion of the dependency.

For simplicity we assume that there are no equality atoms in the dependencies.

Given a finite set of dependencies D build the following chase-flow graph from D:

• For each relation symbol of arity k that appears in D and each 1 ≤ i ≤ k build a node labeled
(R, i).

• For each dependency and each variable x that occurs in position i in an R-atom in the premise
and in position j in an S-atom in the conclusion draw an edge labeled ∀ between (R, i) and
(S, j).

• For each dependency and each variable x that occurs in position i in an R-atom in the
premise and each variable y that occurs existentially quantified in position j in an S-atom in
the conclusion draw an edge labeled ∃ between (R, i) and (S, j).

30

Definition 12.6 (Deutsch& Popa) The set D of dependencies is said to be weakly acyclic if the
associated chase-flow graph does not have a cycle in which at least one edge is labeled ∃.

Theorem 12.9 (Deutsch& Popa) If D is weakly acyclic then all chase sequences with D termi-
nate.

The proof is omitted.

Note It was shown that the problem of deciding conjunctive query containment under ccds is
EXPTIME-complete. However, this is one such problem that can actually be solved in practice,
because queries and dependencies are not so big and the algorithm can be heavily “engineered”
to run faster. It turns out that this works for queries of up to 20 atoms and for hundreds of
dependencies.

31

