
A Certified Interpreter for ML with Structural Polymorphism

Jacques Garrigue
Nagoya University Graduate School of Mathematics

garrigue@math.nagoya-u.ac.jp

August 27, 2009

Abstract
The type system of Objective Caml has many unique
features, which make ensuring the correctness of its im-
plementation difficult. One of these features is struc-
turally polymorphic types, such as polymorphic object
and variant types, which have the extra specificity of
allowing recursion. I implemented in Coq a certified
interpreter for Core ML extended with structural poly-
morphism and recursion. Along with type soundness of
evaluation, soundness and principality of type inference
are also proved.

1 Introduction
While many results have already been obtained in the
mechanization of metatheory for ML and pure type sys-
tems, Objective Caml has unique features which are not
covered by existing works. For instance, polymorphic
object and variant types require some form of struc-
tural polymorphism, combined with recursive types,
and both of these do not map directly to usual type sys-
tems. Among the many other features, let us just cite the
relaxed valued restriction, which accommodates side-
effects in a smoother way, first class polymorphism as
used in polymorphic methods, labeled arguments, struc-
tural and nominal subtyping (the latter obtained through
private abbreviations). There is plenty to do, and we are
interested not only in type safety, but also in the correct-
ness of type inference, as it gets more and more involved
with each added feature.

Since it seems difficult to ensure the correctness of
the current implementation, it would be nice to have
a fully certified reference implementation at least for a
subset of the language, so that one could check how it is
supposed to work. As a first step, I certified type infer-
ence and evaluation for Core ML extended with local
constraints, a form of structural polymorphism which
allows inference of recursive types, such as polymor-
phic variants or objects. The formal proofs cover sound-
ness of evaluation, both through rewriting rules and us-
ing a stack-based abstract machine, and soundness and
completeness of the type inference algorithm.

While we based our developments on the “Engineer-
ing metatheory” methodology [1], our interest is in
working on a concrete type system, with advanced typ-
ing features, like in the mechanized metatheory of Stan-
dard ML [2]. We are not so much concerned about giv-
ing a full specification of the operational semantics, as
in [3].

2 Structural Polymorphism
Structural polymorphism, embodied by polymorphic
variants and objects, enriches types with both a form of
width subsumption, and mutual recursive types. Struc-
tural polymorphism was formalized on paper in [4], by
introducing a notion of recursive kinding environment.
To help understand what we are working with, we give
here the basic definitions.

τ ::= α | τ1 → τ2 type
κ ::= • | (C,{l1 7→ τ1, . . . , ln 7→ τn}) kind
K ::= α1 :: κ1, . . . ,αn :: κn kinding environment
σ ::= ∀ᾱ.K . τ polytype

A type is either a type variable or a function type. But
type variables need not be abstract. When they are asso-
ciated with a concrete kind, they actually denote struc-
tural types, like records or variants. Such types are de-
scribed by the pairing of a local constraint C and a map-
ping from labels to types. On the other hand • just de-
notes an (abstract) type variable. As you can see, type
variables may appear inside kinds, and since kinding
environments associate type variables to kinds, we can
use them to define recursive types (where the recursion
must necessarily go through kinds).

Kinding environments are used in two places: in
polytypes where they associate kinds to quantified type
variables, and in typing judgments, which are of the
form K;Γ ` e : τ, where the variables kinded in K may
appear in both Γ and τ. The typing rules are given in fig-
ure 1. K ` θ : K′ means that θ preserves kinds between
K and K′ (it is admissible between K and K′). For-
mally, if α has a concrete kind in K (α :: κ ∈ K, κ 6= •),
then θ(α) = α′ is a variable, and it has a more concrete

1

VARIABLE
K,K0 ` θ : K dom(θ) ⊂ B
K;Γ,x : ∀B.K0 . τ ` x : θ(τ)
ABSTRACTION
K;Γ,x : τ ` e : τ′

K;Γ ` λx.e : τ → τ′
APPLICATION
K;Γ ` e1 : τ → τ′ K;Γ ` e2 : τ
K;Γ ` e1 e2 : τ′

GENERALIZE
K;Γ ` e : τ B = FVK(τ)\FVK(Γ)
K|B;Γ ` e : ∀B.K|B . τ
LET
K;Γ ` e1 : σ K;Γ,x : σ ` e2 : τ
K;Γ ` let x = e1 in e2 : τ
CONSTANT
K0 ` θ : K Tconst(c) = K0 . τ
K;Γ ` c : θ(τ)

Figure 1: Typing rules

VARIABLE
K ` τ̄ :: κ̄τ̄

K;Γ,x : κ̄. τ1 ` x : ττ̄
1

ABSTRACTION
∀x /∈ L K;Γ,x : τ ` ex : τ′

K;Γ ` λe : τ → τ′
APPLICATION
K;Γ ` e1 : τ → τ′ K;Γ ` e2 : τ
K;Γ ` e1 e2 : τ′

GENERALIZE
∀ᾱ /∈ L K, ᾱ :: κ̄ᾱ;Γ ` e : τᾱ

K;Γ ` e : κ̄. τ
LET
K;Γ ` e1 : σ ∀x /∈ L K;Γ,x : σ ` ex

2 : τ
K;Γ ` let e1 in e2 : τ
CONSTANT
K ` τ̄ :: κ̄τ̄ Tconst(c) = κ̄. τ0

K;Γ ` c : ττ̄
0

Figure 2: Typing rules using cofinite quantification

kind in K′ (α′ :: κ′ ∈ K′ and κ′ |= θ(κ)). The main dif-
ference with Core ML is that GENERALIZE has to split
the kinding environment into a generalized part, which
contains the kinds associated to generalized type vari-
ables, and a non-generalized part for the rest; since the
generalized part shall not be accessible from the non-
generalized part, we need to look into the kinding envi-
ronment when deciding which variables can be general-
ized. We refer the reader to [4] for further details.

3 Type soundness
The first step of our mechanical proof, in Coq, was
to prove type soundness for the system of [4], starting
from Aydemir and others proof for Core ML included in
[1], which uses locally nameless cofinite quantification.
This proof uses de Bruijn indices for local quantifica-
tion inside terms and polytypes, and quantifies over an
abstract avoidance set for avoiding name conflicts.

Figure 2 contains the typing rules adapted to locally
nameless cofinite quantification, using a modified defi-
nition of types and terms.

τ ::= n | α | τ1 → τ2 type
σ ::= κ̄. τ polytype

τ̄ and κ̄ represent sequences of types and kinds. When
we write ᾱ, we also assume that all type variables in-
side the sequence are distinct. Polytypes are now writ-
ten κ̄ . τ, where the length of κ̄ is the number of gen-

eralized type variables, represented as de Bruijn indices
1 . . .n inside types. The actual implementation has in-
dices starting from 0, but we will start from 1 in this
explanation. ττ̄

1 is τ1 where de Bruijn indices were sub-
stituted with types of τ̄, accessed by their position. Sim-
ilarly κ̄τ̄ substitute all the indices inside the sequence κ̄.
ex only substitutes x for the index 1. K ` τ :: κ is true
when either κ = •, or τ = α, α :: κ′ ∈ K and κ′ |= κ.
K ` τ̄ :: κ̄ enforces this for every member of τ̄ and κ̄ at
identical positions, which is just equivalent to our con-
dition K ` θ : K′ for the preservation of kinds.

∀x /∈ L and ∀ᾱ /∈ L are cofinite quantifications. At
first, the rules may look very different from those in 1,
but they coincide if we instantiate L appropriately. For
instance, if we use dom(Γ) for L in ∀x /∈ L, this just
amounts to ensuring that x is not already bound. Inside
GENERALIZE, we could use dom(K)∪FVK(Γ) for L to
ensure that the newly introduced variables are locally
fresh. This may not be intuitive, but this is actually a
very clever way to encode naming constraints implic-
itly. Moreover, when we build a new typing derivation
from an old one, we can avoid renaming variables by
just enlarging the L’s.

Starting from an existing proof was a tremendous
help, but many new definitions were needed to accom-
modate kinds, and some existing ones had to be modi-
fied. For instance, in order to accommodate the mutu-
ally recursive nature of kinding environments, we need
simultaneous type substitutions, rather than the iterated

2

Module Type CstrIntf
cstr attr : Set
valid : cstr → Prop
valid dec : ∀c,{valid c}+{¬valid c}
eq dec : ∀xy : attr,{x = y}+{x 6= y}
unique : cstr → attr → bool
t : cstr → cstr → cstr
|= : cstr → cstr → Prop
∀cc1 c2 : cstr,
entails refl : c |= c
entails trans : c1 |= c2 → c2 |= c3 → c1 |= c3
entails lub : c |= c1 ∧ c |= c2 ↔ c |= c1 t c2
entails unique : c1 |= c2 →
∀v, unique c2 v = true → unique c1 v = true

entails valid : c1 |= c2 → valid c1 → valid c2

Figure 3: Constraints

ones of the original proof. The freshness of individual
variables (or sequences of variables: ᾱ /∈ L) becomes in-
sufficient, and we need to handle disjointness conditions
on sets (L1 ∩L2 = /0). As a result, the handling of fresh-
ness, which was almost fully automatized in the proof
of Core ML, required an important amount of work with
kinds, even after developing some tactics for disjoint-
ness.

I also added a formalism for constants and delta-
rules, which are needed to give an operational semantics
to structural types. Overall, the result was a doubling of
the size of the proof, from 1000 lines to more than 2000,
but the changes were mostly straightforward. I am only
aware of one other proof of type soundness including
recursive types, in [2].

The formalism of local constraints was defined as a
framework, able to handle various flavours of variant
and object types, just by changing the constraint part
of the system. This was formalized through the use of
functors. The signature for constraints is in figure 3.
This worked well, but there are some drawbacks. One
is that since some type definitions depend on parame-
ters, and some required proofs depend on those defi-
nitions, we need nested functors, and the instantiation
of the framework with a constraint domain looks like a
“dialogue”. The problem comes not so much for con-
straints themselves, but rather from constants and delta-
rules. Here is the structure for basic definitions.

Module Type CstrIntf
Module Type CstIntf
Module MkDefs(Cstr:CstrIntf)(Const:CstIntf)

...
Module Type DeltaIntf
Module MkJudge(Delta:DeltaIntf)

...
Module Type SndHypIntf
Module Soundness(SH:SndHypIntf)

KIND GC
K,K′;Γ ` e : τ FVK(E,τ)∩dom(K′) = /0
K;Γ ` e : τ
CO-FINITE KIND GC
∀ᾱ 6∈ L K, ᾱ :: κ̄ᾱ;Γ ` e : τ
K;Γ ` e : τ

Figure 4: Kind discarding

...

In order to obtain the definitions for typing judgments,
one has to provide implementations for constraints and
constants, extract the definition of types and terms, and
use them to provide constant types and delta-rules. Type
soundness itself is in another functor, that requires some
lemmas whose proof uses infrastructure lemmas on type
judgments. . . This instantiation has been done for a con-
straint domain containing both polymorphic variants
and records, and a fixpoint operator.

Both in the framework and domain proofs, cofinite
quantification demonstrated its power, as no renaming
of type or term variables was needed at all. It helped
also in an indirect way: in the original rule for GEN-
ERALIZE, one has to close the set of free variables of a
type with the free variables of their kinds; but the cofi-
nite quantification takes care of that implicitly, without
any extra definitions. While cofinite quantification may
seem perfect, there is a pitfall in this perfection itself.
One forgets that some proof transformations intrinsi-
cally require variable renaming. Concretely, to make
typing more modular, I added a rule that discards ir-
relevant kinds from the kinding environment. Figure 4
shows both the normal and cofinite forms. Again one
can see the elegance of the cofinite version, where there
is no need to say which kinds are irrelevant: just the
ones whose name has no impact on typability. Proofs
went on smoothly, until I realized I needed the follow-
ing inversion lemma.

∀KΓeτ, K;Γ `GC e : τ ⇒∃K′, K,K′;Γ ` e : τ

Namely, by putting back the kinds we discarded, we
shall be able to obtain a derivation that does not rely on
KIND GC. This is very intuitive, but since this requires
making KIND GC with GENERALIZE, we end up com-
muting quantifiers. And this is just impossible without
a true renaming lemma. I got stuck there for a while,
unable to see what was going wrong. Even more con-
fusing, the same problem occurs when we try to make
KIND GC commute with ABSTRACTION, whereas intu-
itively the choice of names for term variables is inde-
pendent of the choice of names for type variables. Fi-
nally this lemma required about 1000 lines to prove it,
including renaming lemmas for both term and type vari-
ables. Once the problem becomes clear, one can see a

3

[ᾱ]τ = τ∗ when τᾱ
∗ = τ and FV(τ∗)∩ ᾱ = /0

[ᾱ](κ̄. τ) = ([ᾱ]κ̄. [ᾱ]τ)
generalize(K,Γ,L,τ) =
let A = FVK(Γ) and B = FVK(τ) in
let K′ = K|A in
let ᾱ :: κ̄ = K′|B in
let ᾱ′ = B\ (A∪ ᾱ) in
let κ̄′ = map(λ .•) ᾱ′ in
〈(K|A,K′|L), [ᾱᾱ′](κ̄κ̄′ . τ)〉

typinf(K,Γ, let e1 in e2,τ,θ,L) =
let α = fresh(L) in
match typinf(K,Γ,e1,α,θ,L∪{α}) with
| 〈K′,θ′,L′〉 ⇒
let K1 = θ′(K′) and Γ1 = θ′(Γ) in
let L1 = θ′(dom(K)) and τ1 = θ′(τ′) in
let 〈KA,σ〉 = generalize(K1,Γ1,L1,τ1) in
let x = fresh(dom(E)∪FV(e1)∪FV(e2)) in
typinf(KA,(Γ,x : σ),ex

2,τ,θ
′,L′)

| 〈〉 ⇒ 〈〉
end

Figure 5: Type inference algorithm

much simpler solution: in most situations, it is actually
sufficient to have KIND GC occur only just above AB-
STRACTION and GENERALIZE, and the canonicalization
lemma is just 100 lines.

4 Type inference
The main goal of using local constraints was to keep
the simplicity of unification-based type inference. Of
course, unification has to be extended in order to han-
dle kinding, but the algorithms for unification and type
inference stay reasonably simple.

Unification has been a target of formal verification
for a long time, with formal proofs as early as 1985
[5]. Here I just wrote down the algorithm in Coq,
and proved both partial-correctness and completeness.
The proof comes close to 1900 lines, as kinds need
particular treatment, but there was no major stumbling
block. The proof basically follows the algorithms, but
there are two useful tricks. One concerns substitutions.
Rather than using the relation “θ is more general than
θ′” (∃θ1, θ′ = θ1 ◦ θ), I used a the more direct “θ′ ex-
tends θ” (∀α, θ′(θ(α)) = θ′(α)). In the following it is
noted θ′ v θ. When θ is idempotent, the two defini-
tions are equivalent, but the latter can be used directly
through rewriting. The other idea was to define a spe-
cial induction lemma for successful unification, which
uses symmetries to reduce the number of cases to check.
Since unification is about first-order terms, nameless-
ness has no impact here.

The next step is type inference itself. Again, this

SOUNDNESS
typinf(K,Γ,e,τ,θ,L) = 〈K′,θ′,L′〉 →
dom(θ)∩dom(K) = /0 →
FV(θ,K,Γ,τ) ⊂ L →
θ′ v θ∧dom(θ′)∩dom(K′) = /0 ∧
K ` θ′ : θ′(K′)∧θ′(K′);θ′(Γ) ` e : θ′(τ) ∧
FV(θ′,K′,Γ)∪L ⊂ L′.

PRINCIPALITY
K;Γ ` e : θ(τ) →
K ` θ(Γ1) ≤ Γ → θ v θ1 → K1 ` θ : K →
dom(θ1)∩dom(K1) = /0 →
dom(θ)∪FV(θ1,K1,Γ1,τ) ⊂ L →
∃K′θ′L′, typinf(K1,Γ1,e,τ,θ1,L) = 〈K′,θ′,L′〉 ∧
∃θ′′, dom(θ′′) ⊂ L′ \L ∧θθ′′ v θ′∧K′ ` θθ′′ : K.

Figure 6: Properties of type inference

has been proved before for Core ML [6, 7], but to my
knowledge never for a system containing equirecursive
types. Proving both soundness and principality was
rather painful, and took 3400 very full lines. This time
one problem was the complexity of the algorithm itself,
in particular the behaviour of type generalization. The
usual behaviour for ML is just to find the variables that
are not free in the typing environment and generalize
them, but with a kinding environment several extra steps
are required. First, the free variables should be closed
transitively using the kinding environment. Then, the
kinding environment also should be split into general-
izable and non-generalizable parts. Last, some general-
izable parts of the kinding environment need to be du-
plicated, as they might be used independently in some
other parts of the typing derivation. The definitions for
generalize and the let case of typinf are shown in fig-
ure 5. [ᾱ]τ stands for the generalization of τ with respect
to ᾱ, obtained by replacing the occurrences of variables
of ᾱ in τ by their indices.

Due to the large number side-conditions required,
the statements for the inductive versions of sound-
ness of principality become very long. In figure 6
we show slightly simplified versions, discarding well-
formedness properties. K ` Γ1 ≤ Γ means that the poly-
types of Γ are instances of those in Γ1 (i.e. Γ1 is more
general than Γ). Due to the presence of kinds, the defi-
nition of the instantiation order gets a bit complicated.

K ` κ̄1 . τ1 ≤ κ̄. τ def=
∀ᾱ,dom(K)∩ ᾱ = /0 →
∃τ̄, K, ᾱ :: κ̄ᾱ ` τ̄ :: κ̄1

τ̄ ∧ ττ̄
1 = τᾱ.

It may be easier to consider the version without de
Bruijn indices.

K ` ∀ᾱ1.K1 . τ1 ≤ ∀ᾱ2.K2 . τ2
def=

∃θ, dom(θ) ⊂ ᾱ1 ∧
K,K1 ` θ : K,K2 ∧θ(τ1) = τ2.

4

Another difficulty is that, since we are building a
derivation, cofinite quantification appears as a require-
ment rather than a given, and we need renaming for both
terms and types in many places. This is true both for
soundness and principality, since in the latter the type
variables of the inferred derivation and of the provided
derivation are different. Both renaming lemmas were
harder to prove than expected (100 lines each). Con-
trary to what was suggested in [1], we found it rather
difficult to prove these lemmas starting from the substi-
tution lemmas of the soundness proof; while renaming
for types used this approach, renaming for terms was
proved directly, and they ended up being of the same
length.

5 Interpreter
Type soundness ensures that evaluation according to a
set of source code rewriting rules cannot go wrong.
However, programming languages do not evaluate a
program by rewriting it, but rather interpreting it with
a virtual machine. I defined a SECD-like abstract ma-
chine, and proved that at every step the state of the ab-
stract machine could be converted back to a term whose
typability was a direct consequence of the typability of
the reduced program. This ensures that evaluation can-
not go wrong, and the final result, if reached, shall be
either a constant or a function closure. Once the relation
between program and state was properly specified, the
proof was mostly straightforward. Here the nameless
representation of terms was handy, as it maps naturally
to a stack machine.

I also proved that, if the rewriting based evaluation
reaches a normal form, then evaluation with the abstract
machine terminates with the same normal form. This
required building a bisimulation between the two eval-
uation, and was trickier than expected.

6 Dependent types
As we pointer in section 4, the statements of many lem-
mas and theorems include lots of well-formedness prop-
erties, that are expected to be true of any value of a
given type. For instance, substitutions should be idem-
potent, environments should not bind the same variable
twice, de Bruijn indices should be bound, kinds should
be valid, etc. . . A natural impulse is to use dependent
types to encode these properties. Yet proofs from [1]
only use dependent types for the generation of fresh
variables. The reason is simple enough: as soon as a
value is defined as a dependent sum, using rewriting on
it becomes much more cumbersome. I attempted us-
ing it for type schemes, but had to abandon the idea
because there were too many things to prove upfront.

On the other hand, using dependent types to make sure
that kinds are valid and coherent was not so hard, and
helped streamline the proofs. This is probably due to
the abstract nature of constraint domains, which limits
interactions between kinds and other features. The def-
inition of kinds becomes:

Definition coherent kc kr := ∀ x (T U:typ),
Cstr.unique kc x = true →
In (x,T) kr → In (x,U) kr → T = U.

Record ckind : Set := Kind {
kind cstr : Cstr.cstr;
kind valid : Cstr.valid kind cstr;
kind rel : list (Cstr.attr×typ);
kind coherent : coherent kind cstr kind rel }.

Definition kind := option ckind.

We still need to apply substitutions to kinds, but this is
not a problem as substitutions do not change the con-
straint, and preserve the coherence. We just need the
following function.

Definition ckind map spec : ∀(f:typ→typ)(k:ckind),
{k’:ckind | kind cstr k = kind cstr k’ ∧

kind rel k’ = map snd f (kind rel k)}.

We also sometimes have to prove the equality of two
kinds obtained independently. This requires the fol-
lowing lemma, which can be proved using proof irrele-
vance.

Lemma kind pi : ∀ k k’ : ckind,
kind cstr k = kind cstr k’ →
kind rel k = kind rel k’ → Some k = Some k’.

7 Program extraction
Both the type checker and interpreter can be extracted
to Objective Caml code. This lets us build a fully certi-
fied implementation for a fragment of Objective Caml’s
type system. Note that there is no parser or read-eval-
print loop yet, making it just a one-shot interpreter for
programs written directly in abstract syntax. Moreover,
since Coq requires all programs to terminate, one has
to indicate the number of steps to be evaluated explic-
itly. (Actually, Objective Caml allows one to define
cyclic constants, so that we can build a value represent-
ing infinity, and remove the need for an explicit number
of steps. However, this goes around the soundness of
Coq.)

The termination condition impacted also the way
to write the unification and type inference algorithm.
Since the termination of unification requires proving, I
added an extra parameter indicating the number of steps
to compute, and later proved that this parameter could
always be made big enough so that it never goes down
to 0. This approach is simple, but this extra parame-
ter stays in the extracted code. In a first version of the

5

proof, the parameter was so big that the unification al-
gorithm would just take forever trying to compute it. I
later came up with a smaller value, but it would be better
to have it disappear completely. There is a well known
technique to do that in Coq, which works by moving it
to the universe of proofs (Prop), so that it will disappear
during extraction. This requires a rather intensive use
of dependent types, but it also makes the proof of com-
pleteness simpler. As a result the size of the proof for
unification didn’t change. However, since the type in-
ference algorithm calls unification, it had to be modified
too, and its size grew by about 10%. Note that, while the
Program environment is intended to make definitions
using dependent types easier, it is hard to control the
terms it produces in detail. Since rewriting on depen-
dently typed terms is particularly fragile, the definition
had to be done completely by hand.

Here is an example of program written in abstract
syntax (with a few abbreviations), and its inferred type
(using lots of pretty printing).

let rev_append =

recf (abs (abs (abs

(matches [0;1]

[abs (bvar 1);

abs (apps (bvar 3)

[sub 1 (bvar 0);

cons (sub 0 (bvar 0)) (bvar 1)]);

bvar 1])))) ;;

val rev_append : trm = ...

typinf2 Nil rev_append;;

- : (var * kind) list * typ =

([(10, <Ksum, {}, {0; 1},
{0 => tv 15; 1 => tv 34}>);

(29, <Ksum, {1}, any, {1 => tv 26}>);
(34, <Kprod, {1; 0}, any,

{0 => tv 30; 1 => tv 10}>);
(30, any);

(26, <Kprod, {}, {0; 1},
{0 => tv 30; 1 => tv 29}>);

(15, any)],

tv 10 @> tv 29 @> tv 29)

Here recf is an extra constant which implements the
fixpoint operator. Our encoding of lists uses 0 and 1 as
labels for both variants and records, but we could have
used any other natural numbers: their meaning is not
positional, but associative. Since de Bruijn indices can
be rather confusing, here is a version translated to a syn-
tax closer to Objective Caml, with meaningful variable
names and labels.

let rec rev_append l1 l2 =

match l1 with

| ‘Nil _ -> l2

| ‘Cons c ->

rev_append c.tl (‘Cons {hd=c.hd; tl=l2})
val rev_append :

([< ‘Nil of ’15

| ‘Cons of {hd:’30; tl:’10; ..}] as ’10) ->

([> ‘Cons of {hd:’30; tl:’29}] as ’29) -> ’29

8 Conclusion
We have reached our first goal, providing a fully certi-
fied type checker and interpreter, but it currently han-
dles only a very small subset of Objective Caml. The
next goal is of course to add new features. A natural
next target would be the addition of side-effects, with
the relaxed value restriction. Note that since the value
restriction relies on subtyping, it would be natural to
also add type constructors, with variance annotations,
at this point. Considering the difficulties we have met
up to know, we do not expect it to be an easy task.

All the proofs and the extracted code can be found at:

http://www.math.nagoya-u.ac.jp/~garrigue/

papers/#certint0908

References
[1] Aydemir, B., Charguéraud, A., Pierce, B.C., Pol-

lack, R., Weirich, S.: Engineering formal metathe-
ory. In: Proc. ACM Symposium on Principles
of Programming Languages. (2008) 3–15 Proofs
at http://www.chargueraud.org/arthur/
research/2007/binders/.

[2] Lee, D.K., Crary, K., Harper, R.: Towards a mech-
anized metatheory of standard ML. In: Proc. ACM
Symposium on Principles of Programming Lan-
guages. (2007) 173–184

[3] Owens, S.: A sound semantics for OCaml light.
In: Proc. European Symposium on Programming.
Volume 4960 of LNCS. (2008) 1–15

[4] Garrigue, J.: Simple type inference for struc-
tural polymorphism. In: The Ninth International
Workshop on Foundations of Object-Oriented Lan-
guages, Portland, Oregon (2002)

[5] Paulson, L.: Verifying the unification algorithm in
LCF. Science of Computer Programming 5 (1985)
143–169

[6] Naraschewski, W., Nipkow, T.: Type inference ver-
ified: Algorithm W in Isabelle/HOL. Journal of Au-
tomated Reasoning 23 (1999) 299–318

[7] Dubois, C., Ménissier-Morain, V.: Certification of
a type inference tool for ML: Damas-Milner within
Coq. Journal of Automated Reasoning 23 (1999)
319–346

6

