
(Extended Abstract - Submitted to the 2nd Informal ACM SIGPLAN Workshop on Mechanizing Metatheory, WMM 2007)

A Framework for Language-Based Cryptographic Proofs

Gilles Barthe Benjamin Grégoire Romain Janvier Santiago Zanella Béguelin
INRIA Sophia-Antipolis, France Microsoft Research - INRIA Joint Centre, France
{Gilles.Barthe,Benjamin.Gregoire,Romain.Janvier,Santiago.Zanella} @sophia.inria.fr

Motivation In cryptography, provable security advocates a math-
ematical approach where the goals and requirements of crypto-
graphic systems are specified precisely, and where the security
proof is carried out rigorously and makes explicit the assump-
tions it relies upon. Typically, security objectives are expressed
in complexity-theoretical terms and refer to the probability of an
efficient adversary to thwart a security objective (e.g. secrecy),
whereas security proofs are “reductionist”, i.e. prove that the exis-
tence of an efficient adversary contradicts a computational assump-
tion (e.g. that the Decisional Diffie-Hellman problem is hard).

The game-playing technique is a general method to structure
and unify cryptographic proofs that has been widely applied in the
literature. In essence, the game-playing technique suggests to view
the interaction between an unknown efficient adversary and a cryp-
tosystem as a probabilistic game depending on security a parame-
ter η where the winning probability of the adversary corresponds
to the probability of breaking a given security property. The ini-
tial game is stepwise transformed in a security-preserving fashion
into a final game where it is easy to analyze and bound the winning
probability. Since the transformations are security-preserving, one
can argue that the same bound holds for the initial game and, if this
bound is a negligible function ofη, then the probability of breaking
the security property of the system is also negligible.

Although the adoption of provable security and the game-
playing technique has significantly enhanced confidence in cryp-
tographic systems, the community is increasingly wary about se-
curity proofs: several published proofs have been found incorrect,
and in general proofs are becoming too complex to be verified.
This is partly due to the fact that proofs are rather involved and rely
on different kinds of mathematical reasoning including complex-
ity theory, probability theory and group theory. However, the main
reason is to be found in the difficulty in pinpointing the underlying
hypotheses in the proof and in isolating the creative and original
parts from the uninteresting steps recurring – with variations – in
every other proof.

Bellare and Rogaway [1], and Halevi [3] propose the game-
playing technique as a natural solution for taming the complex-
ity of proofs and recognize that a fully-specified programming lan-
guage is required to code games. We believe cryptographers could
greatly benefit from a framework for formalizing and verifying the
transformations in game-based cryptographic proofs and propose a
language-based framework built on top of the Coq proof assistant.

[Copyright notice will appear here once ’preprint’ option is removed.]

The framework We define a simple WHILE language augmented
with a random sampling instruction and procedure calls and give
a monadic continuation-passing style probabilistic semantics. The
language is expressive enough to code the games appearing in the
literature.

Transformations found in game-based proofs fall in three main
classes: 1) Semantic-preserving transformations; 2) Transforma-
tion based on indistinguishability; 3) Transformations that increase
the winning probability of the adversary.

The first class includes common compiler optimizations like
code motion, dead code elimination, common subexpression elim-
ination, branch predicting, constant propagation and procedure in-
lining. For each of these optimizations we have developed Coq tac-
tics based on reflection that perform these optimizations (i.e. they
allow to substitute a goal of the formP1 ≡ P2 for P1 ≡ P ′

2

for someP ′
2 identical toP2 up to optimizations). These tactics are

proved sound w.r.t the semantics.
The second class refers to transformations where the chance

of distinguishing the probability distributions generated by two
games is negligible. For example, since the probability of uniformly
sampling a particular bitstring of lengthη is negligible, these two
games are identical up to a negligible factor:

x
$← {0, 1}η; if x = y then P1 else P2 '1/2η x

$← {0, 1}η; P2

The third-class of transformations is usually used to transform
a game into a simpler one whenever finding a tight bound is not the
objective. These last two classes of transformations are currently
supported in the framework by a library of ad hoc lemmas but we
believe they can be automated in some scenarios.

The contribution We know of only one other tool to assist proofs
in the computational model of cryptography,CryptoVerif[2]. How-
ever, it differs fundamentally to ours:CryptoVerif performs an
heuristic-based search on a library of (user-provided and prede-
fined) transformations to generate a sequence of games for a proof
and gives little attention to whether the transformations are compu-
tationally sound, while our framework relies on the user to supply
the sequence of games but instead put the emphasis on verifying
that the whole proof is semantically correct. We believe the two
approaches are complementary and can benefit from each other.

References
[1] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs

and the security of triple encryption. Cryptology ePrint Archive, Report
2004/331, 2004.http://eprint.iacr.org/.

[2] Bruno Blanchet. A computationally sound mechanized prover for
security protocols.IEEE Transactions on Dependable and Secure
Computing, 2007. Special issue IEEE Symposium on Security and
Privacy 2006. To appear.

[3] Shai Halevi. A plausible approach to computer-aided cryptographic
proofs. Cryptology ePrint Archive, Report 2005/181, 2005.http:
//eprint.iacr.org/.

1 2007/6/18


