
Stephanie Weirich
Research Statement

My research focuses on the design of statically-typed programming languages. Static type systems
are a popular, cost-effective form of lightweight program verification. They provide a tractable and modular
way for programmers to express properties that can be mechanically checked by the compiler. As a result, the
compiler can rule out a wide variety of errors and provide more information to refactoring and development
tools. For example, systems written with type-safe languages cannot be compromised by buffer overruns
if all array accesses are statically proven safe. Furthermore, programmers can modify their code with the
assurance that they have not violated critical safety properties.

I explore these designs in the context of functional programming languages, such as Haskell and
ML. Functional programming languages are an ideal context for type system research; they excel in their
capabilities for static reasoning. However, there is need for improvement. Some programming idioms must
be ruled out simply because they cannot be shown to be sound by existing type systems. To overcome these
limitations, my work investigates type system features in the context of both new languages and existing
ones, and evaluates those designs with respect to both theory and practice.

Trellys: Dependently-typed language design
Dependent types promise to dramatically increase the effectiveness of static type systems. They work by
allowing types to depend on program values, enabling specifications that are both more flexible and more
precise. However, even though dependent type theory has been well studied as a foundation for logical
reasoning, these type systems have been little used in practical programming languages.

Together with Aaron Stump (University of Iowa), and Tim Sheard (Portland State), I lead the recently-
completed Trellys project, which investigated the design and implementation of novel programming lan-
guages with dependent types. This Trellys project is unique in that it explores the addition of full-spectrum
dependent types to a typical functional programming language (i.e. a call-by-value language with general
recursion). Prior work made restrictions on the sorts of dependency or computation allowed.

At Penn, our work has resulted in the development of the Zombie language.1 This language design
makes two significant advances:

• Combining proofs and programs [CSW14]. The Zombie core language is a type theory that
provides a uniform framework for programs (which could potentially run forever) and proofs (which
must terminate to guarantee logical consistency). These two systems work together, allowing proofs
to reason about programs and programs to dynamically manipulate proofs. The type soundness and
logical consistency for this core language required the development of a novel proof technique [CSW12],
which was applied to the core language using the Coq proof assistant.

• Programming up-to-congruence [SW14]. The Zombie source language uses a novel adaption of the
congruence closure algorithm for proof and type inference. Our implementation is able to automatically
construct equational reasoning proofs from available evidence. A benefit of this approach is that
we are able to dramatically simplify the semantics of dependently-typed pattern matching without
sacrificing expressiveness. Our work includes a specification of the source language type system “up-
to-congruence”, an algorithm for elaborating expressions to the explicitly type core language, and a
proof that elaboration is complete and always produces well-typed terms.

The design of the Zombie language draws from a number of our earlier results with respect to the treat-
ment of equality in call-by-value dependently-typed languages [JZSW10], the interaction between irrelevant
computation and equality [SCA+12], and the use of type systems to track termination [SSW10].

1Available from https://code.google.com/p/trellys/

Stephanie Weirich July 31, 2014 1

https://code.google.com/p/trellys/


This work has been recognized through invitations for keynote addresses (Programming Languages
Mentoring Workshop (PLMW 2014), Federated Conference on Rewriting, Deduction and Programming
(RDP 2011, which includes TLCA and RTA), Mathematical Foundations of Program Semantics Conference
(MFPS 2011)), tutorial lectures at the Oregon Programming Languages Summer School (2014 and 2013),
and invited discussion sessions at the Programming Languages meets Program Verification Workshop
(PLPV 2011 and 2010).

I have also worked to build the community of researchers that study the interaction between dependent
types and functional programming. In particular, I organized and chaired two meetings: the DTP 2103
workshop co-located with ICFP, and (with Conor McBride (Strathclyde University, Scotland) and Shin-
Cheng Mu (Academia Sinica, Taiwan)) Shonan Seminar 007, in Shonan Village Japan in 2011.

Haskell: Expressive types in practice
Haskell is an advanced purely-functional programming language, designed by a committee of programming
language researchers in the early nineties. Since that time, it has served as a testbed for novel language
features. I have been an active part of this research community for over ten years. In particular, I have worked
with and continue to collaborate with Simon Peyton Jones at Microsoft Research, my students Dimitrios
Vytiniotis, Richard Eisenberg, Brent Yorgey and Geoffrey Washburn, and many others, on extensions to the
type system of the industrial strength Glasgow Haskell Compiler (GHC).2

My work extends the Haskell type system in three directions:

• Dependently-typed Haskell. The goal of my most influential extensions has been to make Haskell
more like a dependently-typed language.
My work in this area started with the addition of Generalized Algebraic Datatypes (GADTs) to
GHC [PWW04, PVWW06]. This feature gives programmers the ability to constrain data structures
by invariants encoded in its type system. For example, GADTs can be used to show that an imple-
mentation of 2-3 trees stores elements in sorted order and maintains a consistent height of subtrees.
GADTs have been a remarkably popular addition to GHC, seeing use in generic programming, mod-
eling objects, and embedding constraints in embedded domain specific languages. Although we did
not invent the idea of GADTs (they were independently introduced several times during 2003-2004,
and partly inspired by my doctoral research [CW99, Wei00, Wei02, Wei04]), our work was the first to
integrate them with an industrial-strength language and coined their now-standard name.
Since that time, I have worked to extend the expressiveness of type-level computation, the language
feature of GHC used to encode program invariants. Datatype promotion [YWC+12], makes standard
data structures available at the type language, and Closed type families [EVPW14] allows the definition
of type-level functions over those data structures. I have also shown how to extend Haskell’s core
language with kind equalities [WHE13], which introduces dependent types to type-level computation.

• Roles. Sometimes type system features interact poorly. In particular, GADTs, type-level computation
and a feature of GHC called GeneralizedNewtypeDeriving naïvely combine to make the type system
unsound. My work on roles [WVPZ11, BEPW14] resolved this incompatibility and plugged a six-year
hole in the GHC type checker.

• First-class polymorphism. The Haskell type system was originally based on Hindley-Milner type
system, which places restrictions on the use of polymorphic functions in exchange for complete type
inference. Our work removes those restrictions, permitting the use of higher-rank [PVWS07] and
impredicative polymorphism [Vyt08, VWP06, VWJ08]. Complete inference for these features is known
to be impossible. Therefore, our work defined a specification of required user annotations to enable
the new features. Our extensions are backwards compatible: they do not require any new annotations
for programs that do not use the new features while still assigning a best or “principal” type to each
code fragment.

2http://www.haskell.org/ghc/

Stephanie Weirich July 31, 2014 2

http://www.haskell.org/ghc/


My students and I have released several open source libraries that take advantage of these extensions.
The singletons library [EW12, ES14] directly supports programming with compile-time invariants; for
example, it powers the units library [ME14], which ensures that units are used consistently in physical
simulations. The RepLib library [Wei06] enables datatype-generic programming, a mechanism for defining
functionality based on type structure. I used this library implement Unbound, a library for working with
binding structure [WYS11].

This work has been recognized by the academic community through invitations for keynote addresses at
the International Conference on Functional Programming (ICFP 2014), the 2013 Facebook Faculty Summit,
and the Symposium on Functional and Logic Programming (FLOPS 2012). My visibility in the functional
programming community is also recognized by my service as the program chair of ICFP 2010, the program
chair of the Haskell Symposium 2009, and as an editor of the Journal of Functional Programming, the
primary publication venues for research in this field.

Concurrent with my work, the Haskell language has made tremendous growth in industry, arguably due
to its uniquely expressive type system. The features described above are implemented in GHC and are being
used by nonacademic Haskell practitioners. In particular, I have been in contact with full-time programmers
who use GHC for banking, social networking, robotics, aerospace engineering, and consulting. Each year, my
students organize the the Hack-φ Hackathon, which brings local programmers together to build and improve
Haskell libraries, tools, and infrastructure

I plan to continue my efforts to extend the Haskell type system. In particular, we are currently working
to add a true dependent type to GHC, in order to ameliorate the syntactic overhead of singleton-based
encodings. I have also been working with an undergraduate research student (Hamidhasan Ahmed, Penn)
to add explicit type application. Going further, type inference in GHC is based on constraint solving and
implemented by a special purpose constraint solver. To extend the static reasoning capabilities of GHC,
I have a NSF grant to explore the integration of SMT (Satisfiability Modulo Theory) solvers into its type
inference algorithm.

POPLmark: Mechanizing programming language metatheory
Because program security guarantees are often based on static type checking, confidence in the soundness
of static type systems is essential. Yet, as static type systems become more expressive, such meta-theoretic
results become more complex. Typically proofs about the properties of programming languages are done
by hand, despite the length and complexity of these results for modern languages. These proofs are not
difficult—they use standard, well-understood techniques—but they are often overwhelming in the details.

Therefore, I have been working to make the use of automated proof assistants more commonplace in the
formalization of programming language metatheory. Such proof assistants manage the complexity of these
proofs; including mechanisms for semi-automatic proof creation, checking and maintenance. This project
is a collaboration with Benjamin Pierce and Steve Zdancewic at the University of Pennsylvania as well as
Peter Sewell at Cambridge University, Randy Pollack at the University of Edinburgh, and a number of Penn
students.

This work has two components: developing community infrastructure (education materials, workshops,
libraries, electronic fora) to get researchers to use existing tools, and developing new technologies for pro-
gramming language representation, specifically, the treatment of binding constructs, to make this process
easier.

• Community infrastructure. In 2005, the POPLmark team issued the POPLmark challenge: a set
of design problems to both assess and advance the current best practices in machine-assisted support
for the formalization of programming languages [ABF+05]. This challenge was met with enthusiasm,
generated many solutions that we gathered on our website and spurred vigorous debate in many venues.
To encourage the use of proof assistants in the programming language community, I organized and
chaired the 2006 Workshop on Mechanizing Metatheory. This workshop continued to meet every year
during 2007-2010. Furthermore, the Penn group organized a tutorial on using Coq for programming

Stephanie Weirich July 31, 2014 3



language metatheory at POPL 2008 and I taught this material at the Oregon Programming Languages
Summer School in 2008.

• Binding representations and tools. Our work also included techniques and tools for working
with binding representations. In particular, we developed a new technique for inductive relations
over a locally nameless representation of syntax [ACP+08]. My student Brian Aydemir developed
the LNgen tool [AW10] to aid in the support of locally nameless representation. More recently, Ghent
University PhD student Steven Keuchel developed the InfraGen tool to support working with de Bruijn
representations of binding structures during a recent six-month visit to Penn [KWS14].

This joint project has had tremendous impact on the community. It is not uncommon for papers submit-
ted to top programming languages conferences, such as POPL and ICFP, to be accompanied by mechanical
proofs of the correctness of their results. Benjamin Pierce and I co-edited a journal special issue devoted
to descriptions of solutions to the POPLmark challenge. Furthermore, I was invited to give a retrospective
talk at Cambridge University (Dec 2009) and a keynote address at the LFMTP 2012 workshop.

Other projects
HACMS DARPA’s High-Assurance Cyber Military Systems (HACMS) project seeks to improve the se-
curity of autonomous and semi-autonomous vehicles such as helicopters, automobiles and unmanned ground
vehicles. As part of this project, I am part of a team of researchers at Penn and UCLA that are designing
attack-resilient control algorithms and building modeling systems to support simulation and high-assurance
code generation. In particular, we have used the Coq proof assistant to develop a glue code generator for the
ROS platform, and have used the program logic of the Verified Software Toolchain to prove the correctness
of this generator [MPS+14].

Type-directed programming and abstraction With type-directed programming, program can analyze
type information to determine its behavior. By analyzing the type structure of data, many frequently used
operations can be defined once, for all types of data. Not only are these operations easier to express with
type-directed programming than with more conventional programming paradigms, but, as software evolves,
these operations need not be updated—they will automatically adapt to new data forms. Otherwise, each
of these operations must be individually redefined for each type of data, forcing programmers to revisit the
same program logic many times during a program’s lifetime. This flexibility is even more important in the
context of adaptive systems that must dynamically react to changes in their environments.

My research efforts in this area span the interaction between type analysis and the features of several
different languages (ML [DWWW08], Haskell [Wei06], Java [WH04]) and also include results about the con-
tention between type analysis and type abstraction. In particular, type-directed programming idioms break
existing mechanisms for abstraction and separation of concerns. Because of this, several researchers think
that these mechanisms decrease modularity. This need not be so, and I have been examining the interaction
between type abstraction and modularity in two different ways. First, Geoffrey Washburn and I designed a
type system that statically tracks the dependence on run- time type information and can therefore describe
when abstraction properties do and do not hold [WW05]. Secondly, an alternate mechanism for type-directed
programming is based on representation types [CWM02]—instead of analyzing run-time type information,
one may analyze terms that represent that type information. In such languages, it was conjectured that type
abstraction properties still hold—if the representation of a an unknown type is not provided, values of that
type must be used abstractly. Dimitrios Vytiniotis and I formally showed that conjecture to be true [VW07]
and used an extension of that result to show the partial correctness of a type-analyzing cast function [VW10].

Stephanie Weirich July 31, 2014 4



References
[ABF+05] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C.

Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve
Zdancewic. Mechanized metatheory for the masses: The POPLmark challenge. In The 18th
International Conference on Theorem Proving in Higher Order Logics (TPHOLs), pages 50–65,
Oxford, UK, August 2005.

[ACP+08] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie
Weirich. Engineering formal metatheory. In ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL), pages 3–15, January 2008.

[AW10] Brian Aydemir and Stephanie Weirich. Lngen: Tool support for locally nameless represen-
tations. Technical Report MS-CIS-10-24, Computer and Information Science, University of
Pennsylvania, June 2010.

[BEPW14] Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and Stephanie Weirich. Safe
zero-cost coercions for Haskell. In The 19th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’14, September 2014. To appear.

[CSW12] Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. Step-indexed normalization for a
language with general recursion. In Fourth workshop on Mathematically Structured Functional
Programming (MSFP ’12), pages 25–39, 2012.

[CSW14] Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. Combining proofs and programs
in a dependently typed language. In POPL 2014: 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 33–45, San Diego, CA, USA, 2014.

[CW99] Karl Crary and Stephanie Weirich. Flexible type analysis. In Proceedings of the fourth ACM
SIGPLAN International Conference on Functional Programming (ICFP), pages 233–248, Paris,
France, September 1999.

[CWM02] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in type erasure
semantics. Journal of Functional Programming, 12(6):567–600, November 2002.

[DWWW08] Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie Weirich. AspectML: A
polymorphic aspect-oriented functional programming language. ACM Transactions on Pro-
gramming Languages, 30(3):1–60, May 2008.

[ES14] Richard A. Eisenberg and Jan Stolarek. Promoting functions to type families in Haskell. In
Haskell Symposium, 2014. To appear.

[EVPW14] Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and Stephanie Weirich. Closed
type families with overlapping equations. In POPL 2014: 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 671–683, San Diego, CA, USA,
January 2014.

[EW12] Richard A. Eisenberg and Stephanie Weirich. Dependently typed programming with singletons.
In Haskell Symposium, pages 117–130, Copenhagen, Denmark, September 2012.

[JZSW10] Limin Jia, Jianzhou Zhao, Vilhem Sjöberg, and Stephanie Weirich. Dependent types and pro-
gram equivalence. In 37th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL), pages 275–286, Madrid, Spain, January 2010.

[KWS14] Steven Keuchel, Stephanie Weirich, and Thomas Tom Schrijvers. Infragen: Binder boilerplate
at scale, July 2014. Submitted for publication.

Stephanie Weirich July 31, 2014 5



[ME14] Takayuki Muranushi and Richard A. Eisenberg. Experience report: Type-checking polymorphic
units for astrophysics research in Haskell. In Haskell Symposium, 2014. To appear.

[MPS+14] Wenrui Meng, Junkil Park, Oleg Sokolsky, Stephanie Weirich, and Insup Lee. Verified genera-
tion of glue code for ros-based control systems. Submitted for publication., 2014.

[PVWS07] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practi-
cal type inference for arbitrary-rank types. Journal of Functional Programming, 17(1):1–82,
January 2007.

[PVWW06] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Washburn. Sim-
ple unification-based type inference for GADTs. In International Conference on Functional
Programming (ICFP), pages 50–61, Portland, OR, USA, September 2006.

[PWW04] Simon L. Peyton Jones, Geoffrey Washburn, and Stephanie Weirich. Wobbly types: Practical
type inference for generalised algebraic dataypes. Technical Report MS-CIS-05-26, University
of Pennsylvania, Computer and Information Science Department, Levine Hall, 3330 Walnut
Street, Philadelphia, Pennsylvania, 19104-6389, July 2004.

[SCA+12] Vilhelm Sjöberg, Chris Casinghino, Ki Yung Ahn, Nathan Collins, Harley D. Eades III, Peng
Fu, Garrin Kimmell, Tim Sheard, Aaron Stump, and Stephanie Weirich. Irrelevance, heteroge-
nous equality, and call-by-value dependent type systems. In Fourth workshop on Mathematically
Structured Functional Programming (MSFP ’12), pages 112–162, 2012.

[SSW10] Aaron Stump, Vilhelm Sjöberg, and Stephanie Weirich. Termination casts: A flexible approach
to termination with general recursion. In Workshop on Partiality and Recursion in Interactive
Theorem Provers, pages 76–93, Edinburgh, Scotland, July 2010.

[SW14] Vilhelm Sjöberg and Stephanie Weirich. Programming up to congruence. Submitted for pub-
lication, July 2014.

[VW07] Dimitrios Vytiniotis and Stephanie Weirich. Free theorems and runtime type representations.
In Mathematical Foundations of Programming Semantics (MFPS XXIII), pages 357–373, New
Orleans, LA, USA, April 2007.

[VW10] Dimitrios Vytiniotis and Stephanie Weirich. Parametricity, type equality and higher-order
polymorphism. Journal of Functional Programming, 20(2):175–210, March 2010.

[VWJ08] Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones. FPH: first-class polymor-
phism for Haskell. In ICFP 2008: The 13th ACM SIGPLAN International Conference on
Functional Programming, pages 295–306, Victoria, BC, Canada, September 2008.

[VWP06] Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton Jones. Boxy type inference for
higher-rank types and impredicativity. In International Conference on Functional Programming
(ICFP), pages 251–262, Portland, OR, USA, September 2006.

[Vyt08] Dimitrios Vytiniotis. Practical type inference for first-class polymorphism. PhD thesis, Univer-
sity of Pennsylvania, August 2008.

[Wei00] Stephanie Weirich. Type-safe cast: Functional pearl. In Proceedings of the fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP), pages 58–67, Montreal, Canada,
September 2000.

[Wei02] Stephanie Weirich. Programming With Types. PhD thesis, Cornell University, August 2002.

[Wei04] Stephanie Weirich. Type-safe cast. Journal of Functional Programming, 14(6):681–695, Novem-
ber 2004.

Stephanie Weirich July 31, 2014 6



[Wei06] Stephanie Weirich. RepLib: A library for derivable type classes. In Haskell Workshop, pages
1–12, Portland, OR, USA, September 2006.

[WH04] Stephanie Weirich and Liang Huang. A design for type-directed Java. In Viviana Bono, editor,
Workshop on Object-Oriented Developments (WOOD), ENTCS, pages 117–136, August 2004.

[WHE13] Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. System FC with explicit kind
equality. In Proceedings of The 18th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’13, pages 275–286, Boston, MA, September 2013.

[WVPZ11] Stephanie Weirich, Dimitrios Vytiniotis, Simon Peyton Jones, and Steve Zdancewic. Generative
type abstraction and type-level computation. In POPL 11: 38th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, January 26–28, 2011. Austin, TX, USA.,
pages 227–240, January 2011.

[WW05] Geoffrey Washburn and Stephanie Weirich. Generalizing parametricity using information flow.
In Twentieth Annual IEEE Symposium on. Logic in Computer Science (LICS 2005), pages
62–71, Chicago, IL, USA, June 2005.

[WYS11] Stephanie Weirich, Brent A. Yorgey, and Tim Sheard. Binders unbound. In Proceeding of the
16th ACM SIGPLAN International Conference on Functional Programming, ICFP ’11, pages
333–345, New York, NY, USA, 2011.

[YWC+12] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vytiniotis,
and José Pedro Magalhaẽs. Giving Haskell a promotion. In Seventh ACM SIGPLAN Workshop
on Types in Language Design and Implementation (TLDI ’12), pages 53–66, 2012.

Stephanie Weirich July 31, 2014 7


