
Stephanie Weirich
School of Engineering and Science, University of Pennsylvania

Levine 510, 3330 Walnut St, Philadelphia, PA 19104
215-573-2821 • sweirich@seas.upenn.edu

March 23, 2025

Academic Positions
University of Pennsylvania Philadelphia, Pennsylvania
ENIAC President’s Distinguished Professor September 2019-present
University of Pennsylvania Philadelphia, Pennsylvania
Professor July 2015-August 2019
University of Pennsylvania Philadelphia, Pennsylvania
Associate Professor July 2008-June 2015
University of Cambridge Cambridge, UK
Visitor August 2009-July 2010
University of Pennsylvania Philadelphia, Pennsylvania
Assistant Professor July 2002-July 2008
Cornell University Ithaca, New York
Instructor, Research Assistant and Teaching AssistantAugust 1996-July 2002

Industry Positions
Epic Games Philadelphia, Pennsylvania
Principal Language Engineer March 2022-September 2023
Galois, Inc Portland, Oregon
Visiting Scientist June 2018-August 2019
Microsoft Research Cambridge, UK
Visiting Researcher September-November 2009
Lucent Technologies Murray Hill, New Jersey
Intern June-July 1999

tel:2155732821
mailto:sweirich@seas.upenn.edu

Education
Cornell University Ithaca, NY
Ph.D., Computer Science 2002
Cornell University Ithaca, NY
M.S., Computer Science 2000
Rice University Houston, TX
B.A., Computer Science, magnum cum laude 1996

Honors
Milner Lecture, University of Edinburgh, 2022
SIGPLAN Robin Milner Young Researcher award, 2016
Most Influential ICFP 2006 Paper, awarded in 2016
Microsoft Outstanding Collaborator, 2016
Penn Engineering Fellow, University of Pennsylvania, 2014
Institute for Defense Analyses Computer Science Study Panel, 2007
National Science Foundation CAREER Award, 2003
Intel Graduate Student Fellowship, 2000–2001
National Science Foundation Graduate Research Fellowship, 1996–1999
CRA-W Distributed Mentorship Project Award, 1996
Microsoft Technical Scholar, 1995–1996

Refereed Publications
[1] Jonathan Chan and Stephanie Weirich. Stratified type theory. In Viktor

Vafeiadis, editor, European Symposium on Programming Languages and
Systems, ESOP 2025, May 2025. To appear.

[2] Yiyun Liu, Jonathan Chan, and Stephanie Weirich. Consistency of a
dependent calculus of indistinguishability. Proc. ACM Program. Lang.,
9(POPL), January 2025. doi: 10.1145/3704843.

[3] Cassia Torczon, Emmanuel Suárez Acevedo, Shubh Agrawal, Joey
Velez-Ginorio, and Stephanie Weirich. Effects and coeffects in call-by-
push-value. Proc. ACM Program. Lang., 8(OOPSLA), October 2024.
doi: 10.1145/3689750.

[4] Li-Yao Xia, Laura Israel, Maite Kramarz, Nathan Coltharp, Koen
Claessen, Stephanie Weirich, and Yao Li. Story of your lazy function’s
life: A bidirectional demand semantics for mechanized cost analysis of

lazy programs. Proc. ACM Program. Lang., 8(ICFP), August 2024. doi:
10.1145/3674626.

[5] Yiyun Liu, Jonathan Chan, Jessica Shi, and Stephanie Weirich. In-
ternalizing indistinguishability with dependent types. Proc. ACM Pro-
gram. Lang., 8(POPL), January 2024. doi: 10.1145/3632886.

[6] Yiyun Liu and Stephanie Weirich. Dependently-typed programming
with logical equality reflection. Proc. ACM Program. Lang., 7(ICFP),
August 2023. doi: 10.1145/3607852.

[7] Yao Li and Stephanie Weirich. Program adverbs and Tlön embeddings.
Proc. ACM Program. Lang., 6(ICFP), September 2022. doi: 10.1145/
3547632. Distinguished Paper Award.

[8] Pritam Choudhury, Harley Eades III, and Stephanie Weirich. A depen-
dent dependency calculus. In Ilya Sergey, editor, Programming Lan-
guages and Systems, ESOP 2022, volume 13240 of Lecture Notes in
Computer Science, pages 403–430, Cham, 2022. Springer International
Publishing. ISBN 978-3-030-99336-8. doi: 10.1007/978-3-030-99336-8_
15.

[9] Richard A. Eisenberg, Guillaume Duboc, Stephanie Weirich, and Daniel
Lee. An existential crisis resolved: Type inference for first-class exis-
tential types. Proc. ACM Program. Lang., 5(ICFP), August 2021. doi:
10.1145/3473569. Distinguished Paper Award.

[10] Yao Li, Li-yao Xia, and Stephanie Weirich. Reasoning about the garden
of forking paths. Proc. ACM Program. Lang., 5(ICFP), August 2021.
doi: 10.1145/3473585.

[11] Joachim Breitner, Antal Spector-Zabusky, Yao Li, Christine Rizkallah,
John Wiegley, Joshua Cohen, and Stephanie Weirich. Ready, set,
verify! Applying hs-to-coq to real-world Haskell code. Journal of
Functional Programming, 31:1–40, February 2021. doi: 10.1017/
S0956796820000283.

[12] Pritam Choudhury, Harley D. Eades III, Richard A. Eisenberg, and
Stephanie Weirich. A graded dependent type system with a usage-
aware semantics. Proc. ACM Program. Lang., 5(POPL), January 2021.
doi: 10.1145/3434331. Artifact available.

[13] Anastasiya Kravchuk-Kirilyuk, Antoine Voizard, and Stephanie
Weirich. Eta-equivalence in core Dependent Haskell. In Marc Bezem

and Assia Mahboubi, editors, Post-proceedings of the 25th International
Conference on Types for Proofs and Programs (TYPES 2019), volume
175 of Leibniz International Proceedings in Informatics, pages 7:1–7:32,
Dagstuhl, Germany, sep 2020. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik. doi: 10.4230/LIPIcs.TYPES.2019.7.

[14] Stephanie Weirich, Pritam Choudhury, Antoine Voizard, and Richard
Eisenberg. A role for dependent types in Haskell. Proc. ACM Program.
Lang., 3(ICFP), 2019. doi: 10.1145/3341705.

[15] Joachim Breitner, Antal Spector-Zabusky, Yao Li, Christine Rizkallah,
John Wiegley, and Stephanie Weirich. Ready, set, verify! Applying
hs-to-coq to real-world Haskell code (Experience report). Proc. ACM
Program. Lang., 2(ICFP):89:1–89:16, July 2018. ISSN 2475-1421. doi:
10.1145/3236784. Artifact Available.

[16] Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah, and
Stephanie Weirich. Total Haskell is reasonable Coq. In Proceedings
of 7th ACM SIGPLAN International Conference on Certified Programs
and Proofs (CPP’18). ACM, 2018. doi: 10.1145/3167092. New York,
NY, USA.

[17] Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo
de Amorim, and Richard A. Eisenberg. A specification for dependent
types in Haskell. Proc. ACM Program. Lang., 1(ICFP):31:1–31:29, Au-
gust 2017. ISSN 2475-1421. doi: 10.1145/3110275. Artifact evaluated
as ”Available” and Reusable”.

[18] Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C.
Pierce, Zhong Shao, Stephanie Weirich, and Steve Zdancewic. Po-
sition paper: the science of deep specification. Philosophical Trans-
actions of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 375(2104), 2017. ISSN 1364-503X. doi:
10.1098/rsta.2016.0331.

[19] Steven Keuchel, Stephanie Weirich, and Thomas Tom Schrijvers. Nee-
dle and Knot: Binder boilerplate tied up. In European Symposium
on Programming (ESOP), pages 419–445, April 2016. doi: 10.1007/
978-3-662-49498-1_17.

[20] Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed.
Visible type application. In European Symposium on Programming

(ESOP), pages 229–254, April 2016. doi: 10.1007/978-3-662-49498-1_
10.

[21] Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and
Stephanie Weirich. Safe zero-cost coercions for Haskell. Journal of
Functional Programming, 26, 2016. doi: 10.1017/S0956796816000150.

[22] Simon Peyton Jones, Stephanie Weirich, Richard A. Eisenberg, and
Dimitrios Vytiniotis. A reflection on types. In Sam Lindley, Conor
McBride, Phil Trinder, and Don Sannella, editors, WadlerFest 2016:
A list of successes that can change the world, LNCS, pages 292–317.
Springer, 2016. doi: 10.1007/978-3-319-30936-1_16.

[23] Wenrui Meng, Junkil Park, Oleg Sokolsky, Stephanie Weirich, and In-
sup Lee. Verified ros-based deployment of platform-independent control
systems. In Seventh NASA Formal Methods Symposium, pages 248–262,
Pasadena, CA, 2015.

[24] Vilhelm Sjöberg and Stephanie Weirich. Programming up to congru-
ence. In POPL 2015: 42nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 369–382, Mumbai, India,
January 2015. doi: 10.1145/2676726.2676974. Artifact Evaluated.

[25] Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and
Stephanie Weirich. Safe zero-cost coercions for haskell. In Proceed-
ings of the 19th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP ’14, page 189–202, New York, NY, USA,
2014. Association for Computing Machinery. ISBN 9781450328739. doi:
10.1145/2628136.2628141.

[26] Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and
Stephanie Weirich. Closed type families with overlapping equations.
In POPL 2014: 41st ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 671–683, San Diego, CA, USA,
January 2014.

[27] Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. Combining
proofs and programs in a dependently typed language. In Proceed-
ings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, page 33–45, New York, NY, USA,
2014. Association for Computing Machinery. ISBN 9781450325448. doi:
10.1145/2535838.2535883.

[28] Zhengjiang Hu, Shin-Cheng Mu, and Stephanie Weirich. Guest edi-
torial: Advanced programming techniques for construction of robust,
generic and evolutionary programs. Progress in Informatics, (10):1–2,
March 2013. doi: 10.2201/NiiPi.2013.10.1.

[29] Garrin Kimmel, Aaron Stump, Harley D. Eades, Peng Fu, Tim Sheard,
Stephanie Weirich, Chris Casinghino, Vilhelm Sjöberg, Nathin Collins,
and Ki Yunh Anh. Equational reasoning about programs with general
recursion and call-by-value semantics. Progress in Informatics, (10):
19–48, March 2013.

[30] Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. System fc
with explicit kind equality. In Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’13, page
275–286, New York, NY, USA, 2013. Association for Computing Ma-
chinery. ISBN 9781450323260. doi: 10.1145/2500365.2500599.

[31] Miroslav Pajic, Nicola Bezzo, James Weimer, Rajeev Alur, Rahul
Mangharam, Nathan Michael, George J. Pappas, Oleg Sokolsky, Paulo
Tabuada, Stephanie Weirich, and Insup Lee. Towards synthesis of
platform-aware attack-resilient control systems: extended abstract. In
HiCoNS ’13: Proceedings of the 2nd ACM international conference on
High confidence networked systems, pages 75–76, New York, NY, USA,
2013. ISBN 978-1-4503-1961-4.

[32] Richard A. Eisenberg and Stephanie Weirich. Dependently typed pro-
gramming with singletons. In Haskell Symposium, pages 117–130,
Copenhagen, Denmark, September 2012.

[33] Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. Con-
tracts made manifest. Journal of Functional Programming, 22(3):225–
274, May 2012.

[34] Benjamin C. Pierce and Stephanie Weirich. Preface to special issue on
the POPLMark challenge. J. Autom. Reasoning, 49(3):301–302, 2012.

[35] Umut A. Acar, James Cheney, and Stephanie Weirich. Editorial - spe-
cial issue dedicated to ICFP 2010. J. Funct. Program., 22(4-5):379–381,
2012. doi: 10.1017/S0956796812000287.

[36] Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. Step-
indexed normalization for a language with general recursion. In

Fourth workshop on Mathematically Structured Functional Program-
ming (MSFP ’12), pages 25–39, 2012.

[37] Vilhelm Sjöberg, Chris Casinghino, Ki Yung Ahn, Nathan Collins,
Harley D. Eades III, Peng Fu, Garrin Kimmell, Tim Sheard, Aaron
Stump, and Stephanie Weirich. Irrelevance, heterogenous equality, and
call-by-value dependent type systems. In Fourth workshop on Mathe-
matically Structured Functional Programming (MSFP ’12), pages 112–
162, 2012.

[38] Garrin Kimmell, Aaron Stump, Harley D. Eades III, Peng Fu, Tim
Sheard, Stephanie Weirich, Chris Casinghino, Vilhelm Sjöberg, Nathan
Collins, and Ki Yung Ahn. Equational reasoning about programs with
general recursion and call-by-value semantics. In Sixth ACM SIGPLAN
Workshop Programming Languages meets Program Verification (PLPV
’12), pages 15–26, 2012.

[39] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones,
Dimitrios Vytiniotis, and José Pedro Magalhaẽs. Giving Haskell a pro-
motion. In Seventh ACM SIGPLAN Workshop on Types in Language
Design and Implementation (TLDI ’12), pages 53–66, 2012.

[40] Stephanie Weirich and Chris Casinghino. Generic programming with
dependent types. In Jeremy Gibbons, editor, Generic and Indexed Pro-
gramming, number 7470 in Lecture Notes in Computer Science, pages
217–258. Springer-Verlag Berlin Heidelberg, 2012.

[41] Stephanie Weirich, Brent A. Yorgey, and Tim Sheard. Binders unbound.
In Proceeding of the 16th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’11, pages 333–345, New York, NY,
USA, 2011. ISBN 978-1-4503-0865-6.

[42] Stephanie Weirich, Dimitrios Vytiniotis, Simon Peyton Jones, and Steve
Zdancewic. Generative type abstraction and type-level computation.
In POPL 11: 38th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, January 26–28, 2011. Austin, TX, USA.,
pages 227–240, January 2011.

[43] Tim Sheard, Aaron Stump, and Stephanie Weirich. Language-based
verification will change the world. In 2010 FSE/SDP Workshop on
the Future of Software Engineering Research, pages 343–348, November
2010. Position paper.

[44] Aaron Stump, Vilhelm Sjöberg, and Stephanie Weirich. Termination
casts: A flexible approach to termination with general recursion. In
Workshop on Partiality and Recursion in Interactive Theorem Provers,
pages 76–93, Edinburgh, Scotland, July 2010.

[45] Dimitrios Vytiniotis and Stephanie Weirich. Parametricity, type equal-
ity and higher-order polymorphism. Journal of Functional Program-
ming, 20(2):175–210, March 2010.

[46] Michael Greenberg, Benjamin Pierce, and Stephanie Weirich. Con-
tracts made manifest. In 37th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL), pages 353–364, Madrid,
Spain, January 2010.

[47] Limin Jia, Jianzhou Zhao, Vilhem Sjöberg, and Stephanie Weirich.
Dependent types and program equivalence. In 37th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages
(POPL), pages 275–286, Madrid, Spain, January 2010.

[48] Stephanie Weirich and Chris Casinghino. Arity-generic type-generic
programming. In ACM SIGPLAN Workshop on Programming Lan-
guages Meets Program Verification (PLPV), pages 15–26, January 2010.

[49] Aaron Bohannon, Benjamin C. Pierce, Vilhelm Sjöberg, Stephanie
Weirich, and Steve Zdancewic. Reactive noninterference. In 16th ACM
Conference on Computer and Communications Security, pages 79–90,
November 2009.

[50] Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones. FPH:
first-class polymorphism for Haskell. In ICFP 2008: The 13th ACM
SIGPLAN International Conference on Functional Programming, pages
295–306, Victoria, BC, Canada, September 2008.

[51] Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie
Weirich. AspectML: A polymorphic aspect-oriented functional program-
ming language. ACM Transactions on Programming Languages, 30(3):
1–60, May 2008. ISSN 0164-0925.

[52] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pol-
lack, and Stephanie Weirich. Engineering formal metatheory. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pages 3–15, January 2008.

[53] Geoffrey Washburn and Stephanie Weirich. Boxes go bananas: Encod-
ing higher-order abstract syntax with parametric polymorphism. Jour-
nal of Functional Programming, 18(1):87–140, January 2008.

[54] Dimitrios Vytiniotis and Stephanie Weirich. Dependent types: Easy
as PIE. In Marco T. Morazán and Henrik Nilsson, editors, Draft Pro-
ceedings of the 8th Symposium on Trends in Functional Programming,
pages XVII–1—XVII–15. Dept. of Math and Computer Science, Seton
Hall University, April 2007. TR-SHU-CS-2007-04-1.

[55] Dimitrios Vytiniotis and Stephanie Weirich. Free theorems and runtime
type representations. In Mathematical Foundations of Programming Se-
mantics (MFPS XXIII), pages 357–373, New Orleans, LA, USA, April
2007.

[56] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. Practical type inference for arbitrary-rank types. Journal
of Functional Programming, 17(1):1–82, January 2007.

[57] Stephanie Weirich. Type-safe run-time polytypic programming. Journal
of Functional Programming, 16(10):681–710, November 2006.

[58] Stephanie Weirich. RepLib: A library for derivable type classes. In
Haskell Workshop, pages 1–12, Portland, OR, USA, September 2006.

[59] Geoffrey Washburn and Stephanie Weirich. Good advice for type-
directed programming: Aspect-oriented programming and extensible
generic functions. In Workshop on Generic Programming (WGP), pages
33–44, Portland, OR, USA, September 2006.

[60] Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton Jones.
Boxy type inference for higher-rank types and impredicativity. In In-
ternational Conference on Functional Programming (ICFP), pages 251–
262, Portland, OR, USA, September 2006.

[61] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. Simple unification-based type inference for GADTs.
In International Conference on Functional Programming (ICFP), pages
50–61, Portland, OR, USA, September 2006.

[62] Brian Aydemir, Aaron Bohannon, and Stephanie Weirich. Nominal
reasoning techniques in Coq. In International Workshop on Logical

Frameworks and Meta-Languages:Theory and Practice (LFMTP), pages
60–69, Seattle, WA, USA, August 2006.

[63] Benjamin C. Pierce, Peter Sewell, Stephanie Weirich, and Steve
Zdancewic. It is time to mechanize programming language metathe-
ory. In Verified Software: Theories, Tools, Experiments (VS:TTE),
pages 26–30, Zürich, Switzerland, October 2005.

[64] Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie
Weirich. PolyAML: A polymorphic aspect-oriented functional program-
mming language. In ACM SIGPLAN International Conference on Func-
tional Programming (ICFP), pages 306–319, Tallinn, Estonia, Septem-
ber 2005.

[65] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan
Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geof-
frey Washburn, Stephanie Weirich, and Steve Zdancewic. Mechanized
metatheory for the masses: The POPLmark challenge. In The 18th
International Conference on Theorem Proving in Higher Order Logics
(TPHOLs), pages 50–65, Oxford, UK, August 2005.

[66] Geoffrey Washburn and Stephanie Weirich. Generalizing parametricity
using information flow. In Twentieth Annual IEEE Symposium on.
Logic in Computer Science (LICS 2005), pages 62–71, Chicago, IL,
USA, June 2005.

[67] Dimtrios Vytiniotis, Geoffrey Washburn, and Stephanie Weirich. An
open and shut typecase. In ACM SIGPLAN Workshop on Types in
Language Design and Implementation, pages 13–24, Long Beach, CA,
USA, January 2005.

[68] Stephanie Weirich. Type-safe cast. Journal of Functional Programming,
14(6):681–695, November 2004.

[69] Stephanie Weirich and Liang Huang. A design for type-directed Java.
In Viviana Bono, editor, Workshop on Object-Oriented Developments
(WOOD), ENTCS, pages 117–136, August 2004.

[70] Geoffrey Washburn and Stephanie Weirich. Boxes go bananas: Encod-
ing higher-order abstract syntax with parametric polymorphism. In
ACM SIGPLAN International Conference on Functional Programming
(ICFP), pages 249–262, Uppsala, Sweden, August 2003.

[71] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional poly-
morphism in type erasure semantics. Journal of Functional Program-
ming, 12(6):567–600, November 2002.

[72] Stephanie Weirich. Higher-order intensional type analysis. In Daniel Le
Métayer, editor, 11th European Symposium on Programming (ESOP),
pages 98–114, Grenoble, France, April 2002.

[73] Stephanie Weirich. Encoding intensional type analysis. In D. Sands,
editor, 10th European Symposium on Programming (ESOP), pages 92–
106, Genova, Italy, April 2001.

[74] Michael Hicks, Stephanie Weirich, and Karl Crary. Safe and flexible
dynamic linking of native code. In R. Harper, editor, Types in Com-
pilation: Third International Workshop, TIC 2000; Montreal, Canada,
September 21, 2000; Revised Selected Papers, volume 2071 of Lecture
Notes in Computer Science, pages 147–176. Springer, 2001.

[75] Stephanie Weirich. Type-safe cast: Functional pearl. In Proceedings of
the fifth ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP), pages 58–67, Montreal, Canada, September 2000.

[76] Karl Crary and Stephanie Weirich. Resource bound certification. In The
Twenty-Seventh ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 184–198, Boston, MA, USA,
January 2000.

[77] Karl Crary and Stephanie Weirich. Flexible type analysis. In Proceed-
ings of the fourth ACM SIGPLAN International Conference on Func-
tional Programming (ICFP), pages 233–248, Paris, France, September
1999.

[78] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard
Samuels, Frederick Smith, David Walker, Stephanie Weirich, and Steve
Zdancewic. TALx86: A realistic typed assembly language. In Second
ACM SIGPLAN Workshop on Compiler Support for System Software,
pages 25–35, Atlanta, GA, USA, May 1999. Published as INRIA re-
search report number 0228, March 1999.

[79] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional poly-
morphism in type erasure semantics. In Proceedings of the third
ACM SIGPLAN International Conference on Functional Programming
(ICFP), pages 301–313, Baltimore, MD, USA, September 1998.

[80] Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Stephanie
Weirich, and Matthias Felleisen. Catching bugs in the web of program
invariants. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 23–32, 1996.

Thesis
[81] Stephanie Weirich. Programming With Types. PhD thesis, Cornell

University, August 2002.

Artifacts and Technical Reports
[82] Yiyun Liu, Jonathan Chan, and Stephanie Weirich. Artifact associ-

ated with consistency of a dependent calculus of indistinguishability.
Technical report, November 2024. URL https://doi.org/10.5281/
zenodo.14252132. Awarded “Available” and “Evaluated & Reusable”
by POPL 2025 Artifact Evaluation Committee.

[83] Cassia Torczon, Emmanuel Suárez Acevedo, Shubh Agrawal, Joey
Velez-Ginorio, and Stephanie Weirich. Artifact associated with ”ef-
fects and coeffects in call-by-push-value”. Technical report, July 2024.
URL https://zenodo.org/records/12654518. Awarded “Available”,
“Evaluated & Reusable” and “Results Reproduced” by OOPSLA 2024
Artifact Evaluation Committee.

[84] Li-yao Xia, Laura Israel, Maite Kramarz, Nicholas Coltharp, Koen
Claessen, Stephanie Weirich, and Yao Li. Story of Your Lazy Func-
tion’s Life: A Bidirectional Demand Semantics for Mechanized Cost
Analysis of Lazy Programs (Artifact). Technical report, June 2024.
URL https://doi.org/10.5281/zenodo.11493754. Awarded “Avail-
able” and “Evaluated & Functional” by ICFP 2024 Artifact Evaluation
Committee.

[85] Yiyun Liu, Jonathan Chan, Jessica Shi, and Stephanie Weirich. Ar-
tifact associated with Internalizing Indistinguishability with Depen-
dent Types. Technical report, October 2023. URL https://doi.org/
10.5281/zenodo.8423073. Awarded “Available” and “Evaluated &
Reusable” badges by POPL 2024 Artifact Evaluation Committee.

[86] Yiyun Liu and Stephanie Weirich. Artifact associated with
dependently-typed programming with logical equality reflection.

https://doi.org/10.5281/zenodo.14252132
https://doi.org/10.5281/zenodo.14252132
https://zenodo.org/records/12654518
https://doi.org/10.5281/zenodo.11493754
https://doi.org/10.5281/zenodo.8423073
https://doi.org/10.5281/zenodo.8423073

Technical report, 2023. URL https://doi.org/10.1145/3580401.
Awarded “Available” and “Evaluated & Reusable” badges by ICFP
2023 Artifact Evaluation Committee.

[87] Yao Li and Stephanie Weirich. Program adverbs and tlön embed-
dings (artifact). Technical report, June 2022. Awarded “Available”
and “Evaluated & Reusable” badges by ICFP 2023 Artifact Evalua-
tion Committee.

[88] Pritam Choudhury, Harley Eades III, and Stephanie Weirich. Artifact
associated with a dependent dependency calculus. Technical report,
January 2022. Awarded “Reusable” and “Available” badges by ESOP
2022 Artifact Evaluation Committee.

[89] Yao Li, Li yao Xia, and Stephanie Weirich. Reasoning about the gar-
den of forking paths (artifact). Technical report, May 2021. Awarded
“Functional” and “Available” badges by ICFP 2021 Artifact Evalua-
tion Committee.

[90] Yao Li, Li-yao Xia, and Stephanie Weirich. Reasoning about the gar-
den of forking paths. Technical report, March 2021. URL https:
//arxiv.org/abs/2103.07543.

[91] Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and
Stephanie Weirich. Artifact for “a graded dependent type system with
a usage-aware semantics”. Technical report, December 2020. Awarded
“Reusable”, “Functional” and “Available” badges by POPL 2021 Arti-
fact Evaluation Committee.

[92] Pritam Choudhury, Harley D. Eades III, Richard A. Eisenberg, and
Stephanie Weirich. A graded dependent type system with a usage-
aware semantics (extended version). Technical report, 2020. URL
https://arxiv.org/abs/2011.04070.

[93] Stephanie Weirich, Pritam Choudhury, Antoine Voizard, and
Richard A. Eisenberg. Replication package for article: A role for
dependent types in haskell. Technical report, July 2019. Awarded
“Functional” and “Available” badges by ICFP 2019 Artifact Evalua-
tion Committee.

[94] Stephanie Weirich, Pritam Choudhury, Antoine Voizard, and Richard
Eisenberg. A role for dependent types in Haskell (extended version).
Technical report, 2019. URL https://arxiv.org/abs/1905.13706.

https://doi.org/10.1145/3580401
https://arxiv.org/abs/2103.07543
https://arxiv.org/abs/2103.07543
https://arxiv.org/abs/2011.04070
https://arxiv.org/abs/1905.13706

[95] Joachim Breitner, Antal Spector-Zabusky, Yao Li, Christine Rizkallah,
John Wiegley, Joshua Cohen, and Stephanie Weirich. The hs-to-coq
tool with examples. Technical report, July 2018. Awarded “Artifacts
Available” and “Artifacts Evaluated - Functional” badges by ICFP
2018 Artifact Evaluation Committee.

[96] Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed.
Visible type application (extended version). Technical report, January
2016.

[97] Vilhelm Sjöberg and Stephanie Weirich. Programming up to congru-
ence (extended version). Technical Report MS-CIS-14-10, University
of Pennsylvania, October 2014.

[98] Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and
Stephanie Weirich. Safe zero-cost coercions for Haskell (extended ver-
sion). Technical Report MS-CIS-14-07, Univ. of Pennsylvania, April
2014.

[99] Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. Combin-
ing proofs and programs in a dependently typed language (with tech-
nical appendix). Technical Report MS-CIS-13-08, University of Penn-
sylvania, November 2013.

[100] Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and
Stephanie Weirich. Closed type families with overlapping equations
(extended version). Technical Report MS-CIS-13-10, University of
Pennsylvania, November 2013.

[101] Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. System
FC with explicit kind equality (extended version). Technical report,
September 2013.

[102] Stephanie Weirich, Dimitrios Vytiniotis, Simon Peyton Jones, and
Steve Zdancewic. Generative type abstraction and type-level com-
putation (extended version). Technical report, November 2010.

[103] Aaron Stump, Vilhelm Sjöberg, and Stephanie Weirich. Termination
casts: A flexible approach to termination with general recursion (tech-
nical appendix). Technical Report MS-CIS-10-21, University of Penn-
sylvania Department of Computer and Information Science, 2010.

[104] Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton Jones.
Boxy type inference for higher-rank types and impredicativity, Tech-
nical Appendix. Technical Report MS-CIS-05-23, University of Penn-
sylvania, April 2006.

[105] Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton Jones.
Simple unification-based type inference for GADTs, Technical Ap-
pendix. Technical Report MS-CIS-05-22, University of Pennsylvania,
April 2006.

[106] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. Practical type inference for arbitrary-rank types (tech-
nical appendix). Technical Report MIS-CIS-05-14, University of Penn-
sylvania, July 2005.

[107] Geoffrey Washburn and Stephanie Weirich. Generalizing parametricity
using information flow (extended version). Technical Report MS-CIS-
05-04, Computer and Information Science, University of Pennsylvania,
July 2005.

[108] Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie
Weirich. PolyAML: a polymorphic aspect-oriented functional program-
ming language (extended version). Technical Report MS-CIS-05-07,
University of Pennsylvania, Department of Computer and Information
Science, 2005.

[109] Dan S. Dantas, David Walker, Geoffrey Washburn, and Stephanie
Weirich. Analyzing polymorphic advice. Technical Report TR-717-04,
Princeton University Computer Science, December 2004.

[110] Liang Huang and Stephanie Weirich. A design for type-directed pro-
gramming in Java (extended version). Technical Report MS-CIS-04-11,
University of Pennsylvania, Computer and Information Science, Octo-
ber 2004.

[111] Dimtrios Vytiniotis, Geoffrey Washburn, and Stephanie Weirich. An
open and shut typecase (extended version). Technical Report MS-CIS-
04-26, University of Pennsylvania, Computer and Information Science,
October 2004.

[112] Simon L. Peyton Jones, Geoffrey Washburn, and Stephanie Weirich.
Wobbly types: Practical type inference for generalised algebraic

dataypes. Technical Report MS-CIS-05-26, University of Pennsylva-
nia, Computer and Information Science Department, Levine Hall, 3330
Walnut Street, Philadelphia, Pennsylvania, 19104-6389, July 2004.

[113] Geoffrey Washburn and Stephanie Weirich. Unifying nominal and
structural ad-hoc polymorphism (extended version). Technical report,
University of Pennsylvania, March 2004.

[114] Geoffrey Washburn and Stephanie Weirich. Boxes go bananas: En-
coding higher-order abstract syntax with parametric polymorphism
(extended version). Technical Report MS-CIS-03-26, University of
Pennsylvania, Computer and Information Science, September 2003.

[115] Michael Hicks and Stephanie Weirich. A calculus for dynamic loading.
Technical Report MS-CIS-00-07, University of Pennsylvania, April
2000.

[116] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional poly-
morphism in type erasure semantics (extended version). Technical
Report TR98-1721, Cornell University, Computer Science, November
1998.

Unrefereed Reports
[117] Jonathan Chan and Stephanie Weirich. Bounded first-class universe

levels in dependent type theory, 2025. URL https://arxiv.org/abs/
2502.20485.

[118] Stephanie Weirich. Tracking how dependently-typed functions use
their arguments, 2024. Invited keynote at LICS/ICALP/FSCD.

[119] Emmanuel Suárez Acevedo and Stephanie Weirich. Making logical
relations more relatable (proof pearl), September 2023.

[120] Stephanie Weirich. Implementing dependent types in pi-forall, 2023.
URL https://arxiv.org/abs/2207.02129. Lecture notes for the
Oregon Programming Languages Summer School.

[121] Stephanie Weirich and Benjamin Pierce. Icfp 2020 post-conference
report, 2021. URL https://arxiv.org/abs/2104.01239.

[122] Antal Spector-Zabusky, Joachim Breitner, Yao Li, and Stephanie
Weirich. Embracing a mechanized formalization gap, October 2019.

https://arxiv.org/abs/2502.20485
https://arxiv.org/abs/2502.20485
https://arxiv.org/abs/2207.02129
https://arxiv.org/abs/2104.01239

[123] Anastasiya Kravchuk-Kirilyuk Stephanie Weirich, Antoine Voizard.
Locally nameless at scale. The Fourth International Workshop on
Coq for Programming Languages, January 2018.

[124] Stephanie Weirich. The influence of dependent types, January 2017.
Invited keynote given at POPL 2017.

[125] Stephanie Weirich. Depending on types, 2014. Invited keynote given
at ICFP 2014.

[126] Stephanie Weirich. Designing dependently-typed programming lan-
guages. Lectures given at the Summer School on Logic and Theorem
Proving in Programming Languages, Eugene OR, USA. July 2013,
July 2013.

[127] Stephanie Weirich. Dependently typed programming in ghc, May 2012.
Invited keynote given at FLOPS 2012.

[128] Kathleen Fisher, Ronald Garcia, and Stephanie Weirich. Nourishing
the future of the field: the programming language mentoring workshop
2012, April 2012.

[129] Stephanie Weirich. Combining proofs and programs, June 2011. Joint
invited speaker for Rewriting Techniques and Applications (RTA 2011)
and Typed Lambda Calculi and Applications (TLCA 2011).

[130] Stephanie Weirich. Icfp 2010 pc chair’s report, September 2010.

[131] Brian Aydemir and Stephanie Weirich. Lngen: Tool support for locally
nameless representations, June 2010.

[132] Stephanie Weirich. Haskell 2009 pc chair’s report, August 2009.

[133] Brian Aydemir, Steve Zdancewic, and Stephanie Weirich. Abstracting
syntax, March 2009.

[134] Stephanie Weirich and Brian Aydemir. Coq for programming language
metatheory. Lectures given at the Summer School on Logic and The-
orem Proving in Programming Languages, Eugene OR, USA. July
22-25, 2008, 2008. Tutorial materials available at http://www.cis.
upenn.edu/~plclub/oregon08/.

[135] Brian Aydemir, Aaron Bohannon, Benjamin Pierce, Jeffrey Vaughan,
Dimitrios Vytiniotis, Stephanie Weirich, and Steve Zdancewic. Using

http://www.cis.upenn.edu/~plclub/oregon08/
http://www.cis.upenn.edu/~plclub/oregon08/

proof assistants for programming language research or, how to write
your next popl paper in coq. Tutorial session co-located with POPL
2008, San Francisco, CA, January 2008. Tutorial materials available
at http://www.cis.upenn.edu/~plclub/popl08-tutorial/.

[136] Karl Crary, Robert Harper, Frank Pfenning, Benjamin C. Pierce,
Stephanie Weirich, and Stephan Zdancewic. Manifest security, Jan-
uary 2007. White paper.

Funding

Current. .

1. Epic Games. Unrestricted gift $74,400.00. 3/2024.

2. SHF: Small: SMALL:Dependency Tracking and Dependent Types. Weirich,
NSF CCF-2327738. $540,000. 12/2023-11/2026.

3. VERSE: Verification Engineering for Real-World Software Engineers. Pierce
(PI), Head, Weirich. DARPA. 2024-2027.

4. Research Experience for Undergraduates in Programming Languages (REPL).
Zdancewic (PI), Weirich, Pierce. NSF CNS-2244494 $322,095. 2023-2027.

Completed. .

1. SHF: Small: Mechanized reasoning for functional programs. Weirich, NSF
CCF-2006535. $450,000, 10/2020-09/2024.

2. SHF: Medium: Collaborative Research: The Theory and Practice of De-
pendent Types in Haskell. Weirich, Eisenberg (Bryn Mawr), NSF 1703835,
$814,453 (Penn), 7/2017-6/2022.

3. Collaborative Research: Expeditions in Computing: The Science of Deep
Specification. Weirich (PI), Pierce, Zdancewic (Penn), Appel (Princeton),
Shao (Yale), Chlipala (MIT). NSF 1521539, $10 million total, 1/2016-
10/2021.

4. Collaborative Research: Expeditions in Computing: The Science of Deep
Specification: REU Supplement. Weirich, Pierce, Zdancewic (Penn). $24,000,
1/2017-10/2021.

5. CIF: Small: Rich-Type Inference for Functional Programming. Weirich
(PI). NSF 1319880, $450,000, 9/2013-8/2018.

http://www.cis.upenn.edu/~plclub/popl08-tutorial/

6. SPARCS: Synthesis of Platform-aware Attack-Resilient Control Systems
Lee (PI), Sokolsky, Pappas, Michael, Mangharam, Weirich, Alur, Tabuada.
DARPA, $5.5 million total, 8/2012-8/2017.

7. CCF-SHF Small: Beyond Algebraic Data Types: Combinatorial Species
and Mathematically-Structured Programming Weirich (PI). NSF 1218002,
$325,840, 8/2012-8/2017.

8. SHF: Small: Dependently-Typed Haskell Weirich (PI). NSF 1116620, $496,785,
8/2011-8/2016.

9. Student travel support for ICFP 2015. Weirich. NSF $20,000.

10. CIF: Small: Rich-Type Inference for Functional Programming REU Weirich.
NSF, $7,000.

11. SHF: Small: Dependently-Typed Haskell REU Weirich (PI). NSF 1116620,
$6,000.

12. SHF: Large: Collaborative Research: TRELLYS:Community-Based De-
sign and Implementation of a Dependently Typed Programming Language
Weirich (Penn), Stump (University of Iowa), Sheard (Portland State Uni-
versity). NSF 0910786, $2.1 million total. 2009-2014.

13. Student Travel Support for Programming languages Mentoring Workshop
(PLMW 2012) Weirich (PI). NSF $15,900, 11/2011.

14. Networks Opposing Botnets Smith (PI), Pierce, Zdancewic, Loo, Weirich,
Felton, Rexford, Walker, Morrisett, Welsh. ONR, $400,000 (Penn), 2009-
2012.

15. Computer Science Study Panel, Phase II Weirich (PI), Zdancewic. DARPA,
$500,000, 2008-2010.

16. Collaborative Research: CT-T: Manifest Security University of Pennsylva-
nia. Pierce (PI), Weirich, Zdancewic. Carnegie Mellon University. Pfen-
ning (PI), Harper, Crary. NSF $1 million total, 2007-2011.

17. A Practical Dependently-Typed Functional Programming Language Weirich
(PI). NSF, $200,000. 2007-2009.

18. Computer Science Study Panel, Phase I Weirich. DARPA, $99,411. 2007-
2008.

19. CRI: Machine Assistance for Programming Languages Research Weirich
(PI), Pierce, Zdancewic. NSF $200,000, 2006-2008.

20. CAREER: Type-Directed Programming in Object-Oriented Languages Weirich
(PI), NSF CCF-0347289: $400,000, 2003-2008.

Invited Talks and Technical Presentations
1. TBA. WG 2.8 Meeting, York, Maine. May 2025.

2. Tracking how dependently-typed functions use their arguments. Chalmers
Department Seminar, Gothenberg, Sweden. 7 March 2025.

3. Tracking how dependently-typed functions use their arguments. LICS/ICALP/FSCD
Joint Invited Speaker. Talinn, Estonia. 10 July, 2024.

4. CBPV+effects, CBPV+coeffects. WG 2.11 Meeting, Drexel University,
Philadelphia, PA. March 2024.

5. CBPV+effects, CBPV+coeffects. WG 2.8 Meeting, Pembroke College,
Cambridge UK. April 2023.

6. Stratified Type Theory, WG 2.8 Meeting, Pembroke College, Cambridge
UK. April 2023.

7. What are Dependent Types and What are they Good for? Milner lecture,
Laboratory for Computer Science, Edinburgh. June 15, 2022.

8. A Dependent Dependency Calculus. Ediburgh LFCS Seminar, June 14,
2022.

9. How to implement the Lambda Calculus, Quickly. Haskell Love, virtual
developer conference. September 10, 2021.

10. How to implement the Lambda Calculus, Quickly. Invited talk at IFL.
The 33rd Symposium on Implementation and Application of Functional
Languages. September 3, 2021.

11. Programming Language Design: From Grace Hopper to Today. ENIAC
Day: 75th anniversary of ENIAC mini-symposium. February 15, 2021.

12. Strongly-Typed System F in GHC . YOW! Lambda Jam Online 2020. July
2020.

https://docs.google.com/presentation/d/1ttkDSHICdXzES95UjmKhLu6ZOuNprqLuEIsKxIgtN3k/edit?usp=sharing
https://web.inf.ed.ac.uk/lfcs/events/milner-lectures
https://www.youtube.com/watch?v=REy4RbDr46g
https://haskell.love/
https://youtu.be/6JH8bFRohn8
https://www.youtube.com/watch?v=gLTDyrAY4Hk
https://events.seas.upenn.edu/event/eniacday/
https://events.seas.upenn.edu/event/eniacday/

13. Strongly-Typed System F in GHC . Chalmers Functional Programming
Seminar Series. June 2020.

14. Adventures in Quantitative Type Theory. IFIP WG 2.8 Meeting, Zion
National Park. March 2020.

15. A Dependently-Typed Core Calculus for GHC . PurPL Fest invited speaker.
Purdue University. West Lafayette, IN. September 23, 2019.

16. Dependent Types in Haskell. BOBkonf invited speaker (research track).
Berlin, Germany. August 21, 2019.

17. A Dependently-Typed Core Calculus for GHC . TYPES 2019 Conference
Invited talk. Oslo, Norway. June 2019.

18. Strongly-typed System F in GHC . IFIP WG 2.8, Bordeaux, Fr. May 2019.

19. Dependent Types in Haskell. Cornell CS Colloquium, Ithaca, NY. Novem-
ber 2018.

20. Dependent Types in Haskell. Haskell eXchange keynote, London, October
2018.

21. Work-in-progress: Verifying the Glasgow Haskell Compiler Core language
using the Coq proof assistant. Intel Labs, Hillsboro, OR. August 2018.

22. Work-in-progress: Towards a formal semantics for GHC Core. DeepSpec
2018 Workshop, Philadelphia, PA. June 2018.

23. Work-in-progress: Verifying the Glasgow Haskell Compiler Core language.
IFIP WG 2.8, Asilomar, CA. June 2018.

24. Work-in-progress: Verifying the Glasgow Haskell Compiler Core language.
Dagstuhl Seminar 18201, “Secure Compilation” Wadern, Germany, May,
2018.

25. Dependent Types in Haskell. Invited speaker, Comcast Labs Connect:
Functional Programming. March 9, 2018.

26. Locally Nameless at Scale. Joint presentation with Anastasiya Kravchuck-
Kirilyuk. CoqPL workshop, Los Angeles, CA. January 2018.

27. Dependent Types in Haskell. University of Washington, PLSE Seminar
Series, Seattle, WA, December 2017.

https://www.youtube.com/watch?v=j2xYSxMkXeQ
https://purpl.cs.purdue.edu/kickoff.html
https://bobkonf.de/2019-summer/
https://cas.oslo.no/types2019/
https://www.cs.cornell.edu/content/dependent-types-haskell
https://skillsmatter.com/skillscasts/12195-keynote-dependent-types-in-haskell

28. Dependent Types in Haskell. McMaster University Departmental Seminar,
Hamilton Ontario, November 2017.

29. Dependent Types in Haskell. StrangeLoop 2017, St. Louis, MO, Septem-
ber 2017.

30. Eta-equivalence in Core Dependent Haskell. WG 2.8, Edinburgh, UK.
June 2017.

31. The Influence of Dependent Types. Keynote address, ACM Symposium on
Principles of Programming Languages (POPL ’17) Paris, France, January
2017.

32. A Foundation for Dependently Typed Haskell. WG 2.8, Lake Placid, NY,
July 19, 2016.

33. Depending on Types. Typelevel Summit, Philadelphia, PA, March 2-3,
2016.

34. Dynamic Typing in GHC . Compose :: Conference, Brooklyn, NY, Febru-
ary 4-5, 2016.

35. Visible Type Application. Microsoft Research, Cambridge, UK, November
6, 2015.

36. Visible Type Application. University of Kent, November 5, 2015.

37. Depending on Types. Code Mesh 2015, London, November 4, 2015.

38. From System F to Typed Assembly Language, by Morrisett, Walker, Crary,
Glew. Papers We Love, Philadelphia. Philadelphia, PA, October 6, 2015

39. Towards Dependently Typed Haskell. WG 2.8, Kefalonia, Greece, May 24,
2015

40. Pi-Forall: How to use and implement a dependently-typed language. Tech-
nical Keynote, Compose Conference. New York, January 30, 2015

41. Programming up-to Congruence. ACM Symposium on Principles of Pro-
gramming Languages (POPL ’15). Mumbai, India, January 16, 2015

42. Depending on Types. Computer Science Colloquium Series, Indiana Uni-
versity. Bloomington, Indiana, October 17, 2014

43. Programming Languages Panel. Cornell CS 50th Anniversary Symposium.
Ithaca, New York, October 2, 2014

https://www.youtube.com/watch?v=wNa3MMbhwS4&t=25s
https://www.youtube.com/watch?v=GgD0KUxMaQs
http://typelevel.org/
https://www.youtube.com/watch?v=asdABzBUoGM
http://www.composeconference.org/
https://www.youtube.com/watch?v=n-b1PYbRUOY
http://www.codemesh.io/
https://www.youtube.com/watch?v=Epbaka9uTQ4
https://www.youtube.com/watch?v=Epbaka9uTQ4
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/33/slides/wg28.hs
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/33/minutes.html
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/33/minutes.html
https://github.com/sweirich/pi-forall/blob/2014/compose.md
http://www.cs.cornell.edu/events/50years/schedule

44. Depending on Types. Keynote address, International Conference on Func-
tional Programming (ICFP). Gothenburg, Sweden, September 3, 2014

45. Programming Up-to Congruence, Again. WG 2.8, Estes Park, Colorado,
August 12, 2014

46. Combining Proofs and Programs. Certification of High-level and Low-level
programs. Paris, France, July 7, 2014

47. Why You Should Care About Dependent Types. Programming Languages
Mentoring Workshop. San Diego, CA, January 21, 2014

48. Programming Up-to Congruence. WG 2.8, Aussios, France, October 14,
2013

49. The Pleasure and Pain of Advanced Type Systems. Invited speaker, Face-
book Faculty Summit. Menlo Park, CA, August 6, 2013

50. Paradoxical Typecase. WG 2.8, Anapolis, MD, November 7, 2012

51. A POPLmark Retrospective: Using Proof Assistants in Programming Lan-
guage Research. Invited speaker, LFMTP 2012: 7th International Work-
shop on Logical Frameworks and Meta-languages: Theory and Practice,
Copenhagen, Denmark, September 9, 2012

52. Dependently-typed programming in GHC. Invited speaker, FLOPS 2012:
Eleventh International Symposium on Functional and Logic Programming,
Kobe, Japan, May 25, 2012

53. Binders Unbound. The 16th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2012 Tokyo Japan, September 21, 2011

54. Combining Proofs and Programs. Dependently Typed Programming, Shonan
Seminar 007, Shonan Village, Japan, September 16, 2011

55. Combining Proofs and Programs. Joint invited speaker for Rewriting
Techniques and Applications (RTA 2011) and Typed Lambda Calculi and
Applications (TLCA 2011) Novi Sad, Serbia, June 1, 2011

56. Combining Proofs and Programs in Trellys. Plenary Address, MFPS 27.
Pittsburgh, PA. May 26, 2011

57. Generic Binding and Telescopes. WG 2.8, Marble Falls, TX. March 11,
2011

http://plmw2014.inria.fr/talks/weirich-plmw14.pdf
http://people.csail.mit.edu/adamc/lfmtp12/programme.html
http://people.csail.mit.edu/adamc/lfmtp12/programme.html
http://www.org.kobe-u.ac.jp/flops2012/
http://www.org.kobe-u.ac.jp/flops2012/
http://www.rdp2011.uns.ac.rs/index.html
http://www.rdp2011.uns.ac.rs/index.html
http://www.rdp2011.uns.ac.rs/index.html
http://dauns.math.tulane.edu/%7Emfps/MFPS27/MFPS_XXVII.html

58. Generative Type Abstraction and Type-level Computation. ACM Sympo-
sium on Principles of Programming Languages (POPL ’11). Austin, TX,
January 2011

59. ICFP 2010 Program Chair’s Report. Baltimore, MD. September 27, 2010

60. Dependent Types and Program Equivalence. University of Strathclyde.
Glasgow, Scotland. April 30, 2010

61. Generic Programming with Dependent Types. IFIP 2.11, St. Andrews,
Scotland. March 1-3, 2010

62. Dependent Types and Program Equivalence. University of Nottingham.
Nottingham, England. February 5, 2010

63. Trellys Status Report. PLPV Discussion. Madrid, Spain. January 19,
2010

64. A POPLmark Retrospective: Using Proof Assistants in Programming Lan-
guage Research. University of Cambridge Computer Laboratory Wednes-
day Seminars. Cambridge, England. December 2, 2009

65. Dependent Types and Program Equivalence. Semantics Lunch, University
of Cambridge Computer Laboratory. Cambridge, England. November 2,
2009

66. Haskell Symposium 2009 Program Chair’s report. Edinburgh, Scotland.
September 3, 2009

67. Doing Dependent Types Wrong Without Going Wrong. IFIP WG 2.8,
Frauenchiemsee, Germany, June 2009

68. Adventures in Dependently-Typed Metatheory. IFIP WG 2.11, Mountain
View CA. April 15, 2009

69. Engineering Formal Metatheory Computer Science Colloquium, City Uni-
versity of New York Graduate Center. New York, NY. February 2, 2009

70. First-class Polymorphism for Haskell. IFIP WG 2.8, Park City, UT. June
19, 2008

71. Engineering Formal Metatheory. Princeton University, Princeton NJ,
USA. November 19, 2007

72. Machine Assistance for Programming Language Research. Cornell Univer-
sity, Ithaca, NY, USA. October 12, 2007

73. Formal Reasoning About Programs and Programming Languages. National
Security Agency. Fort Meade, MD, USA. July 20, 2007

74. Engineering Aspects of Formal Metatheory. Harvard University, Boston
MA, USA. June 1, 2007

75. Dependently-Typed Languages. Working session summary. IFIP WG 2.11,
Portland, OR, October 2006

76. Simple Unification-Based Type Inference for GADTs. International Con-
ference on Functional Programming (ICFP). Portland, OR. September
2006

77. RepLib: A Library for Derivable Type Classes. Haskell Workshop. Port-
land, OR. September 2006

78. Parametricity and GADTs. IFIP Working Group 2.8 (Functional Pro-
gramming). Boston, MA. July 2006

79. Practical Type Inference for Advanced Type Systems. International Fed-
eration for Information Processing (IFIP) Working Group 2.11, Dagstuhl,
Wadern, Germany. January 2006

80. Boxy Types: Inference for Higher-rank Types and Impredicativity. Inter-
national Federation for Information Processing (IFIP) Working Group 2.8,
Kalvi Manor, Estonia. October 2005

81. A Core Language for Generalised Algebraic Datatypes. International Fed-
eration for Information Processing (IFIP) Working Group 2.8, West Point,
USA. November 2004

82. A Design for Type-directed Java. Programming Languages Seminar, Yale
University, New Haven, CT. October 1, 2004

83. 2004 ICFP Programming Contest Results. (Presented jointly with Ben-
jamin Pierce and Steve Zdancewic) International Conference on Func-
tional Programming, Snowbird, UT. September 20, 2004

84. A Core Language for Generalised Algebraic Datatypes. Dagstuhl Seminar
04381: Dependently Typed Programming, Wadern, Germany. September
12, 2004

talks/binders.ppt
talks/wg211-dependent.ppt
http://www.informatik.uni-bonn.de/%7Eralf/WG2.8/22/slides/stephanie.pdf

85. A Design for Type-Directed Java. Microsoft Research Lab, Cambridge,
UK. August 31, 2004

86. A Design for Type-Directed Java. Workshop on Object-Oriented Devel-
opments (WOOD ’04). London, UK, August 2004

87. Unifying Nominal and Structural Ad-hoc Polymorphism. International
Federation for Information Processing (IFIP) Working Group 2.8, Coffs
Harbour, Australia. January 2003

88. Unifying Nominal and Structural Ad-hoc Polymorphism. Computer Sci-
ence Colloquium, City University of New York Graduate Center. New
York, NY. October 30, 2003

89. Boxes Go Bananas: Parametric Higher-Order Abstract Syntax in System
F. Laboratory for Secure Systems Seminar, Stevens Institute of Technol-
ogy. Hoboken, NJ. May 5, 2003

90. Run-time type analysis in Haskell with an Awful Lot of Newtypes. Interna-
tional Federation for Information Processing (IFIP) Working Group 2.8,
Crans-Montana, Switzerland. January 2003

91. Polytypic Programming and Intensional Type Analysis. New Jersey Pro-
gramming Languages Seminar. University of Pennsylvania, Philadelphia,
PA. September 20, 2002

92. Programming with Types. OHSU/Oregon Graduate Institute, Beaverton,
OR. February 11, 2002

93. Programming with Types. University of Oregon, Eugene, OR. February
15, 2002

94. Programming with Types. University of Pennsylvania, Philadelphia, PA.
February 19, 2002

95. Programming with Types. University of Virginia, Charlottesville, VA.
February 28, 2002

96. Programming with Types. University of Maryland, College Park, MD.
March 4, 2002

97. Programming with Types. Northeastern University, Boston, MA. March
13, 2002

talks/wg28-cransmontana.ps
talks/njpls.ps

98. Programming with Types. University of California, San Diego, CA. March
15, 2002

99. Programming with Types. Purdue University, West Lafayette, IN. March
25, 2002

100. Programming with Types. University of Michigan, Ann Arbor, MI. March
27, 2002

101. Programming with Types. University of Texas, Austin, TX. April 2, 2002

102. Higher-order Intensional Type Analysis. European Symposium on Pro-
gramming (ESOP ’02). Grenoble, France, April 2002

103. Programming with Types. University of Colorado at Boulder, CO. April
16, 2002

104. Programming with Types. Pennsylvania State University, State College,
PA. April 19, 2002

105. Programming with Types. Massachusetts Institute of Technology, Boston,
MA. April 25, 2002

106. Programming with Types. Rice University, Houston TX. April 29, 2002

107. Run-Time Type Analysis and Program Verification. Research, Careers
and Computer Science: A Maryland Symposium. University of Maryland,
College Park, MD. November 2001

108. Polytypic Programming and Intensional Type Constructor Analysis. In-
ternational Federation for Information Processing (IFIP) Working Group
2.8, Are, Sweden. April 2001

109. Encoding Intensional Type Analysis. European Symposium on Program-
ming (ESOP ’01). Genova, Italy. April 2001

110. Resource Bound Certification. Harvard University, Boston, MA. February
2001

111. Functional Pearl: Type-Safe Cast. International Conference on Functional
Programming. Montreal, Canada. September 2000

112. Resource Bound Certification. IBM Research, Hawthorne, NY. June 2000

113. Resource Bound Certification. ACM Symposium on Principles of Pro-
gramming Languages (POPL ’00). Boston, MA, USA. January 2000

talks/are.ps
talks/harvard.prn
talks/ibm-final.ppt

114. Flexible Type Analysis. International Conference on Functional Program-
ming (ICFP ’99). Paris, France, September 1999

115. Type Analysis and Typed Compilation. Princeton University, Princeton,
NJ. June 1999

116. Intensional Polymorphism in Type-Erasure Semantics. International con-
ference on Functional Programming (ICFP ’98). Baltimore, MD, USA,
September 1998

Research Community Service

Conference and Symposium Leadership. .

Principles of Programming Languages (POPL) 2026, associate chair.
European Symposium on Programming (ESOP) 2024, program chair.
International Conference on Functional Programming (ICFP) 2020, gen-
eral chair.
Principles of Programming Languages (POPL) 2019, program chair.
International Conference on Functional Programming (ICFP) 2010, pro-
gram chair.
Haskell Symposium 2009, program chair.

Journal Leadership. .

Editorial Board of TheoreTICs, 2021-2024.
Associate Editor of ACM TOPLAS, 2019-2023.
Editorial Board of Logical Methods in Computer Science, 2016-2024.
Editor of Journal of Functional Programming, 2011-2017.
Guest Editor (with Zhenjiang Hu, Shin-Cheng Mu), Progress in Informat-
ics. Special Issue on Advanced Programming Techniques for Construction
of Robust, General and Evolutionary Programs, March 2013.
Guest Editor (with Benjamin Pierce), Journal of Automated Reasoning.
Special Issue on the POPLmark Challenge. October 2012.
Nomination committee, SIGPLAN CACM Research Highlights, 2009-2011.

Workshop Leadership. .

DeepSpec Workshop, 2018. Co-located with PLDI, co-organizer.
Dagstuhl seminar “Language Based Verification Tools for Functional Pro-
grams” (16131), April 2016, co-organizer.
Dependently-Typed Programming Workshop (DTP) 2013, program chair
and organizer.
Shonan Village Dependently-Typed Programming, 2011, co-organizer.

talks/princeton.ppt
http://www.cs.cornell.edu/sweirich/talks/Typepass-final/index.htm

Types in Language Design and Implementation Workshop, 2011, general
chair.
Workshop on Mechanizing Metatheory, 2006-2009, co-organizer.
Workshop on Mechanizing Metatheory, 2006, program chair.

Program Committee Membership (conference/symposium).

International Conference on Functional Programming (ICFP) 2025.
Certified Proofs adn Programs (CPP) 2025.
International Conference on Functional Programming (ICFP) 2022.
Formal Structures for Computation and Deduction (FSCD) 2022.
History of Programming Languages (HOPL IV) 2020.
Symposium on Trends in Functional Programming (TFP) 2020.
Principles of Programming Languages (POPL) 2018.
Certified Proofs and Programs (CPP) 2018.
European Symposium on Programming (ESOP) 2017.
Principles and Practice of Declarative Programming (PPDP) 2016.
Symposium on Trends in Functional Programming (TFP) 2016.
International Conference on Functional Programming (ICFP) 2015.
Certified Proofs and Programs (CPP) 2015.
Principles of Programming Languages (POPL) 2014.
Functional and Logic Programming (FLOPS) 2014.
Typed Lambda Calculi and Applications (TLCA) 2013.
Asian Symposium on Programming Languages and Systems (APLAS)
2012.
International Symp. on Principles and Practice of Declarative Program-
ming (PPDP) 2012.
Certified Proofs and Programs (CPP) 2011.
European Symposium on Programming (ESOP) 2011.
Verified Software, Tools, Theory and Experiments (VSTTE) 2010.
International Conference on Functional Programming (ICFP) 2007.
International Conference on Aspect-Oriented Software Development (AOSD)
2007.
Principles of Programming Languages (POPL) 2006.
European Symposium on Programming (ESOP) 2006.
Programming Language Design and Implementation (PLDI) 2004.
International Conference on Functional Programming (ICFP) 2002.

Program Committee Membership (workshop). .

TYPES 2021.
TyDe 2021.

CoqPL Workshop 2020.
Coq Workshop 2018.
Haskell Implementor’s Workshop (HiW) 2016.
Higher-Order Programming with Effects (HOPE) 2016.
Implementation of Functional Languages (IFL) 2015.
Coq Workshop 2015.
Logical Frameworks and Meta Languages Theory and Practice (LFMTP)
2013.
Trends in Functional Programming in Education (TFPIE) 2013.
Grace Hopper Conference, Panels, Workshops, and Presentations 2012.
Programming Languages meets Program Verification Workshop (PLPV)
2010.
IFIP TC2 Working Conference Domain Specific Languages 2009.
Proof Carrying Code Workshop 2008.
Haskell Workshop 2007.
Workshop on Types in Language Design and Implementation (TLDI)
2007.
ML Workshop 2006.
MetaOCaml Workshop, 2005.
Foundations of Object-Oriented Languages Workshop (FOOL) 2005.
MetaOCaml Workshop, 2004.
Foundations of Global Ubiquitous Computing Workshop (FGUC) 2004.
IFIP TC2 Working Conference on Generic Programming 2002.
Haskell Workshop 2001.

Steering Committee Membership. .

ESOP, 2023-2025.
ICFP, 2009-2012, 2017-2022. SC Chair, 2021-2022
POPL, 2017-2021
PLMW, 2012
Haskell Symposium, 2008-2012, 2018-2021
TLDI, 2010-2011
PLPV, 2012-2014
WGP, 2012-2015

Technical Society Membership. .

Association for Computing Machinery, 1998-present
ACM SIGPLAN, 1998-present
ACM SIGLOG, 2014-present
IFIP Working Group 2.8 (Functional Programming), 2003-present

IFIP Working Group 2.11 (Program Generation), 2007-2012
Other. .

SIGPLAN Reynold’s dissertation award committee, 2021-2022, 2022-2023.
NSF panel: January 2025, October 2022, March 2019, March 2018, Febru-
ary 2016, June 2014, October 2012, December 2011, March 2008, Decem-
ber 2004.
Haskell’ language standard committee, 2005-2010.
TYPES forum moderator: 2003-2009.
PLDI External Review Committee: 2013, 2011, 2009
POPL External Review Committee: 2015, 2012.
Ad hoc reviews: ACM Computing Surveys, JFP, HOSC, Acta Informatica,
TOPLAS, SCP, ICFP, POPL, PLDI, ECOOP, LCTES, ICALP, FOOL,
ML, Haskell, PEPM, NSF

Teaching Experience

University of Pennsylvania. .

CIS 120/CIS 1200 - Programming Languages and Techniques I
Spring 2025, Spring 2024, Spring 2022, Spring 2021, Spring 2020, Spring
2018, Spring 2016, Spring 2015, Spring 2014, Spring 2013, Spring 2012,
Spring 2011, Fall 2008, Spring 2008, Spring 2007
CIS 5520/552 - Advanced Programming
Fall 2024, Fall 2023, Fall 2022, Fall 2021, Fall 2020, Fall 2019, Fall 2017,
Spring 2017, Fall 2015, Fall 2013, Fall 2012, Fall 2011
CIS 6700/670/700 - Advanced topics in Programming Languages
Spring 2023, Fall 2016, Fall 2010, Spring 2009, Fall 2006, Spring 2006,
Fall 2002
CIS 500 - Software Foundations
Fall 2014, Fall 2005, Fall 2004
CIS 340 - Principles of Programming Languages
Spring 2004, Spring 2003

Cornell University. .

CS 212 - Java Practicum
CS 213 - C++ Programming
CS 214 - A Taste of UNIX and C

Students

Dissertation supervision (current students). .

Yiyun Liu, Aug 2021-
Jonathan Chan, Aug 2022-
Cassia Torczon, Aug 2022-

Postdoc supervision. .

Joachim Breitner, Aug 2016-2018.
Dissertation supervision (graduated students). .

Pritam Choudhury, 2023. Dependency and Linearity Analyses in Pure
Type Systems.
Yao Li, August 2022. Mechanized Reasoning About “How” Using Func-
tional Programs and Embeddings. Current employment: Portland State
University
Antal Spector-Zabusky, May 2021. Don’t mind the formalization gap: The
Design and Usage of hs-to-coq. Current position: Jane Street.
Richard Eisenberg, December 2016. Dependently-Typed Haskell. Current
position: Jane Street. Co-winner of Morris and Dorothy Rubinoff award.
Vilhelm Sjöberg, May 2015. A Dependently Typed Language with Nonter-
mination. Current position: CertiK. Co-winner of SIGPLAN 2016 John
C. Reynolds Doctoral Dissertation award.
Brent Yorgey, December 2014. Combinatorial Species and Labelled Struc-
tures. Current position: Associate Professor, Hendrix College.
Chris Casinghino, December 2014. Combining Proofs and Programs. Cur-
rent position: Jane Street.
Dimitrios Vytiniotis, August 2008. Practical type inference for first-class
polymorphism. Current position: Google DeepMind, London, UK.
Geoffrey Washburn, December 2007. Principia Narcissus: How to avoid
being caught by your reflection. Current position: Logicblox.

Dissertation committee member. .

Calvin Beck, Penn.
Lef Ioannidis, Penn.
Danielle Marshall, University of Kent.
Nicholas Rioux, Penn.
Lawrence Dunn, Penn.
Peio Borthelle, Université Savoie Mont Blanc in Chambéry, France. March
2025.

https://repository.upenn.edu/handle/20.500.14332/59273
https://repository.upenn.edu/handle/20.500.14332/59273
https://repository.upenn.edu/edissertations/5111/
https://repository.upenn.edu/edissertations/5111/
http://repository.upenn.edu/dissertations/AAI10244979/
http://repository.upenn.edu/dissertations/AAI3709556/
http://repository.upenn.edu/dissertations/AAI3709556/
http://repository.upenn.edu/dissertations/AAI3668177/
http://repository.upenn.edu/dissertations/AAI3668177/
https://www.hendrix.edu/
http://repository.upenn.edu/dissertations/AAI3670881/
http://repository.upenn.edu/dissertations/AAI3328671/
http://repository.upenn.edu/dissertations/AAI3328671/
http://repository.upenn.edu/dissertations/AAI3292086/
http://repository.upenn.edu/dissertations/AAI3292086/
http://www.logicblox.com/

Paul He, Penn. July 2024.
Harrison Goldstein, Penn. May 2024.
Riccardo Bianchini, Univ. di Genova, April 2024.
Lucas Silver, Penn, July 2023.
Irene Yoon, Penn, November 2023.
Li-Yao Xia, Penn, June 2022.
Teng Zheng, Penn, October 2021.
Robert Rand, Penn, November 2018.
William Bowman, Northeastern University, November 2018.
Steven Keuchel, University of Ghent, June 2018.
Jennifer Paykin, Penn, May 2018.
Leonidas Lampropolos, Penn, May 2018.
Arthur Azevedo de Amorim, Penn, September 2017.
Peter Michael Osera, Penn, July 2015.
Daniel Wagner, Penn, June 2014.
Harley Eades III, University of Iowa, May 2014.
Julien Cretin, INRIA / University Paris 7, January 2014.
Michael Greenberg, Penn, December 2013.
Hongbo Zhang, Penn, Master’s thesis, December 2013.
Klara Mazurak, Penn, May 2013.
Jianzhao Zhao, Penn, April 2013.
Aaron Bohannon, Penn, February 2012.
Jean-Philippe Bernardy, Chalmers (“Faculty Opponent”), Gothenburg,
Sweden, June 2011.
Jeffrey Vaughan, Penn, December 2009.
Boris Yakobowski, INRIA / University Paris 7, December 2008.
Dan Dantas, Princeton University, August 2007.
Stephen Tse, Penn, August 2007.
Wahnhong Nam, Penn, December 2006.
Joeseph Vanderwaart, Carnegie Mellon University, August 2006.
Vladimir Gapayev, Penn, January 2006.

Visiting PhD student supervison. .

Pedro Henrique Azevedo de Amorim, Mar-Aug 2016.
Antoine Voizard, École Normale Supérieure, Paris. Mar-Aug 2014.
Steven Keuchel, University of Ghent, Sep 2013-Mar 2014.
Arthur Charguéraud (co-supervised with Benjamin Pierce), INRIA, 2007.

Independent study. .

Doctoral: Daniel Sainati, Noe De Santo, Francis Rinaldi Fall 2024-Spring
2025. Jessica Shi, Fall 2021. Irene Yoon, Spring 2020. Hengchu Zhang,
Yao Li, Spring 2017. Antoine Voizard, Kenny Foner, Fall 2015. Antal
Spector-Zabusky, Spring 2016, Spring 2013. Jennifer Paykin, Fall 2012.
Richard Eisenberg, Justin Hsu, Spring 2012. Richard Eisenberg, Hongbo
Zhang. Fall 2011. Brent Yorgey, Peter-Michael Osera, Vilhelm Sjöberg.
Fall 2008-Spring 2009. Chris Casinghino, Spring 2008. Andrew Hilton (co-
advised), Karl Mazurak, Jeff Vaughan, Fall 2004. Liang Huang, Spring
2004.
Masters: Emmanuel Suarez, Fall 2022-Spring 2024. Eric Giovanni, Spring
2020. Dominik Bollman, Spring 2016. Simon Wimmer, Summer 2015.
Undergraduate Senior Design Project: Memoria Matters and Lauren Le-
ung, 2016-2017 (Honoable Mention). Charles Du 2017, Max McCarthy
2016. Lewis Ellis, Max Scheiber, Ashutosh Goel, and Jeff Grimes (Honor-
able Mention). Tiernan Garsys, Taylor Mandel, Lucas Peña, and Noam
Zilberstein (Third place). 2014-2015. Kaycee Anderson, Juan Jose Lopez,
Caroline Ho, and Johanna Martens (Honorable Mention), 2013-2014.
Undergraduate Research: Elliot Brobow, Kevin Diggs, Elan Roth, Eliz-
abeth Austell, Apol Medrano, Summer 2024 (REPL). Shubh Agrawal,
Maite Kramarz, Annabel Baniak, Summer 2023 (REPL). Daniel Lee, 2021.
Joshua Cohen, 2018. Emmanuel Suarez, 2017-2018. Anastasiya Kravchuk-
Kirilyuk, 2017. Matthew Weaver 2015-2016. Leondra Morse, Summer
2015 (CRA-DREU). Mitchell Stern, Spring 2014. Hamidhasan Ahmed,
Spring 2014, Summer 2013. Sneha Popley, Summer 2008 (CRA-DREU).
Stephanie Simon, Summer 2008. David Gorski, Fall 2006. Parshant Mit-
tal, Atish Davda, Fall 2005. Neal Parikh, Summer 2004.

Department, School and University Service
FPC, 2023-present.
Faculty Council on Access and Academic Support, 2019-2023.
University committee on the Facilities, 2022-2023, 2011-2014. Chair 2012-
2014.
CIS Lecturer Hiring committee, 2022-2023.
CIS Tenure Track Hiring committee, 2021-2022, 2019-2020 (chair), 2012-
2013.
Provost’s Faculty Advisory Commitee on Online Learning, 2020.
Penn Engineering COVID-19 oversight committee, 2020.

SEAS Undergraduate Curriculum Committee, 2017-2018.
Undergraduate Chair, CIS, Sep 2014-Dec 2017.
SEAS Diversity Committee, 2015-2016.
Penn Forum for Women Faculty, 2015-2016.
Faculty advisor to CommuniTech (Penn undergraduate service organiza-
tion). 2012-present.
Faculty advisor to AΩE International Engineering and Technical Science
Sorority. 2012-present.
Graduate student admissions chair, 2013-2014, 2012-2013.
CIS seminar series coordinator, 2011-2012.
Faculty Council, 2010-2012.
Academic Performance Committee, 2004-2017.
CIS seminar organizer, 2011-2012.
CIS 120 reform, 2009-2010.
Back-up Care Committee, 2009.
Senior Design Project Judge, 2006.
Freshman Advisor, 2003.
Graduate Admissions Committee, 2003-2004.
Curriculum Committee, 2002-2003.

Outreach
Oregon Programming Languages Summer School, co-organizer, 2023
SIGPLAN CARES member, January 2020-present
Computing Connections Fellowship, selection committe, 2022
Workshop organizer: (with Ron Garcia) ICFP Programming Languages
Mentoring Workshop (ICFP-PLMW 2015) Vancouver, BC, September,
2015
Workshop co-founder: (with Kathleen Fisher and Ron Garcia) Program-
ming Language Mentoring Workshop (PLMW 2012) Philadelphia, PA,
January 24, 2012
SRC@ICFP student research competition, selection committee. 2015,
2014.
Haskell Foundation, Interim Board member, 2020-2021
Programming Contest co-organizer:
- 2004, Seventh Annual ICFP programming contest
- 2000, Third Annual ICFP Programming Contest
Panelist/Speaker (External events):
- Researcher Panel, PLMW @POPL, January 18, 2022
- Panel on Advising and Research. PLMW @PLDI, June 22, 2021

https://www.cs.uoregon.edu/research/summerschool/summer22/
https://www.sigplan.org/Cares/
https://computingconnections.org/
https://haskell.foundation/
http://www.cis.upenn.edu/proj/plclub/contest/
http://www.cs.cornell.edu/icfp/
https://popl22.sigplan.org/details/PLMW-2022-papers/8/Panel-live-only-no-recording-
https://pldi21.sigplan.org/details/PLMW-PLDI-2021/7/Panel-on-Advising-and-Research

- “Dependent types—salvation or plague?”, panel discussion at Lambda-
Days, Feb 4th, 2021

- CS Curriculum Panel, 35th anniversary of the Computer Science De-
partment at Rice, Houston, TX, October 11-13, 2019

- Programming Languages Panel, Computer Science 50th Anniversary
Symposium, Cornell University, Ithaca, NY, October 2, 2014

- Teaching Haskell in Academia and Industry (panel). Haskell Sympo-
sium, September 2013

- CRA-W/CDC Programming Languages Summer School, UT Austin,
May 2007

- Women in Science and Engineering Conference, Princeton, February
2006

Panelist/Speaker (Penn events):
- Grace Hopper Milestone Celebration, Tuesday, May 7, 2024.
- Reflections by 50 Years of Women CIS Faculty, March 28, 2023.
- Women in STEM at Penn, Research Symposium, “A logical approach

to programming language design and verification.” June 3, 2022.
- SWE Ted Talks Event for high school students: Feb 2022, Dec 2020
- AWE Faculty Panel: Aug 2022, Feb 2022, Oct 2021
- Panel Moderator/Member at FemmeHacks: Feb 2018, Feb 2017, Feb

2016
- The “Computers”: Apr 2015
- WICS high school day for girls: Apr 2017, Apr 2015, Apr 2014, Apr

2013, Apr 2012
- Graduate Student Professional Seminars: Mar 2013, Mar 2012
- SWE Graduate Section Inspiration Lunch Talk: April 20, 2012
- Philadelphia Area Aspirations in Computing Award presentation: March

21, 2012
- Penn AWE Pre-Orientation: Aug 2021, Aug 2017, Aug 2016, Aug 2011
Podcast interviews:
- CoRecursive w/ Adam Bell, June 2018.
- Type Theory Podcast, “Episode 4: Stephanie Weirich on Zombie and

Dependent Haskell”, April 2015.

Tutorials
Implementing Dependent Types in pi-forall. Oregon Programming Lan-
guages Summer School: Types, Logic, and Verification. Eugene OR, USA.
June 2023
Implementing Dependent Types in pi-forall. Oregon Programming Lan-

https://www.lambdadays.org/lambdadays2021?utm_source=ESL&utm_medium=email&utm_campaign=CBV+America+2021#free-meetup
http://cs35.rice.edu/
http://cs35.rice.edu/
http://www.cs.cornell.edu/events/50years/schedule
http://www.cs.cornell.edu/events/50years/schedule
https://corecursive.com/015-dependant-types-in-haskell-with-stephanie-weirich/
http://typetheorypodcast.com/2015/04/episode-4-stephanie-weirich-on-zombie-and-dependent-haskell/
https://www.cs.uoregon.edu/research/summerschool/summer23
https://www.cs.uoregon.edu/research/summerschool/summer22

guages Summer School: Types, Logic, and Verification. Eugene OR, USA.
June 2022
Dependent Types. Programming Languages Mentoring Workshop. St. Louis,
MO. September 2018
Formal Logic and Software Verification using Interactive Theorem Provers.
ACM Philadelphia Region Celebration of Women in Computing, April 21,
2018
Language Specification and Variable Binding. The Science of Deep Speci-
fications Summer School, July 2017
How to write a great research paper: Simon’s seven easy steps. Program-
ming Languages Mentoring Workshop. Mumbai, India, 2015
How to give a good research talk. Programming Languages Mentoring
Workshop. Mumbai, India, 2015
Designing Dependently-Typed Programming Languages. Oregon Program-
ming Languages Summer School: Types, Logic, and Verification. Eugene
OR, USA. June 2014
Designing Dependently-Typed Programming Languages. Oregon Program-
ming Languages Summer School: Types, Logic, and Verification. Eugene
OR, USA. July 2013
Computational Flags. Swarthmore CATALYST Conference for 7th/8th
graders, April 2015, March 2012
Generic Programming with Dependent Types. Spring School on Generic
and Indexed Programming. Oxford, England. March 2010
Coq for Programming Language Metatheory. Oregon Programming Lan-
guages Summer School on Logic and Theorem Proving in Programming
Languages. University of Oregon, July 2008
Using Proof Assistants for Programming Language Research or, How to
write your next POPL paper in Coq. POPL Tutorial, Jan 2008
Getting started in PL design research. CRA-W/CDC Programming Lan-
guages Summer School. UT Austin, May 2007
Career paths: How to get started in academia or industry. CRA-W/CDC
Programming Languages Summer School. UT Austin, May 2007

http://github.com/sweirich/dth/
https://deepspec.org/event/dsss17/lecture_weirich.html
https://www.cs.uoregon.edu/research/summerschool/summer14/curriculum.html
https://www.cs.uoregon.edu/research/summerschool/summer13/curriculum.html
http://www.sccs.swarthmore.edu/org/catalyst/
http://www.seas.upenn.edu/~sweirich/ssgip/
http://www.cs.uoregon.edu/research/summerschool/summer08/
http://www.cis.upenn.edu/~plclub/popl08-tutorial/
http://www.cis.upenn.edu/~plclub/popl08-tutorial/
http://www.cs.utexas.edu/users/mckinley/pl-summer-2007/presentations/session3/SW-CRA-PL-Design.ppt
http://www.cs.utexas.edu/users/mckinley/pl-summer-2007/presentations/session6/CareerPathsStephanie050707.ppt

	Academic Positions
	Industry Positions
	Education
	Honors
	Refereed Publications
	 Thesis
	Artifacts and Technical Reports
	Unrefereed Reports
	Funding
	Current
	Completed

	Invited Talks and Technical Presentations
	Research Community Service
	Conference and Symposium Leadership
	Journal Leadership
	Workshop Leadership
	Program Committee Membership (conference/symposium)
	Program Committee Membership (workshop)
	Steering Committee Membership
	Technical Society Membership
	Other

	Teaching Experience
	University of Pennsylvania
	Cornell University

	Students
	Dissertation supervision (current students)
	Postdoc supervision
	Dissertation supervision (graduated students)
	Dissertation committee member
	Visiting PhD student supervison
	Independent study

	Department, School and University Service
	Outreach
	Tutorials

