Stephanie Weirich
TZ W DW % Utn:ersi’ry of

Pennsylvania

How has Dependent Type Theory
influenced the design of the
Haskell type system?

|DependentHuskeH

A set of compiler extensions for the GHC compiler
that provides the ability to program as if the
language had dependent types

{-# LANGUAGE DataKinds, TypeFamilies, PolyKinds,
TypeInType, GADTs, RankNTypes, ScopedTypeVariables,
TypeApplications, TemplateHaskell,
UndecidableInstances, InstanceSigs,
TypeSynonymInstances, TypeOperators, KindSignatures,
MultiParamTypeClasses, FunctionalDependencies,
TypeFamilyDependencies, AllowAmbiguousTypes,
FlexibleContexts, FlexibleInstances #-}

"What have you done to Haskell2"
Showcase ~10 years of language extensions that
conspire to make GHC "dependently-typed"

"If you are interested in dependent types, why Haskell2"
Demonstrate the benefits of studying dependent types
in the context of the Haskell ecosystem
(Haskell-specific features, different design space,
industrial-strength compiler, ready-made user base,
awesome collaborators)

Why Dependent Haskell?

Answer: Domain-specific type
checkers

A type system for reqular expressions

* Task: Use regexp capture groups to

recognize a file path and extract its parts

"dth/popll7/Regexp.hs”
- Basename "Regexp"

- Extension "hs"
- Directories in path "dth" "popll7"

* Return all captured results in a data structure

* Challenge: Type system allows only
"sensible" access to the data structure

* http:/ /www.github.com /sweirich /dth /popl17/

Inspiration: Spishak, Dietl, Ernst "A type system for regular expressions"

Demo

* A regular expression for file paths

/? -- optional /
((2P<d>[~/]1+)/)* -- directories
(?2P[~\./]+) -- basename
(?2P<e>\..*)? -- extension

* Caveats:

e Uses Python syntax but captures all strings under a *,
not the most recently matched one

* Only named capture groups, not numbered

Demo

path =

[re|/2((2P<d>[~/]1+)/)*(?P[~\./]+) (?P<e>\..*)?|]
filename =

"dth/popll7/Regexp.hs”

| Four Features of Dependently Typed Programs
7% W&
2./@ CONSCracn ﬂ@é&f

. DM—@ dita
. %@éw& maitters

7%@ CW@

We can use
dependent types to
implement o
domain-specific
compile-time
analysis

Type aware implementation

> path =
[re|/?2((2P<d>[~/1+)/)*(2P["~/.]+)(?P<e>\..*)?]|]

> dict = fromJust (match path "dth/popll7/Regexp.hs")

> :t dict
Dict I[l(llbll, Ionce),l(lldll, lMany), I(llell, Iopt)]

> :t path

R "['("b", 'Once), '("d", 'Many), '("e", 'Opt)]

DataKinds [Yorgey, Weirich, Cretin, Peyton Jones, Magalhaes TLDI 2012]
Type-level symbols [Diatcki, HS 2015]

How does this work? Compile time parsing

> path =
[re|/?2((2P<d>[~/]+)/)*(2P[~\./]+) (?P<e>\..*)?]|]
> :t path

R '['("b", ‘Once), '("d", 'Many), '("e", 'Opt)]
> path = ralt rempty (rchars "/") “rseq
rstar (rmark @“d" (rplus (rnot "/"))
“rseq’ rchars "/") “rseq’
rmark @"b" (rplus (rnot "./")) "rseq
ralt rempty (rmark @"e"

(rchars "." “rseq rstar rany))
> :t path
R '['(“b", 'OnCE), l(lldll, 'Many), (Il ll’ lopt)]

TypeApplications [Eisenberg, Weirich, Hamidhasan, ESOP 2016]
TemplateHaskell [Sheard & Peyton Jones, HW 2002]

Constructors have informative types

-- accepts empty string only
rempty :: R "[]

-- accepts single char only
rchar :: Char -> R "[]

-- alternative r.|r,

ralt :: R sl ->R s2 -> R (ALt s1 s2)
-- sequence r,r,

rseq :: Rsl ->R s2 -> R (Merge sl s2)
-- iteration r*

rstar :: R s -> R (Repeat s)

-- marked subexpression
rmark :: Vn s. R s -> R (Merge '(n,Once) s)

TypeFamilies [Schrijvers, Peyton Jones, Chakravarty, Sulzmann, ICFP 2008]

Computing with types

data Occ = Once | Opt | Many Represent maps by lists of pairs,

tvpe SM = [(Svymbol,Occ ordered by first component
7 LSy ,0ce)] (name of the capture group)

type family Merge (sl :: SM) (s2 :: SM) :: SM where
Merge s '[] = s
Merge '[] s = s
Merge ('(nl,01):t1) ('(n2,02):t2) =
If (n1 :== n2) ('(nl, 'Many) : Merge t1 t2)
(If (n1 :<= n2)
('"(n1, 01) : Merge t1 ('(n2,02):t2))
('(n2, 02) : Merge ('(nl,01):t1) t2)

GHC's take on type-level computation

* Differences

* Type functions are arbitrary computation and
need not be terminating (cf. Merge)

* Backwards compatible with HM type inference
(no search & no higher-order unification)

* What's next for GHC?

* Anonymous type-level functions,
* More flexibility in higher-order polymorphism,
* Uniform syntax for type and term functions

We can use
compile-time
computation to
define type
structure and guide
the type checker

How does this work?

> :t d
DiCt I[I(llbll, Ionce),l(lldll’ lMany), I(llell, lopt)]

> get @"e" d Overloaded access,
Just "hs" resolved by type-level symbol

> get @"f" d
<interactive>:28:1: error:

Custom error message

e I couldn't find a group named 'f' in
{b, d, e}

Types constrain data

data Dict :: SM -> Type where
Nil :: Dict '[]
(:>) :: Entry '(n,o0) -> Dict tl
-> Dict ('(n,0) : tl)

data Entry :: (Symbol,Occ) -> Type where
E :: Vn o. OccType o -> Entry '(n,o0)

type family OccType (o :: Occ) :: Type where
OccType Once = String
OccType Opt = Maybe String
OccType Many = [String]

GADTs [Peyton Jones, Vytiniotis, Washburn, Weirich ICFP 2006]

Types Constrain Data

dict ::
Dict I[l(llbll, lonce),l(lldll, lMany), I(llell.’ lopt)]

* The dict must be of the form
E someString
:> E someListOfStrings
:> E someMaybeString :> Nil

* Type checker knows group for "b" comes first, and
that the stored value is a string

* Type checker knows that a value for "f" is not
present in the dict

GHC's take on indexed types

* Overloaded access to dictionary

get :: Ynr a. Has nr a =>r -> a

* Compile-time constraint solving guided by a type-level
"Find" function, which calculates offset into the dictionary

instance (Get (Find n s :: Index n o s),
a ~ OccType 0) => Has n (Dict s) a where
get = ..

* |f Find function fails, custom type error is triggered

Custom Type Errors [Augusstson, HS 2015]
ClosedTypeFamilies [Eisenberg, Peyton Jones, Weirich POPL 2014]
TypelnType [Weirich, Hsu, Eisenberg, ICFP 2013]

We can use the
same data for
compile time and
runtime
computation

How does this work?

data Dict :: SM -> Type where
Nil :: Dict '[]
(:>) :: Entry '(n,0) -> Dict tl
-> Dict ('(n,0):tl)
data Entry :: (Symbol,Occ) -> Type where
E :: Vn o. OccType o -> Entry '(n,o0)

d :: Dict '['("b", Once),'("d", Many),'("e", Opt)]
E "Regexp" :> E ["dth", "popll7"]
:> E (Just "hs") :> Nil

Q.
1l

> show d
{b="Regexp",d=["dth","popll7"],e=Just ".hs"}

Dependent types: I

showEntry :: N n -> M o -> Entry '(n,0) -> String
showEntry n o (E x) =
show n ++ "=" ++ showData o x where

showData :: Il o -> OccType o -> String

showData Once x = show x -- for String
showData Opt x = show x -- for Maybe String
showData Many x = show x -- for [String]

show :: Show a => a -> String

instance Show Symbol where show = ..

GHC's take: Singletons

showEntry ::
showEntry n o (E x) =

show n ++ "=

showData :: Sing o

SOnce X
SOpt Xx
SMany X =

showData
showData

showData

instance Show (Sing (n ::

data instance Sing (o ::

SOnce ::
SOpt
SMany ::

Sing Once
:: Sing Opt
Sing Many

Sing n -> Sing o -> Entry '(n,0) -> String

++ showData o x where

-> OccType o -> String

show x -- for String

show x -- for Maybe String
show x -- for [String]

Symbol)) where show = ..

Occ) where

Boilerplate automated by
Singletons library
[Eisenberg and Weirich, HS 2012]

Singletons are "easyish”

* Uniform type for all singletons, indexed by kinds

type Sing (a :: k) ..

* Type class supplies singletons via type inference

class SingI (a :: k) where
sing :: Sing a
instance (SingI n, SingI o) => Show (Entry (n,o0))
where show = showEntry sing sing
instance (SingI s) => Show (Dict s)
where show = showDict sing

* What's next2 Richard Eisenberg close to adding a
true 1 type to GHC

E/«a%éw@ maitters

Type checking
depends on an
expressive
definition of
program equality

Regular Expression datatype (no indices)

data R where

Rempty :: R -- € (accepts empty string)
Rchar :: Char -> R -- accepts single char

Ralt :: R ->R ->R -- alternative r,|r,

Rseq :: R->R ->R -- sequence nryr,

Rstar :: R -> R -- iteration r*

Rvoid :: R -- @ (always fails)

Rmark :: String -> String -> R -> R

rseq :: R ->R ->R

rseq Rvoid r2 = Rvoid

rseq rl Rvoid = Rvoid

rseq Rempty r2 = r2

rseq rl Rempty ri

rseq rl r2 Rseq rl1 r2

"Smart constructors"

optimize regexp creation

Regexps with type indices

data R s where

Rempty ::

Rchar
Ralt
Rseq
Rstar
Rvoid
Rmark

R "[]

:: Char -> R '[]

:: Rsl ->R s2 -> R (Alt s1 s2)
:: Rsl ->R s2 -> R (Merge sl s2)
:: R s -> R (Repeat s)

:: Rs
:: Sing n -> String

-> R s -> R (Merge '(n,Once) s)

rseq :: R sl -> R s2 -> R (Merge sl s2)
rseq Rvoid r2 =
rseq rl Rvoid =
rseq Rempty r2 =

rseq rl Rempty

rseq rl r2

Rvoid -- need Rvoid :: R (Merge sl s2)
Rvoid

r2 -- Merge '[] s2 ~ s2 (by def)
rl
Rseq rl r2

Regexps with types indices

type family Repeat (s :: SM) :: SM where
Repeat '[] = '[]
Repeat ('(n,0) : t) = "(n, Many) : Repeat t

rstar :: R s -> R (Repeat s)

rstar Rempty = Rempty -- need: Repeat '[] ~ '[]
rstar (Rstar r) = Rstar r -- oops!
rstar r = Rstar r

e Could not deduce: Repeat s ~ s
from the context: s ~ Repeat sl

Need: Repeat (Repeat sl1l) ~ Repeat sl
Not true by definition. But provable!

Equality constraints to the rescue

class (Repeat (Repeat s) ~ Repeat s) => Wf (s :: SM)
instance Wf '[] -- base case
instance (Wf s) => WF ('(n,0) : s) —-- inductive step

Make sure property is
available everywhere
Ralt :: (Wf s1, Wf s2) =>

data R s where
R sl ->R s2 -> R (Merge sl s2)
Rstar :: (Wf s) => R s -> R (Repeat s)

rstar :: WF s => R s -> R (Repeat s)
rstar Rempty = Rempty -- have: Repeat '[] ~ "[]
rstar (Rstar r) = Rstar r
-- have: Repeat (Repeat sl1l) ~ Repeat sl
rstar r = Rstar r

Submatching using
Brzozowski Derivatives

match r w = extract (foldl' deriv r w)

GHC's take on proofs

* Compile-time proofs

* Type-level function based proof (i.e. Find) work best when the
argument is concretely known at compile time

* Wf works for properties about a single variable, with simple
inductive proof

* Runtime proofs

* Express properties using GADTs, and prove them via functions,
but with a runtime cost

* Creating these proofs is tedious without tactics or IDE support!

* What's next2 More automated theorem proving!

* Vilhelm Sjoberg's dissertation [2015] integrates congruence
closure algorithm with full-spectrum dependent types

* Type-checker plugins allow solvers to help [Diatchki, HS 201 5]
* Connection with LiquidHaskell?

| Four Features of Dependently Typed Programs
7% W&
2./@ CONSCracn ﬂ@é&f

. DM—@ dita
. %@éw& maitters

Conclusion: GHC is in a novel &
fascinating part of the design space
of dependently typed languages.

And more to comel

Thanks to: Simon Peyton Jones, Richard Eisenberg, Vilhelm Sjoberg,
Brent Yorgey, Chris Casinghino, Dimitrios Vytiniotis, Geoffrey
Washburn, lavor Diatchki, Conor McBride, Adam Gundry, Joachim
Breitner, Julien Cretin, José Pedro Magalhdes, Steve Zdancewic and
NSF

| Awesome Collaborators

Regular Expression Submatching Demo

Extract the parts of a filepath "dth/popll7/Regexp.hs™
[P2((?P<d>[/T+)/)*(?2P[~/.]+) (?P<e>\..*)?

> match path "dth/popll7/Regexp.hs”

Just {b="Regexp", d=["dth","popll7"], e=Just
Il.hsll}

> d = fromJust it

> get @"b" d

"Regexp"

> get @"a" d
<interactive>:28:1: error:

e T couldn't find a group named 'a' 1in
{b, d, e}

Demo

Type-level computation of named capture groups

| Examples

ghci> rl = rmark @"a" rany
ghci> :t ril

rl :: R '"['("a", 'Once)]
ghci> r2 = rmark @"b" rany
ghci> :t r2

r2 :: R '"['"("b", 'Once)]

ghci> :t rl rseq ril
rl "rseq rl :: R '"['("a",
ghci> :t rl "rseq r2

rl "rseq r2 :: R '['("a",
ghci> :t rl ralt ril

rl "ralt” rl :: R '"['("a",
ghci> :t rl "ralt r2

rl "ralt” r2 :: R "['("a",
ghci> :t rstar rl

rstar rl1 :: R '["("a",

'"Many)]

‘Once),
‘Once)]

'Opt),

"Many)]

(b,

("b",

‘Once)]

'Opt)]

TemplateHaskell to promote type functions

$(singletons [d]

empty :: U

empty = []

one :: Symbol -> U
one s = [(s,0nce)]
merge :: U -> U -> U
merge m [] =m

merge [] m m

merge (el@(nl,ol):tl) (e2@(n2,02):t2) =

if n1 == n2 then (nl, Many)
else if nl <= n2 then el
else e2 : merge (el:tl) t2

1)

: merge tl (e2:t2)

: merge tl1 t2

[Eisenberg and Stolarek, HS 2014]

Regexp Derivatives

ghci> r = [re|....|]
ghci> deriv r 'P’
éhéi> deriv it 'O’
éhci> deriv it 'P’
éhci> deriv it 'L’

£

ghci> extract it
Just {}

--matches any 4 chars

Regexp derivative matching

ghci> r = [re|(?P..)(?P<a>..)]|]
ghci> deriv r 'P'
(?P<b:"P">.)(?P<a>..)
ghci> deriv it 'O’
(?P<b:"P0">g) (?P<a>..)
ghci> deriv it 'P’
(?P<b:"PO">g)(?P<a:"P">.)
ghci> deriv it 'L’
(?P<b:"P0">g) (?P<a:"PL">€)
ghci> extract it

Just {a="PL",b="P0O"}

| Regular Expression Derivatives w/ matching

match ::

match

deriv ::

deriv

deriv

r w = extract (foldl' deriv r w)

(Rchar s)
(Rseq rl r2)

c | ¢ ==s

C

R -> Char -> R

R -> String -> Bool

ralt (rseq (deriv rl c) r2)

deriv
deriv
deriv
deriv

deriv

(rseq (markEmpty rl1) (deriv r2 c))

(Rseqg rl r2) c
(Ralt rl1 r2) c
(Rstar r) C
(Rmark n w r) c

C

rseq (deriv rl c) r2
ralt (deriv rl c) (deriv r2 c)
rseq (deriv r c) (rstar r)

Rmark n (w ++ [c]) (deriv r c)

Rvoid

Smart constructors
optimize new regexp

on the fly, only keeping
marked strings

| Derivatives with types, almost

deriv :: R s -> Char -> R s
deriv (Rchar s) c | ¢ == s = rempty
deriv (Rseq rl r2) c =
ralt (rseq (deriv rl c) r2) -- needs: s ~ Alt s s

(rseq (markEmpty rl1) (deriv r2 c))
deriv (Rseq rl r2) c¢ = rseq (deriv rl c) r2
deriv (Ralt rl r2) c = ralt (deriv rl1 c) (deriv r2 c)
deriv (Rstar r) c = rseq (deriv r c) (rstar r)
-- needs: Merge s (Repeat s) ~ Repeat s
deriv (Rmark n w r) c¢ = Rmark n (w ++ [c]) (deriv r c)

deriv _ c = Rvoid

| Equality constraints to the rescue (again)

class (Repeat (Repeat s) ~ Repeat s, s ~ Alt s s,
Merge s (Repeat s) ~ Repeat s) => Wf (s :: U)
instance Wf '[] -- base case for all properties

instance (WfOcc o, Wf s) => Wf ('(n,0) : s)

class (o ~ Max o 0) => WfOcc (o :: Occ)
instance WfOcc Once
instance WfOcc Opt

instance WfOcc Many

| Derivatives with types

deriv ::

deriv _

deriv (Rchar s) c |

deriv (Rseq rl r2) c =

(rseq (markEmpty

deriv (Rseq rl r2) c =
deriv (Ralt rl r2) c =

deriv (Rstar r) C =

deriv (Rmark n w r) c =

C =

WF s => R s -> Char -> R s

C == S = rempty

ralt (rseq (deriv rl c) r2) -- have: s ~ Alt s s

rl) (deriv r2 c))
rseq (deriv rl c) r2
ralt (deriv rl c) (deriv r2 c)

rseq (deriv r c) (rstar r)

-- have: Merge s (Repeat s) ~ Repeat s

Rmark n (w ++ [c]) (deriv r c)

Rvoid

Why Dependent Types?

* Verification: Dependent types express application-specific
program invariants that are beyond the scope of existing
type systems

* Expressiveness: Dependent types enable flexible interfaces,
of particular importance to embedded DSLs, generic
programming and metaprogramming.

* Uniformity: The same syntax and semantics is used for
computations, specifications and proofs

Everything is “just programming”

Ultimate goal: making the type checker more informative

Dependent types can seem mysterious

... but types dispel mysteries

dl.acm.org

ACM

Searched for a type system for [new search] [edit/save query]

R DIGITAL
LIBRARY

University of Pennsylvania

a type system for

[advanced search]

Searched The ACM Full-Text Collection: 457,546 records [Expand your search to The ACM Guide to Computing Literature: 2,618,937 records] ?

Refinements [remove all] click each refinement below to remove

Published since: 1951

431,379 results found

Export Results: bibtex | endnote | acmref | csv

Refine by People
Names »
Institutions »
Authors »

Editors »

Advisors »
Reviewers »

Refine by Publications
Publication Names »
ACM Publications »

All Publications »
Content Formats »
Publishers »

Refine by Conferences
Sponsors »
Events »

Refine by Publication Year

Published Since 1951

Upcoming Conferences

SIGCSE '17
March 08 - 11, 2017
Seattle, WA, USA

Result 1 - 20 of 431,379 Resultpage:1 2 3 4 5 6 7 8 9 10 >>

Sort by: | relevance :

[y

A type system for static typing of a domain-specific language
@ Paul E. McKechnie, Nathan A. Lindop, Wim A. Vanderbauwhede

February 2008 FPGA '08: Proceedings of the 16th international ACM/SIGDA symposium on Field programmable
gate arrays

Publisher: ACM
Bibliometrics: Citation Count: 0

With the increase in system complexity, designers are increasingly using IP blocks as a means for filling the
designer productivity gap. This has given rise to system level languages which connect IP blocks together.
However, these languages have in general not been subject to formalisation. They are considered too trivial ...

Keywords: type system, FPGA, static type checking
[result highlights]

A type system for format strings
Konstantin Weitz, Gene Kim, Siwakorn Srisakaokul, Michael D. Ernst

July 2014 ISSTA 2014: Proceedings of the 2014 International Symposium on Software Testing and Analysis
Publisher: ACM
Bibliometrics: Citation Count: 2
Downloads (6 Weeks): 2, Downloads (12 Months): 16, Downloads (Overall): 98
Full text available: QPDF

Most programming languages support format strings, but their use is error-prone. Using the wrong format string
syntax, or passing the wrong number or type of arguments, leads to unintelligible text output, program crashes,
or security vulnerabilities. This paper presents a type system that guarantees that calls to format string APIs ...

Keywords: printf, static analysis, Format string, type system

A type system for regular expressions
Eric Spishak, Werner Dietl, Michael D. Ernst

Workshop on Formal Techniques for Java-like Programs

Publisher: ACM

iﬁi imi Bibliometrics: Citation Count: 3

