
Dependent types and program
equivalence

Stephanie Weirich, University of Pennsylvania
with Limin Jia, Jianzhou Zhao, and Vilhelm Sjöberg

What are dependent types?

  Types that depend on values of other types
  Used to statically enforce expressive program

properties
  Examples:

  vec n – type of lists of length n, static bounds checks
  Binary Search Tree
  PADS, data format invariants
  ASTs that enforce well-typed code
  CompCert compiler

2/5/10 2

Types that contain
computation

What about nontermination?

1/21/10 3

  Treatment of nontermination divides design space
  Affects decidability of type checking, correctness

guarantees, and complexity of language
  Independent of type soundness
  Unclear impact on practicality

Only total
computation

allowed

Types restricted
to total

computation

No restrictions

Examples Coq, Agda2 DML, ATS, Ωmega,
Haskell

Cayenne, Epigram,
ΠΣ

Type checking Decidable Undecidable

Correctness
guarantee Total

correctness Partial correctness

Program equivalence

  When types depend on programs, type equivalence
depends on program equivalence

  Definition of program equivalence is controversial
  Even when the language is not Turing-complete!

  Many possible definitions
  Reduce and compare

  What reduction relation? (evaluation, parallel reduction, eta-
reduction?)

  Type-based equivalence
  Behavioral equivalence
  Contextual equivalence
  Something else?

2/5/10 4

λ≈: Parameterized program equivalence

1/21/10 5

  A call-by-value language with an abstract term equivalence
relation

  Goals for language design
  Simple type soundness proof based on progress and

preservation
  Uniformity---program equivalence used by type system must

be compatible with CBV

  What requirements for equivalence relation?
  Strong enough to prove type soundness
  Weak enough to allow desired definitions

More difficult than we
expected

"Pure everywhere" type system - PTS

  No syntactic distinction between types, terms, kinds
 e, τ, k ::= x | λx.e | e e' | (x:τ1) → τ2 | ∗ | ◻
 | T | C | case e { Ci xi ⇒ ei }
  One set of formation rules
 Γ ⊢ e : τ

  Conversion rule uses beta-equivalence
Γ ⊢ e : τ1 Γ ⊢ τ2 : s τ1 ≃τ2

Γ ⊢ e : τ2

  Term equivalence is fixed by type system (and defined to
be the same as type equivalence).

τ1 and τ2 are
beta-

convertible

2/5/10 6

λ≈: Parameterized program equivalence

  Syntactic distinction between terms, types, and kinds
k ::= ∗ | (x:τ) → ∗
τ ::= (x:τ1) → τ2 | T | τ e | case e ⟨T e' ⟩ of { Ci xi ⇒ τi }
e ::= x | fun f (x) = e | e e' | C e | case e of { Ci xi ⇒ ei }

  Key syntactic changes
  Term language includes non-termination
  Curry-style, no types in expressions

  Convenient simplifications
  Datatypes have one index, data constructors have one argument

(unit/products in paper)
  No polymorphism, no higher-kinded types (future work)

2/5/10 7

Parameterized term equivalence

  Given an "equivalence context"
  Δ ::= . | Δ , e1 = e2

  Assume the existence of program equivalence predicate
  isEq (Δ, e1, e2)

  Equality is untyped
  No guarantee that e1 and e2 have the same type
  No assumptions about the types of the free variables

  Context may make unsatisfiable assumptions

2/5/10 8

Type system overview

  Two sorts of judgments
  Equality for types, contexts, and kinds
  Formation for contexts, kinds, types and terms

  Typing context: Equivalence and typing assumptions
  Γ ::= . | Γ , e1 = e2 | Γ, x:τ

  All judgments derivable from an inconsistent context
  incon (Δ) if there exist pure terms Ci wi and Cj wj such that

isEq (Δ , Ci wi, Cj wj) and Ci ≠ Cj

  Pure terms
  w ::= x | fun f (x) = e | C w

2/5/10 9

Γ ⊢e : τ
Δ ⊢ τ1 ≡ τ2

Type system excerpt

2/5/10 10

Extract equivalence
context

Questions to answer

  What properties of isEq must hold to show
preservation & progress?

  What instantiations of isEq satisfy these properties?

2/5/10 11

Necessary assumptions about isEq

  Is an equivalence relation
  Preserved under contextual operations

  Cut: …
  Weakening: …
  Context Conv: …

  Contains evaluation: e ↦ e' implies isEq (Δ, e, e')
  Data constructors are injective for pure arguments

  isEq (Δ, C w, C w') implies isEq (Δ, w, w')
  Empty context is consistent

  C ≠ C' implies ¬isEq(. , C w, C' w’)
  Closed under pure substitution

  isEq (Δ, e, e') implies isEq (Δ{w/x}, e{w/x}, e'{w/x})

12 1/21/10

 ⊢Nat ≡ Bool

Preservation
e1e2 ↦ e1e'2

Transitivity of
Δ ⊢ τ1 ≡ τ2

Preservation of beta Does not need to
hold for arbitrary e

Typing rules don't use substitution

2/5/10 13

Γ ⊢ e1 : (x :τ1) → τ2

Γ ⊢e1 e2 : τ2 {e2/x}

Γ ⊢e2 : τ1
Γ ⊢e1 : (x:τ1)→ τ2

Γ*, x ≅ e2⊢τ2 ≡ τ

Γ ⊢e1 e2 : τ

Γ ⊢τ : ∗

Γ ⊢e2 : τ1

Standard rule Our rule

Substitutes an arbitrary
expression into the type

x does not escape Adds assumption to
the context

Assumptions also for case expression

2/5/10 14

  Do not need a substitution to type the branches

Data type index

Data constructor
pattern

Lookup data
constructors in

signature

Type check
scrutinee

Pattern variables
don't escape

What satisfies the isEq properties?

  Compare normal forms (ignoring Δ)
  Only types STLC terms

  Contextual equivalence (ignoring Δ)
  Only types STLC terms

  RST-closure of evaluation, constructor injectivity, and
equivalence assumptions

  CBV Contextual equivalence modulo Δ
  Some strange equalities that identify nonterminating

terms with terminating terms
  Safe to conclude isEq(let x = loop in 3, 3) as long as we

don’t conclude isEq(let x = loop in 3, loop)
  Safe to say isEq(loop,3) as long as we don’t say isEq(loop, 4)

2/5/10 15

What about decidable type checking?

  All instantiations of isEq are undecidable
  Must contain evaluation relation

  Decidable approximations are type safe, but don’t satisfy
preservation
  Any types system that checks strictly fewer terms than a safe

type system is safe

  Preservation important for compiler transformations
  Want to know that inlining always produces safe code
  Not really an issue: Decidable doesn't mean tractable

2/5/10 16

What about termination analysis?

  Like most type systems, only get "partial correctness"
results:
  Σx:t. P(x) means “If this expression terminates, then it

produces a value of type t such that P holds”
  Implications (P1 → P2) may be bogus

  Termination analysis produces total correctness
  Termination/stage analysis is an optimization

  permits proof erasure in CBV language

2/5/10 17

Future work

  Add polymorphism, higher-order types
  Keep curry-style system for simple specification of isEq

  Annotated external language to aid type checking
  Similar to ICC* [Barras and Bernardo]
  Terms contain type annotations, but equality defined for erased

terms
  Type checking still undecidable but closer to an algorithm

  Add control/state effects to computations
  Should we limit domain of isEq?
  Non-termination ok in types, but exceptions are not?

  Can we provide type/termination information to
strengthen equivalence?

2/5/10 18

Conclusions – What have we achieved?

  Uniform design
  Same reasoning for compile time as run time
  Not easy for CBV!

  Simple design
  Program equivalence isolated from type system
  Proved all metatheory in Coq in ~2 weeks (OTT + LNgen)

  General design
  Program equivalence not nailed down
  Lots of examples that satisfy preservation, not just type

soundness

2/5/10 19

2/5/10 20

Type equivalence for case

2/5/10 21

