
Towards	a	formal	
semantics	for	GHC	Core

Stephanie	Weirich

June	2018

Joachim	Breitner, Antal	Spector-Zabusky, Yao	Li,
Christine	Rizkallah, John	Wiegley

https://arxiv.org/search?searchtype=author&query=Breitner,+J
https://arxiv.org/search?searchtype=author&query=Spector-Zabusky,+A
https://arxiv.org/search?searchtype=author&query=Li,+Y
https://arxiv.org/search?searchtype=author&query=Rizkallah,+C
https://arxiv.org/search?searchtype=author&query=Wiegley,+J

A	Software	Expedition

• DeepSpec is	about	specifying	and	verifying	
system	software,	such	as	compilers
• Functional	programs	are	"easy"	to	specify	
and	reason	about
• Let's	prove	the	Glasgow	Haskell	Compiler	
correct!
• What	would	it	take?

2

What	would	it	take?	
• A	formal	specification	of	Haskell,	to	define	what	
correct	means	for	the	whole	compiler
– That's	really	big	and	we	don't	have	one.	Maybe	we	can	start	
with	something	smaller?	GHC	Core

• A	formal	specification	of	Haskell,	to	prove	that	the	
Haskell	program	GHC is	correct
– That's	really	big	and	we	don't	have	one.	Maybe	we	can	use	
something	else?	Gallina

• A	lot	of	work
3

The	GHC	Core	language

4

Gallina is	Haskell	if	you	squint

• Want	to	use	Coq	to	reason	about	GHC
– Need	a	semantics	for	Haskell	in	Coq
– But	that	is	what	we	are	trying	to	build!

• "Easy"	approach:	shallow	
embedding
– Use	Gallina as	a	stand-in	
for	Haskell

– Translate	Haskell	functions	to	Gallina
functions,	use	that	as	semantics

5

GHC	
front	
end

GHC	core	
language

GHC	
backend

Haskell

Core.v

Gallina

hs-to-coq
A	tool	for	translating	Haskell	code	to	equivalent	
Gallina definitions	via	shallow	embedding	[CPP'	18]

6

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr k z = go

where
go [] = z
go (y:ys) = y `k` go ys

Definition foldr {a} {b} :
(a -> b -> b) -> b -> list a -> b :=

fun k z =>
let fix go arg_0__

:= match arg_0__ with
| nil => z
| cons y ys => k y (go ys)
end in

go.

Questions	about	hs-to-coq	approach
1. Is	there	enough	Haskell	code	out	there	that	we	can	
translate	to	make	this	approach	worthwhile?

2. Even	if	we	can	find	code	to	translate,	is	the	result	suitable	
for	verification?

3. Even	if	we	can	do	the	proofs,	do	they	mean	anything	about	
the	Haskell	source?

7

Case	study:	containers
• Popular	Haskell	libraries:	Data.Set (weight-balanced	
trees)	and	Data.IntSet (big	endian	patricia tries)

• Used	by	GHC		Core	language	implementation
• What	did	we	prove?
– Invariants	in	the	source	file	comments	(ensures	the	balance	
properties	and	other	invariants)

– Mathematical	specification	of	finite	sets	(both	our	own	and	
from	Coq	library)

– Quickcheck properties	interpreted	as	theorems
– GHC	Rewrite	rules

8

Ready,	Set,	Verify!	Applying	hs-to-coq	to	real-world	Haskell	code	(Experience	report)
Joachim	Breitner, Antal	Spector-Zabusky, Yao	Li, Christine	Rizkallah, John	Wiegley, Stephanie	Weirich
ICFP		2018

https://arxiv.org/search?searchtype=author&query=Breitner,+J
https://arxiv.org/search?searchtype=author&query=Spector-Zabusky,+A
https://arxiv.org/search?searchtype=author&query=Li,+Y
https://arxiv.org/search?searchtype=author&query=Rizkallah,+C
https://arxiv.org/search?searchtype=author&query=Wiegley,+J
https://arxiv.org/search?searchtype=author&query=Weirich,+S

IntSet.hs Property-based
test suite

IntSet.v

hs-to-coq

ExtactedIntSet.hs
Property-based
Test suite

Coq

Minimal	editsPropProofs.v

IntSetProperties.v
(tests as props)

hs-to-coq

IntSetProofs.v

Coq.FSets.
FSetInterface

Containers	case	study

What	did	we	learn?
1. We	can	translate	these	libraries*	
2. We	can	prove	what	we	want	to	prove**
3. Gallina version	is	semantically	equivalent	to	Haskell	
(as	far	as	we	can	tell	by	testing)

4. Haskell	code	is	correct	J

*Need	to	address	partiality
**We	"edit"	the	code	during	translation	in	support	of	
verification

10

Partiality:	Unsound

Axiom error : forall {a} , String -> a.

Definition head {a}
(xs : list a) : a :=

match xs with
| (x::_) => x
| _ => error "head: empty list"
end.

11

head :: [a] -> a
head (x:_) = x
head [] = error "head: empty list"

Partiality:	Annoying

Inductive Partial (a:Type) :=
| return : a -> Partial a
| error : String -> Partial a
| …

Definition head {a} (xs : list a) : Partial a :=
match xs with
| (x::_) => return x
| _ => error "head: empty list"
end.

12

head :: [a] -> a
head (x:_) = x
head [] = error "head: empty list"

Partiality:	Pragmatic	approach

Definition error : forall {a} `{Default a},
String -> a := default.

Definition head {a} `{Default a} (xs : list a) : a :=
match xs with
| (x::_) => x
| _ => error "head: empty list"
end.

13

head :: [a] -> a
head (x:_) = x
head [] = error "head: empty list"

☞ "default"	is	an	opaque	definition	so	proofs	must	work	
for	any		value	of	the		appropriate	type.		

Partiality:	Pragmatic	approach
• Can	use	this	approach	for	difficult	termination	arguments	(with	classical	logic/axiom	of	choice)

Definition deferredFix:
forall {a r} `{Default r},

((a -> r) -> (a -> r)) -> (a -> r).

Definition deferredFix_eq_on:
forall {a r} `{Default b}

(f : (a -> r) -> (a -> r))
(P : a -> Prop) (R : a -> a -> Prop),

well_founded R -> recurses_on P R f ->
forall x, P x ->
deferredFix f x = f (deferredFix f) x.

14

A	PRAGMATIC	FORMALIZATION	GAP

15

A	Formalization	Gap	is	a	good thing
• Machine	integers	are	fixed	width.	Do	we	want	to	reason	
about	overflow?

• No!
– In	Data.Set,		Ints track	size	of	tree	for	balance
– GHC	uses	Data.IntSet to	generate	unique	names
– Both	cases	will	run	out	of	memory	before	overflow

• Control	translation	with	hs-to-coq	rewrites
– type	GHC.Num.Int =	Coq.ZArith.BinNum.Z
– Formalization	gap	is	explicit	&	recorded

16

A	Formalization	Gap	is	a	good thing
• Machine	integers	store	positive	and	negative	numbers.	Do	
we	want	that?

• No!
– In	Data.Set,		Ints track	size	of	tree	for	balance
– GHC	uses	Data.IntSet to	generate	unique	names
– Both	cases	never	need	to	store	negative	numbers	

• Control	translation	with	hs-to-coq	rewrites
– type	GHC.Num.Int =	Coq.NArith.BinNat.N
– (But,	need	partial implementation	of	subtraction)
– Formalization	gap	is	explicit	&	recorded

17

What	about	GHC?	

Questions	about	GHC
1. Is	there	enough	code	in	GHC that	we	can	translate	to	make	
this	approach	worthwhile?

2. Even	if	we	can	find	code	to	translate,	is	the	result	suitable	
for	verification?

3. Even	if	we	can	do	the	proofs,	do	they	mean	anything	about	
the	GHC	implementation?
(Note:	Core	plug-in	option	available)

19

GHC:	Current	status
• Base	libraries		(9k	loc)

– 45	separate	modules
– Some	written	by-hand:	GHC.Prim,	GHC.Num,	GHC.Tuple
– Most	translated:	GHC.Base,		Data.List,			Data.Foldable,		
Control.Monad,	etc.

• Containers		(6k	loc)
– Translated	&	(mostly)	verified:		4	modules
– (Data.Set,	Data.Map,	Data.IntSet,	Data.IntMap)

• GHC,	version	8.4.1	(19k	loc)
– 55	modules	so	far	(327	modules	total	in	GHC,	but	we	won't	need	
them	all)

– hs-to-coq	edits	(2k	LOC)
• First	verification	goal:	Exitify compiler	pass

20

21

Core	AST
data Expr b
= Var Id
| Lit Literal
| App (Expr b) (Arg b)
| Lam b (Expr b)
| Let (Bind b) (Expr b)
| Case (Expr b) b Type [Alt b]
| Cast (Expr b) Coercion
| Tick (Tickish Id) (Expr b)
| Type Type
| Coercion Coercion
deriving Data

data Bind b =
NonRec b (Expr b)

| Rec [(b, (Expr b))]
deriving Data

Inductive Expr b : Type
:= Mk_Var : Id -> Expr b
| Lit : Literal -> Expr b
| App : Expr b -> Arg b -> Expr b
| Lam : b -> Expr b -> Expr b
| Let : Bind b -> Expr b -> Expr b
| Case : Expr b -> b -> unit

-> list (Alt b) -> Expr b
| Cast : Expr b -> unit -> Expr b
| Tick :

Tickish Id -> Expr b -> Expr b
| Type_ : unit -> Expr b
| Coercion : unit -> Expr b

with Bind b : Type
:= NonRec : b -> Expr b -> Bind b
| Rec : list (b * (Expr b))

-> Bind b

Core	Optimization	:	Exitify

22

-- | Given a recursive group of a joinrec,
identifies
-- “exit paths” and binds them as
-- join-points outside the joinrec.

exitify :: InScopeSet -> [(Var,CoreExpr)] ->
(CoreExpr -> CoreExpr)

exitify in_scope pairs =
\body -> mkExitLets exits (mkLetRec pairs' body)

where
pairs' = … // updated recursive group
exits = … // exit paths

-- 215 LOC, incl comments

• Requires	moving	code	from	one	binding	scope	to	another
• First	proof:	show	that	well-scoped	terms	stay	well-scoped

Bug	found!
• Exitify does	not	always	produced	well-scoped	code	
– Missed	by	GHC	test	suite
– (Perhaps	not	exploitable	at	source	level)

• Fixed	in	GHC	HEAD
– Proofs	updated	to	new	version
– (What	is	the	general	workflow?)

• Next	step:	work	with	a	model	of	the	operational	
semantics
– Use	GHC	API	to	develop	a	Coq	interpreter,	also	translate	
via	hs-to-coq

24

Conclusion	&	More	questions
Let's	take	advantage	of	the	semantic	similarity	of	
Haskell	and	Gallina to	develop	verified	compilers

• Haskell's	purity	means	existing	code	is	verifiable	
• "Formalization	gap"	makes	this	pragmatic
• Can	we	make	verification	incremental?
• Can	we	get	good	performance	of	extracted	code?	
(And	plug	back	into	GHC?)

25

