
Nominal and Structural
Ad-Hoc Polymorphism

Stephanie Weirich
University of Pennsylvania

Joint work with Geoff Washburn

2

Ad-hoc polymorphism
Appears in many different forms:

Overloading/type classes
Instanceof/dynamic dispatch
Run-time type analysis
Generic/polytypic programming

Many distinctions between these forms
Compile-time vs. run-time resolution
Types vs. type operators
Type information vs. patterns/tags
Nominal vs. structural

3

Nominal style
Poster child: Overloading

eq(x:int, y:int) = (x == y)
eq(x:bool, y:bool) =
 if x then y else not(y)
eq(x: α′β, y: α′β) =

eq(x.1,y.1) & eq(x.2,y.2)

Don’t have to cover all types
Type checker uses def to ensure that there is
an appropriate instance for each call site.
Can’t treat eq as first-class function (even with
first-class polymorphism.)

4

Structural style

Poster child: typecase
eq : ∀α. (α′α) → bool
eq[α:T] =
 typecase α of

 int) λ(x:int, y:int). (x == y)
 bool) λ(x:bool,y:bool).

 if x then y else not(y)
 (β′γ)) λ(x: β′γ, y: β′γ).

 eq[β](x.1,y.1) && eq[γ](x.2,y.2)
 (β → γ)) error “Can’t compare functions”

5

Nominal vs. Structural
With user-defined (branded, generative)
types, these two forms are very different.
Nominal style is “open”

Can cover as many or as few forms of types as
we wish.
New branches can be added later (even in other
modules).

Structural style is “closed”
Must have a case for all forms of types when
operation is defined.
For types that are not in the domain:

Compile-time resolution: Compile-time error
Run-time resolution: Exceptions/error values

6

Nominal Style
Add a new branch
newtype Age = Age int
eq(x:Age, y:Age) =

let (Age xi) = x
 let (Age yi) = y

 if xi <18 && yi < 18
 then true else xi == yi
… but, every new type must define new
branches for all polytypic ops.
newtype Phone = Phone int
eq(x:Phone,y:Phone) =
 eq (unPhone x, unPhone y)

7

Structural Style
Not extensible
Sometimes language ignores
distinction and implicitly coerces

Polytypic ops available to all types
let x = Age 53

 eq(x,21)
Breaks distinction between Age and int
Can’t have a special case for Age.

Which style is better?

8

Best of both worlds
Idea: Combine both styles in one language,
let the user choose.
A language where we can write polytypic
ops that

Are first-class (i.e. based on run-time analysis)
May have a partial domain (compile-time
detection of invalid arguments)
May distinguish user-defined types from their
definitions
May easily convert to underlying type
May be extensible (for flexibility)
May not be extensible (for closed-world
reasoning)

9

Caveat
This language is not yet ready for
programmers!

Explicit polymorphism.
Writing polytypic operations is highly
idiomatic.

Next step is to design an appropriate
source language/elaboration tool.

10

Key ideas
Expressive type isomorphisms

User can easily convert between types
Distinction isn’t lost between them

Branches in typecase for new types
Typecase does not need to be exhaustive
Restrict type polymorphism by a set of labels
Only instantiate with types formed from
those labels

New branches at run time
Label-set polymorphism makes polytypic ops
extensible

11

Type isomorphisms
Syntax: new type l:T = τ in e

Scope of new label limited to e
Inside e use in[l] and out[l] to witness
the isomorphism

 Also labels for type constructors:
new type l’ : T → T = list in e
in[l’] : ∀α. list α → l’ α
out[l’] : ∀α. l’ α → list α

12

User control of coercions
Not a type equality.

Users control type distinctions made at run-
time.

When specialized branch is unnecessary,
make it easy to coerce types

When user-defined type is buried inside
another data structure.
Should be efficient too—no run-time cost!
Example: Coerce a value of type

Age ′ int to int ′ int
without destructing/rebuilding product

13

Higher-order coercions
Coerce part of a type
If l is isomorphic to τ’

If e : τ(l) then { e : τ }-
l has type τ(τ’)

If e : τ(τ’) then { e : τ }+
l has type τ(l)

Example
 x : (Age ′ int) = (λα:T.α ′int) Age
{e: λα:T.α′int}-

Age :(int ′ int)

A bit more complicated for type
constructors.

14

Operational Semantics
Coercions don’t do anything at
runtime, just change the types.

Annotation determines execution, but
just pushes coercions around.
Could translate to untyped language w/o
coercions.

Reminiscent of colored brackets
[GMZ00].

15

Typecase and new types
If a new name is in scope, can add a branch
for it in typecase
eq[α:T] = typecase α of
 int) λ(x:int,y:int). (x==y)
 Age) λ(x:Age,y:Age).

 let xi = out[Age] x
 let yi = out[Age] y

 if xi < 18 && yi < 18
 then true else xi == yi
eq[Age] (in[Age] 17, in[Age] 12) = true
eq[int] (17, 12) = false

16

What if there isn’t a branch?
new type l = int in
 eq[l] (in[l] 3, in[l] 6)
shouldn’t type check because no branch

for l in eq.

Solution: Make type of polytypic
functions describe what types they
can handle.

17

Restricted polymorphism
Polymorphic functions restricted by a
set of constants.

eq : ∀α:T|{int,′,bool,Age}. …
Can instantiate f only with types
formed by the above constants.

eq [(int′bool) ′Age] is ok
eq [Phone ′ int] is not
eq [int → bool] is not

Kinding judgment approximates this
set.

18

Restricted polymorphism
Typecase must have a branch for every
name that could occur in its argument.

eq[α:T|{int, ′,bool,Age}]
 (x:α,y:α) =

typecase α of
int) …
(β′γ)) λ(x: β′γ, y: β′γ).

eq[β](x.1,y.1) && eq[γ](x.2,y.2)
bool) …
Age) …

What about recursive calls for β and γ?

19

Product branch
Use restricted polymorphism for those
variables too.

let L be the set {Int, ′, Bool, Age}
eq[α:T|L] (x:α,y:α) =

typecase α of
Int)
(β:T|L) ′(γ:T|L)) λ(x: β′γ, y: β′γ).
 eq[β](x.1,y.1) && eq[γ](x.2,y.2)
Bool)
Age)

20

How can we make a polytypic operation
extensible to new types?

Make branches for typecase first-
class

new type l = int in
 eq[l] { l) λ(x:l,y:l). …} (in[l] 3, in[l] 6)

Extensibility

21

First-class maps
New expression forms:
∅ empty map
{l)e} singleton map
e1 ∪ e2 map join

Type of map must describe
the domain
the type of each branch

22

Type of typecase branches
Branches in eq follow a pattern:

int branch: int ′ int → bool
= (λα. α′α → bool) int
bool branch: bool ′ bool → bool
= (λα. α′α → bool) bool
Age branch: Age ′ Age → bool
= (λα. α′α → bool) Age
Product branch:

 ∀β:T|L.∀γ:T|L. (β′γ) ′ (β′γ) → bool
 = ∀β:T|L.∀γ:T|L. ((λα. α′α → bool) (β′γ))

23

Type Operators
In general: type of branch for label l

depends on l, the kind of l, a label set L
and some type constructor.
Write as τ’η l:k | Lι expanded as:
τ’ητ:T | Lι = τ’ τ
τ’ητ:k1→ k2 | Lι = ∀α:k1|L. τ’ητ α:k2|Lι
Example:

(λα.α ′α → bool) η int : T | L ι = int ′int → bool
(λα.α ′α → bool) η ′ : T →T →T | L ι

 = ∀β:T|L.∀γ:T|L. (β′γ) ′ (β′γ) → bool

24

 Type of typecase
typecase τ { l1) e1, …, ln) en} has type τ’
τ when
τ has kind T using labels from L
for all li of kind ki in L,

 ei has type τ’ηli:ki | Lι

25

First-class maps
Type of map is �L1, τ’, L2 �

L1 is the domain of the map
τ’ and L2 are for the type of each branch

Singleton map { l) e } has type
 � {l}, τ’, L2 � when

l is a label of kind k and
e has type τ’η l : k | L2ι

26

Not flexible enough
Must specify the domain of the map.

 eq: ∀α:T|L. �{int}, τ’, L� → (α ′ α) → bool

Can’t add branches for new labels
new type l :T = int in
eq [l] { l) λ(x:l,y:l). …} (in[l] 3, in[l] 6)

Need to be able to abstract over
maps with any domain --- label set
polymorphism

27

Label-Set polymorphism
Quantify over label set used in an
expression.
Use label-set variable in map type and type
argument restriction.
eq [s:LS] [α:T | s ∪ {int,bool,}]

 (x : �s, τ’, s ∪ {int,bool}�) =
 typecase α
 x ∪ { int)…, bool) … }

call with:
eq [{l}] { l) … } [l] (in[l] 3, in[l] 6)

28

Fully-reflexive analysis
 New forms of types

∀α:T|L. α → α
� L, τ’, L’ �
∀s:LS. τ

A calculus is fully-reflexive if it can
analyze all types.

Need kind-polymorphism for ∀
Label set polymorphism lets us analyze
types that contain label sets
Branches are label-set polymorphic

typecase (� L, τ’, L’ �) { �s1,α, s2�) e }

29

Analyzing label sets
setcase

Analyzes structure of label sets
Determines if the normal form is empty,
a single label, or the union of two sets.
Requires label and kind polymorphism

lindex
returns the “index” (an integer) of a
particular label
lets user distinguish between generated
labels

30

Extensions
Encode analysis of type constructors
Default branch for typecase

Universal set of all labels
Record/variant types

Label maps instead of label sets
Type-level type analysis

First-class maps at the type level
Combine with module system?

31

Conclusion
Can combine features of nominal
analysis and structural analysis in the
same system.
Gives us a new look at the trade-offs
between the two systems.

See paper at
http://www.cis.upenn.edu/~sweirich/

32

33

Ad-hoc polymorphism
Define operations that can be used
for many types of data
Different from

Subtype polymorphism (Java)
Parametric polymorphism (ML)

Behavior of operation depends on the
type of the data

Example: polymorphic equality
 eq : ∀α. (α′α) → bool
Call those operations polytypic

34

User-defined types
Application-specific types aid
software development

A PhoneNumber is different than an
Age even though both are integers.
Type checker distinguishes between
them at compile time

Examples:
class names in Java
newtypes in Haskell
generative datatypes in ML

35

User-defined types
Like Haskell newtypes, ML datatypes
Define new type name

new type Age = int
Type isomorphism not equality---
Coercion functions

in[Age] : int →Age
out[Age] : Age → int

Type checker enforces distinction.
  (in[Age] 29) + 1

36

37

Operational Semantics
Higher-order coercions

{i:λα.int}+
l ⊗ i

{(v1,v2):λα.τ1′τ2 }+
l ⊗

({v1:λα.τ1}+
l,{v2:λα.τ2}+

l)
{(λx:τ.e):λα.τ1→τ2}+

l
⊗ λx:τ1[l/α]. { e[{x:λα.τ1}-

l/x]:
λα.τ2}+

l
{v:λα.α}+

l ⊗ in[l] v

38

Universal set
Set ⊺ is set of all labels
f [α:T|⊺] …

f can be applied to any type
eq[α] doesn’t typecheck
α cannot be analyzed, because no
typecase can cover all branches.
No type containing α can be analyzed
either.
Cheap way to add parametric
polymorphism.

39

Other map formers
Empty map ∅ has type � ∅, τ’, L �

For arbitrary τ’, L

e1 ∪ e2 has type � L1∪L2, τ’, L � when
e1 has type � L1, τ’, L �
e2 has type � L2, τ’, L �

40

Union is non-disjoint
f [α :T | { int}]
 (x : �{int}, τ’, L �) =

 typecase α ({int) 2} ∪ x)

Can overwrite existing mappings:
f [int] {int) 4} = 4

Reversing order prevents overwrite:
typecase α (x ∪ {int) 2})

41

Open vs. closed polytypic ops
Closed version of eq has type
 ∀α:T|L. τ’ α

 where L = { int, bool, ′, Age}
 τ’ = λα. (α ′ α) → bool

Open version of eq has type
 ∀s:LS. ∀α:T|s ∪ L. � s, τ’, s ∪ L� → τ’ α

What is the difference?

42

Open ops calling other ops
important : ∀s:LS. ∀α:T|s. �s, λβ.β → bool, s� → α → bool

print[s:LS][α:T|s]
 (mp : �s, (λβ. β → string), s�, mi : �s, λβ. β → bool,s�) =

typecase α of
(β:T|s ′ γ:T|s))

 λ(x:β ′ γ).
 write(“(“);
 if important[s][β] mi (x.1)
 then print[s][β] (x.1) (mp,mi)

else write(“…”);
write(“,”);
if important[s][γ] mi (x.2) then …

