
Generic Programming with Dependent Types

Stephanie Weirich and Chris Casinghino

University of Pennsylvania
{sweirich,ccasin}@cis.upenn.edu

Abstract. Some programs are doubly generic. For example, map is
datatype-generic in that many different data structures support a map-
ping operation. A generic programming language like Generic Haskell
can use a single definition to generate map for each type. However, map
is also arity-generic because it belongs to a family of related operations
that differ in the number of arguments. For lists, this family includes fa-
miliar functions from the Haskell standard library (such as repeat, map,
and zipWith).

This tutorial explores these forms of genericity individually and to-
gether. These two axes are not orthogonal: datatype-generic versions of
repeat, map and zipWith have different arities of kind-indexed types. We
explore these forms of genericity in the context of the Agda program-
ming language, using the expressiveness of dependent types to capture
both forms of genericity in a common framework. Therefore, this tuto-
rial serves as an introduction to dependently typed languages as well as
generic programming.

The target audience of this work is someone who is familiar with
functional programming languages, such as Haskell or ML, but would
like to learn about dependently typed languages. We do not assume prior
experience with Agda, type- or arity-generic programming.

1 Introduction

Generic programming is about doing more with less. It is about saving time, so
that the same piece of code can be used over and over again. It is about mak-
ing the similarities between programs formal, so that the relationships between
common functions are apparent. And it is about capturing the essence of an
algorithm, no matter how complicated, so that a programmer needs only to fill
in the details to use it.

Functional programmers use genericity. Every time that they use map or fold
to capture the recursive behavior of a function and every time they use paramet-
ric polymorphism to abstract the type of an operation, they are doing generic
programming.

However, there are ways to generalize code beyond higher-order functions
and parametric polymorphism. For example, datatype-generic functions operate
based on the type structure of data, so they need not be redefined for each new
datatype definition. Generic Haskell [12, 8] includes a generic mapping operation,

J. Gibbons (Ed.): Generic and Indexed Programming, LNCS 7470, pp. 217–258, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

218 S. Weirich and C. Casinghino

called gmap, that has instances for types such as lists, optional values, and
products (even though these type constructors have different kinds).

gmap 〈 [] 〉 :: (a → b) → [a] → [b]
gmap 〈 Maybe 〉 :: (a → b) → Maybe a → Maybe b
gmap 〈 (,) 〉 :: (a1 → b1) → (a2 → b2) → (a1,a2) → (b1,b2)

Because all these instances are generated from the same definition, reasoning
about gmap tells us about mapping at each type. Other examples of datatype-
generic operations include serialization, structural equality, and folds.

Likewise, arity genericity allows functions to be applied to a variable number
of arguments. For example, we can also generalize map in this way. Consider
the following sequence of functions from the Haskell Prelude [23], all of which
operate on lists.

repeat :: a → [a]
map :: (a → b) → [a] → [b]
zipWith :: (a → b → c) → [a] → [b] → [c]
zipWith3 :: (a → b → c → d) → [a] → [b] → [c] → [d]

The repeat function creates an infinite list from its argument. The zipWith func-
tion is a generalization of zip—it combines the two lists together with its argu-
ment instead of with the tupling function. Similarly, zipWith3 combines three
lists. As Fridlender and Indrika [9] have pointed out, all of these functions are
instances of the same generic operation, they just have different arities. They
demonstrate how to encode the arity as a Church numeral in Haskell and uni-
formly produce all of these list operations from the same definition.

Generic programming is a natural example of dependently-typed programming.
The features of dependently-typed languages, such as type-level computation and
type-refining pattern matching, directly support the definition generic operations
such as above.

In this tutorial, we show how to implement datatype genericity and arity
genericity in the Agda programming language [22]. Embedding both of these
ideas in the same context has an added benefit—it demonstrates the relationship
between them. Map is an example of a function that is both datatype-generic and
arity-generic; we call it doubly generic. Other functions also have both datatype-
generic and arity-generic versions; map has an inverse operation called unzipWith
that is doubly generic, and equality can be applied to any number of arguments
of the same type. Other examples include folds, enumerations and monadic maps.

In fact, arity genericity is not independent of datatype genericity. Generic
Haskell has its own notion of arity and each datatype-generic function must be
defined at a particular arity. Importantly, that arity corresponds exactly to the
arities in map above—the Generic Haskell version of repeat has arity one, its map
has arity two, and zipWith arity three. What is missing is that Generic Haskell
does not permit generalizing over arities, so a single definition cannot produce
repeat, map and zipWith.

This tutorial demonstrates that it is possible to implement these doubly
generic functions with a single definition in a dependently typed programming

Generic Programming with Dependent Types 219

language. In particular, we describe a reusable generic programming framework
similar to those discussed, and we show how it supports doubly generic defini-
tions. We have chosen the language Agda, but we could have also used a number
of different languages, such as Coq [29], Epigram [19], Ωmega [25], Cayenne [2]
or Haskell with recent extensions [24, 5].

However, the goals of this tutorial are broader than doubly generic program-
ming. The target audience of this work is someone who is familiar with functional
programming languages, such as Haskell or ML, but would like to learn about
dependently typed languages. We do not assume prior experience with Agda1 or
with generic programming. In that context, this tutorial demonstrates the ex-
pressive power of dependent types. Although many existing examples of the uses
of dependent types are for verification—using precise types to rule out programs
that contain bugs—we want to emphasize that dependent types can be used for
much more than capturing program invariants. The message of this tutorial is
that dependent type systems naturally support generic programming. This leads
to more flexible interfaces, eliminates boilerplate and draws connections between
common patterns within software.

This tutorial is based on the paper “Arity-generic type-generic programming”
which appeared at the workshop Programming Languages meets Program
Verification (PLPV 2010) [36] and lectures titled “Generic programming with de-
pendent types” presented at the Spring School on Generic and Indexed Program-
ming, held in Oxford, March 2010 [35]. All code described in this paper is avail-
able from http://www.seas.upenn.edu/˜sweirich/papers/aritygen-lncs.
tar.gz and has been tested with Agda version 2.2.10.

2 Simple Type-Generic Programming in Agda

Agda has a dual identity. It is both a functional programming language with
dependent types, based on Martin-Löf intuitionistic type theory [17], and a
proof assistant. Under the Curry-Howard Isomorphism, proofs are programs
and propositions are types. Historically, Agda is derived from a series of proof
assistants and languages implemented at Chalmers Institute of Technology in
Gothenburg, Sweden. The current version, officially named “Agda 2”, was imple-
mented by Ulf Norell [22]. In this tutorial, we use the name Agda to refer to the
current version.2

Here, we will focus exclusively on Agda’s role as a dependently typed program-
ming language. In fact, we will be using Agda in a nonstandard way, giving it three
flags –type-in-type, –no-termination-check, and –no-positivity-check
that change its type checker. With these flags enabled, Agda cannot be used

1 For more information on the Agda language, including installation instructions, man-
uals and other tutorials, see the Agda Wiki at
http://wiki.portal.chalmers.se/agda/

2 The name Agda comes from a Swedish song about Agda the Hen, a pun on the Coq
rooster.

http://www.seas.upenn.edu/~sweirich/papers/aritygen-lncs.tar.gz
http://www.seas.upenn.edu/~sweirich/papers/aritygen-lncs.tar.gz
http://wiki.portal.chalmers.se/agda/

220 S. Weirich and C. Casinghino

as a proof assistant. Instead, its semantics is similar to the programming lan-
guages Epigram [19], and Cayenne [2]. We discuss the implications of these flags
in more detail in Section 8.

Because Agda is a full-spectrum dependently-typed language, terms may ap-
pear in types, and in fact, there is no syntactic distinction between the two.
However, despite this significant difference, many basic Agda concepts and syn-
tax should appear familiar to functional programmers.

For example, we may define a datatype for booleans with the following code.
It creates the type Bool and its two data constructors true and false.

data Bool : Set where
true : Bool
false : Bool

Note that Agda uses a single colon for type annotations. Furthermore, all Agda
identifiers can be used as datatype constructors and by convention they are
uncapitalized in Agda.

The type of Bool itself is Set, the analogue of Haskell’s kind !. Even though
Agda does not syntactically distinguish between types and terms, we know that
Bool is a “type” because it has type Set.

Like other functional programming languages, we can define functions over
booleans by pattern matching. For example, we can define the standard negation
operation as follows.

¬ : Bool → Bool
¬ true = false
¬ false = true

Agda supports infix operators and unicode symbols in identifiers. Consider the
following definition of infix boolean conjunction, where the underscores around
the ∧ in the type signature indicate that it is an infix operator.

∧ : Bool → Bool → Bool
true ∧ true = true

∧ = false

Agda also supports “mixfix” identifiers. Below, the underscores in if_then_else
indicate that it takes two arguments that should appear between if and then and
between then and else.

if_then_else : ∀ {A} → Bool → A → A → A
if true then a1 else a2 = a1
if false then a1 else a2 = a2

Like Haskell, if_then_else is a polymorphic function, available for any result type
A. However, unlike Haskell, the type of if_then_else must explicitly quantify over
A. The curly braces around A indicate that it is an implicit argument that does

Generic Programming with Dependent Types 221

not participate in the pattern matching and that Agda should try to infer it when
if_then_else is used. For example, one need not supply this type argument in
an if expression such as below.

if true then 1 else 2

Like functional programming languages,Agda also includes recursive datatypes,
such as natural numbers and lists. For convenience, Agda allows users to abbre-
viate values of the N datatype, such as suc (suc zero), with their corresponding
Arabic numbers, such as 2. Both of these definitions are from the Agda standard
library. As usual, the list type below is parameterized by A, the type of the values
stored in the list. (One trickiness of Agda is that the cons data constructor (::)
is notated with a single unicode character.)

data N : Set where
zero : N
suc : N → N

data List (A : Set) : Set where
[] : List A
:: : A → List A → List A

Functions over these datatypes can again be defined via pattern matching. For
example, the following function constructs a list with n copies of its argument.

replicate : ∀ {A} → N → A → List A
replicate zero x = []
replicate (suc n) x = x :: replicate n x

One of the most powerful features of dependently typed languages is the
ability to define indexed datatypes whose types depend on terms. For example,
we may define a type of vectors, which are lists that know their own length.
Unlike Haskell, Agda permits overloading of data constructors such as [] and
:: and can tell from the context what sort of list should be constructed.

data Vec (A : Set) : N → Set where
[] : Vec A zero
:: : ∀ {n} → A → (Vec A n) → Vec A (suc n)

Like List, Vec is parameterized by the type A, indicating the type of data stored
in the list. Vec is also indexed by an argument of type N. This number records
the length of the vector and varies in the types of the constructors. For example,
empty vectors [] use index 0. Cons (written _::_) takes an implicit argument n
that is the length of the tail of the list. Usually, Agda can infer this length. The
term true :: false :: [] has type Vec Bool 2.

By indexing lists in this way, we can give informative types to functions. For
example, compare the definitions of replicate above and repeat below. Both of

222 S. Weirich and C. Casinghino

these functions construct a value with n copies of its argument. However, the
type of the repeat function makes explicit that the length of the output vector
will be n.

repeat : ∀ {n} {A} → A → Vec A n
repeat {zero} x = []
repeat {suc n} x = x :: repeat x

Because n appears in the result type of repeat, it makes sense to declare that n
is an implicit argument by putting it in curly braces. If the context of a call to
repeat determines the length of the vector that is required, type inference will
often be able to automatically supply that argument. If this process fails, the
argument can be explicitly provided in curly braces.

2.1 Basic Type-Generic Programming

Using pattern matching, it is simple to define equality tests for the datatypes
we have seen above. For example, equality functions for booleans and natural
numbers can be defined as follows.

eq-bool : Bool → Bool → Bool
eq-bool true true = true
eq-bool false false = true
eq-bool = false
eq-nat : N → N → Bool
eq-nat zero zero = true
eq-nat (suc n) (suc m) = eq-nat n m
eq-nat = false

In fact, to determine the equality of booleans or natural numbers we must de-
fine such functions. Agda does not include a built-in structural equality function
(like Scheme or OCaml) nor does it include an equality type class (like Haskell).
It is somewhat annoying to define and use equality functions for datatypes like
these, because they follow a very regular pattern. Functions such as structural
equality motivate type-generic programming, which allows programmers to de-
fine functions that observe and make use of the structure of types.

In a dependently typed language, type-generic programming is accomplished
using universes [17, 21]. The idea is to define an inductive datatype Type, called
a universe, along with an interpretation function &_' that maps elements of this
universe to actual Agda types. Each element of Type can be thought of as a “code”
for a particular type, and pattern matching gives us access to its structure. A
generic program is then an operation that manipulates this structure to define
an operation at different types.

For example, here is a very simple universe of types composed of natural
number, boolean and product types.

Generic Programming with Dependent Types 223

data Type : Set where
TNat : Type
TBool : Type
TProd : Type → Type → Type

In Agda, types are first-class values (of type Set), so it is simple to define
the interpretation function &_' for this universe. For example, we would like
& TProd TNat TBool ' to evaluate to N × Bool. Here, _×_ is the type of
non-dependent pairs in Agda.

&_' : Type → Set
& TNat ' = N
& TBool ' = Bool
& TProd t1 t2 ' = & t1 ' × & t2 '

Now we can define a basic type-generic equality function by dispatching on the
universe. If the given code is for natural numbers or booleans, geq below uses
the equality functions defined above. If it is the code for a product type, then
geq calls itself recursively. Observe that the second and third arguments in the
type of geq depend on the first argument. This function requires dependency to
express its type.

geq : (t : Type) → & t ' → & t ' → Bool
geq TNat n1 n2 = eq-nat n1 n2
geq TBool b1 b2 = eq-bool b1 b2
geq (TProd a b) (a1,b1) (a2,b2) = geq a a1 a2 ∧ geq b b1 b2

We can use this function by supplying it the appropriate code. For example,

geq (TProd TNat TBool) (1,false) (1,false)

evaluates to true. Unfortunately, we can not make this function’s universe ar-
gument t implicit because Agda can not derive the code for a type from the
type.

In subsequent sections we will consider many more examples of type-generic
functions (such as map, size, unzip) and define a larger universe representing
many more types. Before we do that, however, we consider the other half of
double genericity.

3 Arity-Generic Programming

Arity-generic functions generalize over the number of arguments that they take.
For example, the sequence of map-like functions over lists shown in the introduc-
tion are all instances of Scheme’s map function. Other examples of arity-generic
functions include Scheme’s +, foldl and foldr functions. A recent survey of the
PLT Scheme code base found 1761 definitions for variable-arity functions [28].

224 S. Weirich and C. Casinghino

What makes arity-generic functions so rare in statically typed languages like
Haskell and ML is their type. It is difficult for the type systems of these languages
to give them a type which allows them to be applied to any number of arguments.
It can be done through clever encodings [9], or by extending the type systems [28].
Here we show how to use dependent types to describe the type of arity-generic
functions.

The challenge for this section is to generalize the following sequence of func-
tions into one definition. We will use different arities of maps for length-indexed
vectors, defined above. The definitions of these different arities of map follow a
specific pattern.

map0 : {m : N} {A : Set} → A → Vec A m
map0 = repeat
map1 : {m : N} {A B : Set}

→ (A → B) → Vec A m → Vec B m
map1 f x = repeat f ! x
map2 : {m : N} {A B C : Set}

→ (A → B → C) → Vec A m → Vec B m → Vec C m
map2 f x1 x2 = repeat f ! x1 ! x2

The function repeat is the same function that we defined in Section 2. The other
operation, _!_, is an infix zipping application, pronounced “zap” for “zip with
apply,” defined below. These two functions are the components of the Applicative
type class in Haskell. We employ these functions to define map1, which is the
standard map for vectors, and map2, which is an analogue of Haskell’s zipWith.

! : {A B : Set} {n : N} → Vec (A → B) n → Vec A n → Vec B n
[] ! [] = []
(a :: As) ! (b :: Bs) = a b :: As ! Bs
infixl 40 _!_

The last line of the Agda code declares the precedence value of _!_ operator
and associates it to the left. In its definition, we do not need to consider the case
where one vector is empty while the other is not because the type specifies that
both arguments have the same length.

Intuitively, each map above is defined by a simple application of repeat and n
copies of _!_. Let us call the arity-generic version nvec-map.

nvec-map f n v1 v2 ... vn = repeat f ! v1 ! v2 ! ... ! vn

We can define this function by recursion on n in accumulator style as sketched
below. After repeating f we have a vector of functions, we then zap this vector
across n argument vectors, using the helper function g.

nvec-map n f = g n (repeat f) where
g 0 a = a
g (suc n) f = (λ a → g n (f ! a))

Generic Programming with Dependent Types 225

Although the definition is straightforward, the code above does not type check
in Agda. It requires additional typing annotations that express how the type
of nvec-map depends on the argument n. Agda can express the arity-generic
operation that unifies all of these maps via dependent types, as we present below.

3.1 Typing Arity-Generic Vector Map

The difficulty in the definition of arity-generic map is that all of the instances
have different types. Given some arity n, we must generate the corresponding
type in the sequence above. Part of the difficulty is that our generic function is
curried in both its type and term arguments. In this subsection, will start with
an initial definition that takes all of the type arguments together (in a vector),
but curries the term arguments. In the next subsection, we then demonstrate
how to uncurry the type arguments.

We use natural numbers to express the arity of the mapping operation. There-
fore, we must program with Agda types, taking advantage of the fact that types
are first-class data. For example, we store types in data structures, such as a
vector of Agda types, Bool :: N :: []. This vector itself has type Vec Set 2, so we
can use standard vector operations (such as _!_) with it. Our development uses
the Agda flag –-type-in-type, which makes this typing possible by giving Set
the type Set. This flag allows us to simplify our presentation by hiding Agda’s
infinite hierarchy of Set levels, at the cost of making Agda’s logic inconsistent.
We discuss this choice further in Section 8.

The first step towards defining the type of nvec-map is to define arrTy, which
folds the arrow type constructor → over a non-empty vector of types. For ex-
ample, arrTy (N :: N :: Bool :: []) should return N → N → Bool. This operation
constructs the type of the first argument to nvec-map, the function to map over
the n vectors.

arrTy : {n : N} → Vec Set (suc n) → Set
arrTy {0} (A :: []) = A
arrTy {suc n} (A :: As) = A → arrTy As

Next, the function arrTyVec constructs the result type of arity-generic map
for vectors. We define this operation by mapping the Vec constructor onto the
vector of types, then placing arrows between them. Notice that there are two
integer indices here: n determines the number of types we are dealing with (the
arity), while m is the length of the vectors we map over. Recall that the curly
braces in the types of arrTyVec and arrTy mark n as an implicit argument, so we
need not always match against it in definitions nor provide it explicitly as an
argument.

arrTyVec : {n : N} → N → Vec Set (suc n) → Set
arrTyVec m As = arrTy (repeat (λ A → Vec A m) ! As)

226 S. Weirich and C. Casinghino

For example, we can define the sequence of types from Section 2 using these
functions applied to lists of type variables.

map0 : {m : N} {A : Set} → arrTy (A :: []) → arrTyVec m (A :: [])
map1 : {m : N} {A B : Set}

→ arrTy (A :: B :: []) → arrTyVec m (A :: B :: [])
map2 : {m : N} {A B C : Set}

→ arrTy (A :: B :: C :: []) → arrTyVec m (A :: B :: C :: [])

Now, to define arity-generic map, we put these pieces together. The type of
nvec-map mirrors the examples above, except that it takes in the type arguments
(A, B, etc) as a vector (As). After we define nvec-map we can curry it to get the
desired type.

nvec-map : {m : N} (n : N) → {As : Vec Set (suc n)}
→ arrTy As → arrTyVec m As

Now we can complete the definition of nvec-map. We make two small changes
from the code presented above. First, we add a type annotation for the helper
function g, using the arrTy and arrTyVec functions. Second, we add an explicit
pattern match on the vector of types in g. This allows Agda to unfold the defi-
nitions of arrTy and arrTyVec when type checking g’s branches.

nvec-map n f = g n (repeat f) where
g : {m : N} → (n : N) → {As : Vec Set (suc n)}
→ Vec (arrTy As) m → arrTyVec m As

g 0 {A :: []} a = a
g (suc n) {A :: As} f = (λ a → g n (f ! a))

This function can be used as is. For example, we can use an arity 1 map to add
10 to each natural number in a vector. The term

nvec-map 1 {N :: N :: []} (λ x → 10 + x) (1 :: 5 :: [])

evaluates to (11 :: 15 :: []). Note that we must explicitly supply the types because
Agda cannot infer them from the other arguments to nvec-map. However, sup-
plying these types explicitly as a vector to nvec-map is annoying. To help Agda
infer them, we define some general currying functions in the next subsection.

3.2 A Curried Vector Map

To make nvec-map more convenient, we will curry the type arguments so that
they are supplied individually rather than in a vector. Then, Agda will usually
be able to infer them. For this, we need two functions. The first, ∀⇒, creates a
curried version of a type which depends on a vector. The second, λ⇒, curries a
corresponding function term.

Generic Programming with Dependent Types 227

∀⇒ : {n : N} → ((: Vec Set n) → Set) → Set
∀⇒ {zero} B = B []
∀⇒ {suc n} B = {a : Set} → ∀⇒ (λ as → B (a :: as))
λ⇒ : {n : N} → {B : (: Vec Set n) → Set}

→ ({X : Vec Set n} → B X) → (∀⇒ B)
λ⇒ {zero} f = f { []}
λ⇒ {suc n} f = λ {a : Set} → λ⇒ {n} (λ {as} → f {a :: as})

With these operations, we can finish the definition of arity-generic map. Again,
the (implicit) argument m is the length of the term vectors, and the (explicit)
argument n is the specific arity of map that is desired.

nmap : {m : N} → (n : N)
→ ∀⇒ (λ (As : Vec Set (suc n)) → arrTy As → arrTyVec m As)

nmap {m} n = λ⇒ (λ {As} → nvec-map {m} n {As})

We can use this arity-generic map just by providing the arity as an additional
argument. For example, the term nmap 1 has type

{m : N} → {A B : Set} → (A → B) → (Vec A m) → (Vec B m)

and the expression

nmap 1 (λ x → 10 + x) (10 :: 5 :: [])

evaluates to 11 :: 15 :: []. Likewise, the term nmap 2 has type

{m : N} → {A B C : Set} → (A → B → C) → Vec A m → Vec B m → Vec C m

and the expression

nmap 2 (,) (1 :: 2 :: 3 :: []) (4 :: 5 :: 6 :: [])

evaluates to (1,4) :: (2,5) :: (3,6) :: []. Notice that, unlike the previous version,
we did not need to explicitly specify the type of the data in the vectors.

4 Generic Haskell in Agda

In the previous section, we have seen how to embed simple generic functions in
Agda, using both type and arity genericity. In this section, we will work through
a more sophisticated example of type-generic programming by embedding a por-
tion of Generic Haskell [8] in Agda.

The purpose of this embedding is twofold. First, it explores the foundations
of Generic Haskell in a framework where it is easy to explore its variations. As
we do not assume prior knowledge of Generic Haskell, this section also serves
as an introduction to its foundations. Second, this embedding gives an example

228 S. Weirich and C. Casinghino

of dependently typed programming used for metaprogramming. It employs the
techniques of typeful representations and tagless interpreters, and so demon-
strates a powerful use of dependent types.

The initial embedding that we define differs in several ways from Generic
Haskell. While Generic Haskell treats recursive types implicitly, we will make re-
cursion explicit. Additionally, the embedding here lacks the full power of Generic
Haskell because we only consider operations of arity one. We will rectify that
in Section 5, when we extend this framework with arity genericity. In fact, that
extension takes the notion of arity further than Generic Haskell, as it allows the
definition of doubly generic operations.

4.1 Challenge Problem

To motivate the initial embedding of Generic Haskell, we start with the following
challenge problem. In Section 2.1 we developed a version of generic equality
that works for all types composed of natural numbers, booleans and products.
However, consider the type Choice, which is either an A, a B, both, or neither.

Choice : Set → Set → Set
Choice = λ A B → (A × B) * A * B * +

Section 2.1’s equality does not generalize the following functions, which are de-
fined for lists and Choice.

eq-list : ∀ {A} → (A → A → Bool) → List A → List A → Bool
eq-list f [] [] = true
eq-list f (a :: as) (b :: bs) = f a b ∧ eq-list f as bs
eq-list f = false
eq-choice : ∀ {A B} → (A → A → Bool) → (B → B → Bool)

→ Choice A B → Choice A B → Bool
eq-choice fa fb (inj1 (a1,b1)) (inj1 (a2,b2)) = fa a1 a2 ∧ fb b1 b2
eq-choice fa fb (inj2 (inj1 a1)) (inj2 (inj1 a2)) = fa a1 a2
eq-choice fa fb (inj2 (inj2 (inj1 b1))) (inj2 (inj2 (inj1 b2))) = fb b1 b2
eq-choice fa fb = true

Note that these two functions apply to parameterized datatypes. List and
Choice are type constructors (of type Set → Set and Set → Set → Set respec-
tively) and their equality functions are polymorphic, abstracting the element
type of the List, or options of the Choice. Therefore, these equality functions
must also abstract over an equality function for the type parameters.

Furthermore, there are other generic operations that apply to multiple kinds of
types. For example, size determines the size of a data structure and arb produces
an arbitrary element of a (nonempty) type. The types of the size function at
various instances is shown below.

Generic Programming with Dependent Types 229

size-nat : N → N
size-bool : Bool → N
size-list : ∀ {A} → (A → N) → List A → N
size-choice : ∀ {A B} → (A → N) → (B → N) → Choice A B → N

arb-nat : N
arb-bool : Bool
arb-list : ∀ {A} → A → List A
arb-choice : ∀ {A B} → A → B → Choice A B

Our strategy for generalizing these operations is the same as it was before.
We start with a code for types (using a datatype like Typ from before), give
an interpretation of that code as an Agda type (using a function like &_' from
before) and then define the generic operation by interpreting that code as an
Agda function (like geq). However, this time, our definition of codes will include
codes for multiple kinds of types.

4.2 A Sublanguage of Types

The types and type constructors that we will encode in this section are a sub-
language of Agda. This sublanguage includes a basic lambda calculus (variables,
abstraction and application), basic type constants (+, *, and ×), and recursive
definitions. This sublanguage is based on the type language of Fω [10].

For example, we can define a type much like the standard Bool data type
in this sublanguage. So that we can differentiate this type from the one in the
standard library, we call it MyBool.

MyBool : Set
MyBool = + * +
mytrue : MyBool
mytrue = inj1 tt
myfalse : MyBool
myfalse = inj2 tt

Likewise, type functions allow us to define a type similar to the standard,
parameterized Maybe type. We call this one Option.

Option : Set → Set
Option = λ A → + * A
none : ∀ {A} → Option A
none = inj1 tt
some : ∀ {A} → A → Option A
some a = inj2 a

Note that the definition of Choice, given above, already fits in this sublanguage.

230 S. Weirich and C. Casinghino

For recursive types, such as natural numbers or lists, we must make recursion
explicit in our type definitions. While we could define the structure of recursive
types using recursion in Agda, such recursive type definitions can make the Agda
type checker diverge.

Therefore, for explicit type recursion, we use the following definition. The type
operator µ creates an explicit fixed point of a type function. The operations roll
and unroll witness the isomorphism between the recursive type and its unrolling.

data µ : (Set → Set) → Set where
roll : ∀ {A} → A (µ A) → µ A

unroll : ∀ {A} → µ A → A (µ A)
unroll (roll x) = x

Natural numbers are the fixed point of the function that takes a type to either
unit (for zero) or the type again (for successor).

Nat : Set
Nat = µ (λ A → + * A)
zilch : Nat
zilch = roll (inj1 tt)
succ : Nat → Nat
succ x = roll (inj2 x)

Likewise, lists can be defined using the fixed point type constructor.

MyList : Set → Set
MyList A = µ (λ B → + * (A × B))
nil : ∀ {A} → MyList A
nil = roll (inj1 tt)
cons : ∀ {A} → A → MyList A → MyList A
cons x xs = roll (inj2 (x,xs))

Finally, we can also represent a family of indexed types. In particular, a length-
indexed vector can be defined as a n−tuple. Note that we do not use the µ
constructor here—vectors are not represented as a recursive type, but rather
MyVec is a family of types (one per natural number) defined by recursion in
Agda.

MyVec : Set → N → Set
MyVec A 0 = +
MyVec A (suc n) = A × MyVec A n
vnil : ∀ {A} → MyVec A 0
vnil = tt
vcons : ∀ {n} {A} → A → MyVec A n → MyVec A (suc n)
vcons x xs = (x,xs)

Generic Programming with Dependent Types 231

Note that we are working with a simple operator for recursive types. Because
µ has type (Set → Set) → Set, we can only work with regular, singly-recursive
datatypes. Nested types would require a higher-typed fixed point operator. Mu-
tually recursive datatypes cannot be modelled as fixed points of tuples. They
must instead be translated to use single recursion.

The next step is to describe how we represent the structure of types as a code.
Because our sublanguage of types is the simply typed lambda calculus (STLC)
plus recursion and a few constants, we define a representation of STLC in Agda.

4.3 Representing the Simply Typed Lambda Calculus

To encode the sublanguage described in the previous subsection, we need datatypes
for kinds, constants, and for the lambda calculus itself.

Kinds include the base kind ! and function kinds. The function kind arrow
associates to the right.

data Kind : Set where
! : Kind
⇒ : Kind → Kind → Kind

Constants are represented by a datatype that is indexed by the kind of the
constant. They include unit, sum and product types.

data Const : Kind → Set where
Unit : Const !
Sum : Const (! ⇒ ! ⇒ !)
Prod : Const (! ⇒ ! ⇒ !)

To represent other types (of arbitrary kinds), we now define an indexed
datatype called Typ. A Typ may be a variable, an abstraction, an application,
or a constant. The datatype is indexed by the kind of the type and a context
which indicates the kinds of variables. We use de Bruijn indices for variables, so
we represent the typing context as a list of Kinds. The nth Kind in the list is the
kind of variable n.

data Ctx : Set where
[] : Ctx
:: : Kind → Ctx → Ctx

data V : Ctx → Kind → Set where
VZ : ∀ {Γ k} → V (k :: Γ) k
VS : ∀ {Γ k’ k} → V Γ k → V (k’ :: Γ) k

data Typ : Ctx → Kind → Set where
Var : ∀ {Γ k} → V Γ k → Typ Γ k
Lam : ∀ {Γ k1 k2} → Typ (k1 :: Γ) k2

→ Typ Γ (k1 ⇒ k2)
App : ∀ {Γ k1 k2} → Typ Γ (k1 ⇒ k2) → Typ Γ k1

232 S. Weirich and C. Casinghino

→ Typ Γ k2

Con : ∀ {Γ k} → Const k → Typ Γ k
Mu : ∀ {Γ } → Typ Γ (! ⇒ !) → Typ Γ !

We use the notation Ty for closed types—those that can be checked in the
empty typing context.

Ty : Kind → Set
Ty = Typ []

Now that we can represent kinds, constants, and type constructors, we need
a mechanism to decode them as Agda types. A simple recursive function takes
our encoding of kinds into an Agda kind.

!_" : Kind → Set
! ! " = Set
! a ⇒ b " = ! a " → ! b "

Likewise, a simple function decodes constants. However, note that we need to
know the kind of a constant to define the type of its interpretation.

C!_" : ∀ {k} → Const k → ! k "
C! Unit " = + -- has kind Set
C! Sum " = _*_ -- has kind Set → Set → Set
C! Prod " = _×_

To interpret type constructors, we must have an environment to interpret the
variables. We index the datatype for the environment with the typing context
to make sure that each variable is mapped to an Agda type of the right kind.
We also define sLookup, which finds the type in an environment corresponding
to a particular variable.

Note that the definition of Env overloads the [] and _::_ constructors, but
Agda can again infer which we mean.

data Env : Ctx → Set where
[] : Env []
:: : ∀ {k G} → ! k " → Env G → Env (k :: G)

sLookup : ∀ {k G} → V G k → Env G → ! k "
sLookup VZ (v :: G) = v
sLookup (VS x) (v :: G) = sLookup x G

Finally, with the help of the environment, we can decode a Typ as an Agda
“type” of the appropriate kind. Note that the interpretation of codes is a ‘tagless’
lambda-calculus interpreter. 3

3 Compare this definition to Kiselyov’s versions [16].

Generic Programming with Dependent Types 233

interp : ∀ {k G} → Typ G k → Env G → ! k "
interp (Var x) e = sLookup x e
interp (Lam t) e = λ y → interp t (y :: e)
interp (App t1 t2) e = (interp t1 e) (interp t2 e)
interp (Con c) e = C! c "
interp (Mu t) e = µ (interp t e)

We use the &_' notation for decoding closed types in the empty environment.

&_' : ∀ {k} → Ty k → ! k "
& t ' = interp t []

For example, recall the recursive type MyList.

MyList : Set → Set
MyList = λ A → µ (λ B → + * (A × B))

We can represent this type constructor with the following code:

list : Ty (! ⇒ !)
list =

Lam (Mu (Lam
(App (App (Con Sum) (Con Unit))

(App (App (Con Prod) (Var (VS VZ))) (Var VZ)))))

The Agda type checker can normalize the type & list ' to MyList, so these two
types are equal.

As another example, we can represent the MyVec family of vector types by
using a recursive function to calculate the length of the tuple.

myvec : N → Ty (! ⇒ !)
myvec n = Lam (f n) where

f : N → Typ (! :: []) !
f 0 = Con Unit
f (suc n) = App (App (Con Prod) (Var VZ)) (f n)

4.4 Type-Generic Operations

The last step is to define generic operations by “interpreting” codes as Agda
functions. The crucial idea is that the type of the generic function depends on
the kind of the code that it is given. To express this relationship we must use a
kind-indexed type [12]:

〈〉_ : (Set → Set) → (k : Kind) → ! k " → Set
b 〈 ! 〉 t = b t
b 〈 k1 ⇒ k2 〉 t = ∀ {A} → b 〈 k1 〉 A → b 〈 k2 〉 (t A)

234 S. Weirich and C. Casinghino

In this definition, b is a type function that gives the type of the operation
when the code represents a type at kind Set. For any b, the term b 〈 k 〉 t
evaluates to the type of the corresponding generic operation for terms of type t
(which has kind k). For example, we can describe the types of a generic equality
function by using the following type function for b:

Eq : Set → Set
Eq A = A → A → Bool

With this b, the kind-indexed type can compute the types of the equality
operation for various arguments. In each case, the given type normalizes to the
same type that we declared Section 4.1 (indicated in comments).

eq-bool : Eq 〈 ! 〉 Bool
-- Bool → Bool → Bool

eq-list : Eq 〈 ! ⇒ ! 〉 MyList
-- ∀ A → (A → A → Bool) → (MyList A → MyList A → Bool)

eq-choice : Eq 〈 ! ⇒ ! ⇒ ! 〉 Choice
-- ∀ A → (A → A → Bool) → ∀ B → (B → B → Bool)
-- → (Choice A B → Choice A B → Bool)

A generic function is an interpretation of the Typ universe as an Agda term
with a kind-indexed type. For example, the type of generic equality should be:

geq : ∀ {k} → (t : Ty k) → Eq 〈 k 〉 & t '

We will define geq as an “interpreter” for the code t. For constants, this inter-
preter is not too difficult to define. For example, the type for product equality
provides equality functions for the components of the product. Therefore the
interpretation of this constant only needs to use these functions to check if cor-
responding components of the products are equal. Likewise, for disjoint unions,
we must make sure that both arguments are the same injection, and then selec-
tively use the provided functions.

geq-prod : ∀ {A} → (A → A → Bool) → ∀ {B} → (B → B → Bool)
→ (A × B) → (A × B) → Bool

geq-prod ra rb (x1,x2) (y1,y2) = ra x1 y1 ∧ rb x2 y2

geq-sum : ∀ {A} → (A → A → Bool) → ∀ {B} → (B → B → Bool)
→ (A * B) → (A * B) → Bool

geq-sum ra rb (inj1 x1) (inj1 x2) = ra x1 x2

geq-sum ra rb (inj2 x1) (inj2 x2) = rb x1 x2

geq-sum = false

We put these together in a function that works for all constants.

geq-c : {k : Kind} → (c : Const k) → Eq 〈 k 〉 & Con c '
geq-c Unit = λ t1 t2 → true

Generic Programming with Dependent Types 235

geq-c Sum = geq-sum
geq-c Prod = geq-prod

For the full definition of generic equality, we must consider the complete collec-
tion of codes—roughly the simply typed lambda calculus with recursion. Because
of λ, we must generalize this geq interpreter to codes for types with free vari-
ables. We will pass in an environment that we can use to interpret those free
variables.

We define the environment as a list containing the interpretation of each
variable in some context. It is indexed by the context for which it provides
interpretations, and is parameterized by b so that it may be used for any generic
operation.

data VarEnv (b : Set → Set) : Ctx → Set where
[] : VarEnv b []
:: : {k : Kind} {Γ : Ctx} {a : ! k "}

→ b 〈 k 〉 a → VarEnv b Γ → VarEnv b (k :: Γ)

With this definition of an environment, we also need a way to look up the
interpretation of a variable. However, the type of this lookup function is prob-
lematic. How do we specify the return type? (See the ? marked in the type
below.)

vLookup : ∀ {Γ k} {b : Set → Set} → (v : V Γ k) → (ve : VarEnv b Γ)
→ b 〈 k 〉 ?

vLookup VZ (v :: ve) = v
vLookup (VS x) (v :: ve) = vLookup x ve

The return type we want is the one that appears in the provided VarEnv at
the position corresponding to v. To get it, we use a new function called toEnv.
It converts a VarEnv to an Env, so that we can use sLookup in the type of
vLookup.

toEnv : {Γ : Ctx} {b : Set → Set} → VarEnv b Γ → Env Γ
toEnv [] = []
toEnv (_::_ { } { } {a} r) = a :: toEnv r
vLookup : ∀ {Γ k} {b : Set → Set} → (v : V Γ k) → (ve : VarEnv b Γ)
→ b 〈 k 〉 (sLookup v (toEnv ve))

vLookup VZ (v :: ve) = v
vLookup (VS x) (v :: ve) = vLookup x ve

Finally, we can define the interpreter for lambda calculus terms. Note that
variables are just looked up in the environment, lambda expressions map to func-
tions, and application expressions map to applications. The recursion operator

236 S. Weirich and C. Casinghino

maps to the interpretation of its unrolling, and we use the function geq-c from
above for the interpretation of constants.

geq-mu : ∀ {A} → Eq (A (µ A)) → Eq (µ A)
geq-mu f = λ x y → f (unroll x) (unroll y)
geq-open : {Γ : Ctx} {k : Kind}
→ (ve : VarEnv Eq Γ)
→ (t : Typ Γ k) → Eq 〈 k 〉 (interp t (toEnv ve))

geq-open ve (Var v) = vLookup v ve
geq-open ve (Lam t) = λ y → geq-open (y :: ve) t
geq-open ve (App t1 t2) = (geq-open ve t1) (geq-open ve t2)
geq-open ve (Mu t) = geq-mu (geq-open ve (App t (Mu t)))
geq-open ve (Con c) = geq-c c

We can define generic equality by providing the empty var environment

geq : {k : Kind} → (t : Typ Γ k) → Eq 〈 k 〉 & t '
geq t = geq-open [] t

4.5 A General Framework

We have defined a very generic version of equality, but what about the next
polykinded operation? Only the interpretation of constants and the rolling/
unrolling in the Mu case changes with each generic function. Therefore, we can
parametrize the above code to define a reusable framework. This reusable frame-
work is a standard interpreter for the simply-typed lambda calculus. To use this
interpreter it suffices to provide an interpretation of the type constants and
implement the necessary rolling/unrolling in the Mu case.

The first step is a general type for the interpretation of constants. We use a
first-class function for that interpretation. For generic equality, this function is
exactly geq-c.

ConstEnv : (Set → Set) → Set
ConstEnv b = ∀ {k} → (c : Const k) → b 〈 k 〉 & Con c '

The more difficult case is the treatment of Mu. We need to lift a generic
definition for the unrolled type into a generic definition of the recursive type.
This depends on the definition of b (for generic equality, we used geq-mu). To
accommodate different operations, our generic framework accepts an argument
that describes how to do this lifting.

MuGen : (Set → Set) → Set
MuGen b = ∀ {A} → b (A (µ A)) → b (µ A)

Generic Programming with Dependent Types 237

With these additional parameters, we can define our generic framework:

gen-open : {b : Set → Set} {Γ : Ctx} {k : Kind}
→ ConstEnv b → (ve : VarEnv b Γ) → MuGen b
→ (t : Typ Γ k) → b 〈 k 〉 (interp t (toEnv ve))

gen-open ce ve d (Var v) = vLookup v ve
gen-open ce ve d (Lam t) = λ y → gen-open ce (y :: ve) d t
gen-open ce ve d (App t1 t2) =

(gen-open ce ve d t1) (gen-open ce ve d t2)
gen-open ce ve d (Con c) = ce c
gen-open ce ve d (Mu t) =

d (gen-open ce ve d (App t (Mu t)))

Finally, we specialize gen-open to closed types.

gen : {b : Set → Set} {k : Kind} → ConstEnv b → MuGen b
→ (t : Ty k) → b 〈 k 〉 & t '

gen c b t = gen-open c [] b t

This framework works for many generic operations. Observe that can use it
to define equality as above.

geq : {k : Kind} → (t : Ty k) → Eq 〈 k 〉 & t '
geq = gen geq-c geq-mu

Another example is a generic counting function, which returns 0 for unit and
adds up the components of products and sums.

Count : Set → Set
Count A = A → N
gcount : {k : Kind} → (t : Ty k) → Count 〈 k 〉 & t '
gcount = gen gcount-c gcount-mu where

gcount-c : ConstEnv Count
gcount-c Unit = λ t → 0
gcount-c Sum = gcount-sum where

gcount-sum : ∀ {A} → → ∀ {B} → → (A * B) → N
gcount-sum ra rb (inj1 x) = ra x
gcount-sum ra rb (inj2 x) = rb x

gcount-c Prod = gcount-prod where
gcount-prod : ∀ {A} → → ∀ {B} → → (A × B) → N
gcount-prod ra rb (x1,x2) = ra x1 + rb x2

gcount-mu : MuGen Count
gcount-mu f = λ x → f (unroll x)

The Count example shows why it is important to make the type parameters
explicit in the representation. This function can be instantiated to count the
number of elements in an aggregate data structure

238 S. Weirich and C. Casinghino

gsize : (t : Ty (! ⇒ !)) → ∀ {A} → & t ' A → N
gsize t = gcount t (λ x → 1)

and also sum them up if they all happen to be natural numbers.

gsum : (t : Ty (! ⇒ !)) → & t ' N → N
gsum t = gcount t (λ x → x)

For example, for this list

exlist2 : MyList N
exlist2 = cons 1 (cons 2 (cons 3 nil))

we have

gsize mylist exlist2 ≡ 3
gsum mylist exlist2 ≡ 6

and for this vector of numbers4

exvec2 : MyVec N 3
exvec2 = vcons {2} 1 (vcons {1} 2 (vcons {0} 3 (vnil {N})))

we already know its length, but we can calculate its sum in the same way.

gsum (myvec 3) exvec2 ≡ 6

5 Arity-Generic Type-Generic Map

Unfortunately, the general framework presented in the last section is not expres-
sive enough to give a type-generic version of map. Consider the various instances
that we would like to generate:

map-vec : ∀ {A1 A2 n} → (A1 → A2) → Vec A1 n → Vec A2 n
map-maybe : ∀ {A1 A2} → (A1 → A2) → Maybe A1 → Maybe A2

map-choice : ∀ {A1 A2 B1 B2} → (A1 → A2) → (B1 → B2)
→ Choice A1 B1 → Choice A2 B2

Thus, we want the polykinded type to give us something like this:

Map 〈 ! 〉 T = T → T
Map 〈 ! ⇒ ! 〉 T = ∀ {A B} → (A → B) → (T A → T B)
Map 〈 ! ⇒ ! ⇒ ! 〉 T = ∀ {A1 B1 A2 B2}
→ (A1 → B1) → (A2 → B2) → (T A1 A2 → T B1 B2)

4 Note that Agda is unable to infer the implicit size parameter to vcons for the struc-
tural definition of vectors.

Generic Programming with Dependent Types 239

But there is no definition of Map that has this behavior because each case takes
too many type arguments. One way to solve this problem would be to start all
over again and define an “arity-2” kind-indexed type:

〈〉2 : (Set → Set → Set) → (k : Kind) → ! k " → ! k " → Set
b 〈 ! 〉2 = λ t1 t2 → b t1 t2
b 〈 k1 ⇒ k2 〉2 = λ t1 t2 → ∀ {a1 a2}

→ (b 〈 k1 〉2) a1 a2 → (b 〈 k2 〉2) (t1 a1) (t2 a2)

In that case, the simple definition

Map : Set → Set → Set
Map A B = A → B

exactly specifies the types of map that we would like above.

gmap : ∀ {k} → (t : Ty k) → Map 〈 k 〉2 & t ' & t '

However, this approach would require redefining our entire framework for
arity-2 functions (we would need ConstEnv2, VarEnv2, gen-open2, gen2, etc.).
That is not very generic!

5.1 Generic Programming at Multiple Arities

Instead, we would like a single framework for all arities of generic functions. We
can get that single framework by making the first argument to the polykinded
type, b, take a vector of arguments instead of just one or two.

If we make that change, then the kind-indexed type is defined as follows:

〈〉_ : ∀ {n : N} → (Vec Set n → Set) → (k : Kind)
→ Vec ! k " n → Set

b 〈 ! 〉 v = b v
b 〈 k1 ⇒ k2 〉 v = {a : Vec ! k1 " } → b 〈 k1 〉 a → b 〈 k2 〉 (v ! a)

Recall that v ! a applies vector of functions to vector of arguments pointwise.
If we extend ConstEnv and MuGen in a similar way we can define a generic

framework that supports multiple arities. We give the signature of that function,
called ngen below. For simplicity, we defer the details of its implementation to
the Appendix. This operation produces a value of a kind-indexed type given a
mapping from constants to appropriate definitions.

-- interpretation of constants
ConstEnv : {n : N} → (b : Vec Set (suc n) → Set) → Set
ConstEnv b = {k : Kind} (c : Const k) → b 〈 k 〉 repeat & Con c '

-- folding function for recursive types
MuGen : (n : N) → (Vec Set (suc n) → Set) → Set
MuGen n b = ∀ {A} → b (A ! (repeat µ ! A)) → b (repeat µ ! A)

240 S. Weirich and C. Casinghino

-- type-generic framework for multiple arities
ngen : ∀ {n : N} {b : Vec Set n → Set} {k : Kind}

→ (t : Ty k) → ConstEnv b → MuGen n b → b 〈 k 〉 (repeat & t ')

Recall that repeat & t ' returns a vector with n copies of & t ', where the length
of the vector is automatically determined by the context.

With ngen, we can define several different type-generic mapping operations
(at different arities). For example, a generic repeat operation is the arity-one
version of map. This program generalizes repeat (shown for vectors in Section 2)
to all types in our universe.

Repeat : Vec Set 1 → Set
Repeat (A :: []) = A
grepeat : {k : Kind} → (t : Ty k) → Repeat 〈 k 〉 ($ t % :: [])
grepeat t = ngen t grepeat-c (λ {As} → grepeat-mu {As}) where

grepeat-c : ConstEnv Repeat
grepeat-c Unit = tt
grepeat-c Sum = λ {A} → grepeat-sum {A} where

grepeat-sum : Repeat 〈 " ⇒ " ⇒ " 〉 (_'_ :: [])
grepeat-sum {A :: []} ra {B :: []} rb = inj2 rb

grepeat-c Prod = λ {A} → grepeat-prod {A} where
grepeat-prod : Repeat 〈 " ⇒ " ⇒ " 〉 (_×_ :: [])
grepeat-prod {A :: []} ra {B :: []} rb = (ra,rb)

grepeat-mu : ∀ {As} → Repeat (As ! ((µ :: []) ! As)) → Repeat ((µ :: []) ! As)
grepeat-mu {A :: []} = roll

Note that in the case for sums, grepeat has a choice, it can either choose
the first or the second injection. We arbitrarily put the second injection above
because that is the one that generates the familiar repeat for lists—by always
choosing inj2 we generate a list of infinite length. Note that grepeat list expects a
vector of types (of length 1) as its first argument. We create that vector below,
relying on type inference to automatically fill in the implicit argument A.

repeat-list : ∀ {A} → A → MyList A
repeat-list = grepeat list { :: []}

Likewise, the type-generic mapping operation has arity two. This function de-
pends on map-sum and map-prod, which define mapping over sums and products.

Map : Vec Set 2 → Set
Map (A :: B :: []) = A → B
map-sum : Map 〈 " ⇒ " ⇒ " 〉 (_'_ :: _'_ :: [])
map-sum {A1 :: B1 :: []} ra {A2 :: B2 :: []} rb = g where

g : (A1 ' A2) → B1 ' B2
g (inj1 x) = inj1 (ra x)
g (inj2 x) = inj2 (rb x)

map-prod : Map 〈 " ⇒ " ⇒ " 〉 (_×_ :: _×_ :: [])
map-prod {A1 :: B1 :: []} ra {A2 :: B2 :: []} rb = g where

g : (A1 × A2) → B1 × B2

Generic Programming with Dependent Types 241

g (x,y) = (ra x,rb y)
gmap-mu : ∀ {As} → Map (As ! ((µ :: µ :: []) ! As)) → Map ((µ :: µ :: []) ! As)
gmap-mu { :: :: []} = λ x y → roll (x (unroll y))
gmap : ∀ {k : Kind} → (t : Ty k) → Map 〈 k 〉 ($ t % :: $ t % :: [])
gmap t = ngen t gmap-c gmap-mu where

gmap-c : ConstEnv Map
gmap-c Unit = λ x → x
gmap-c Sum = map-sum
gmap-c Prod = map-prod

Finally, type-generic zipWith has arity three. It again depends on zipping
operations for sums and products. In the case of zipping for sums, we must
be partial. If the two arguments are not the same case of the sum, then they
cannot be zipped together. Because Agda lacks Haskell’s error function, we use
a postulate that will halt the program if it is ever encountered. This partiality
means that the generic zipWith that we define here differs from the zipWith
defined for lists in the Haskell prelude. When given lists of unequal length, this
function will fail, whereas the prelude function will ingnore the extra elements
in the longer list. As a result, we cannot use this zipWith to show that every
parameterized type is an applicative functor.

postulate error : (A : Set) → A

ZW : Vec Set 3 → Set
ZW (A :: B :: C :: []) = A → B → C
zip-sum : ZW 〈 ! ⇒ ! ⇒ ! 〉 (_*_ :: _*_ :: _*_ :: [])
zip-sum {A1 :: A2 :: A3 :: []} ra {B1 :: B2 :: B3 :: []} rb = g where

g : (A1 * B1) → (A2 * B2) → A3 * B3
g (inj1 x) (inj1 y) = inj1 (ra x y)
g (inj2 x) (inj2 y) = inj2 (rb x y)
g = error

zip-prod : ZW 〈 ! ⇒ ! ⇒ ! 〉 (_×_ :: _×_ :: _×_ :: [])
zip-prod {A1 :: A2 :: A3 :: []} ra {B1 :: B2 :: B3 :: []} rb = g where

g : (A1 × B1) → (A2 × B2) → A3 × B3
g (x,y) (w,z) = (ra x w,rb y z)

gzipWith : ∀ {k} → (t : Ty k) → ZW 〈 k 〉 (& t ' :: & t ' :: & t ' :: [])
gzipWith t = ngen t gzip-c gzip-mu where

gzip-c : ConstEnv ZW
gzip-c Unit = λ x y → x
gzip-c Sum = zip-sum
gzip-c Prod = zip-prod
gzip-mu : ∀ {As} → ZW (As ! ((µ :: µ :: µ :: []) ! As))
→ ZW ((µ :: µ :: µ :: []) ! As)

gzip-mu { :: :: :: []} = λ x y z → roll (x (unroll y) (unroll z))

242 S. Weirich and C. Casinghino

Because of the partiality in this definition, the definition of gzipWith is not
exactly the same as the one for lists in Haskell’s standard library. There, when
given two lists of different lengths the function truncates the zip. Here, zipWith
is defined only for lists of the same length. Even if we redefined the above to
make the partiality explicit, by returning a Maybe instead of using error, it would
not produce the same behavior as Haskell’s library function.

5.2 Doubly Generic Map

The last challenge is to combine grepeat, gmap, and gzipWith into a single, doubly
generic operation, using ngen. To define this operation, we must first define b,
ConstEnv and MuGen arguments that make sense at any arity. For doubly generic
map, we call these pieces NGmap, ngmap-const and ngmap-mu.

NGmap is similar to the arrTy function from Section 3.1, which takes the arity
as an implicit argument.

NGmap : {n : N} → Vec Set (suc n) → Set
NGmap (A :: []) = A
NGmap (A :: B :: As) = A → NGmap (B :: As)

For ngmap-const, we assemble the const environment out of specific cases (to
be defined below):

ngmap-const : {n : N} → ConstEnv {n} NGmap
ngmap-const {n} Unit = defUnit n
ngmap-const {n} Prod = defPair n
ngmap-const {n} Sum = defSum n

For the unit case, we return an arity-n function with type + → + → ... → +.

defUnit : (n : N) → NGmap {n} 〈 ! 〉 (repeat +)
defUnit zero = tt
defUnit (suc n) = λ x → (defUnit n)

Because the Prod and Sum constants have higher kinds, the return type of
ngmap-const changes in these cases. Consider Prod first.

defPair : (n : N)
→ {As : Vec Set (suc n)} → NGmap As
→ {Bs : Vec Set (suc n)} → NGmap Bs
→ NGmap (repeat _×_ ! As ! Bs)

defPair zero {A :: []} a {B :: []} b = (a,b)
defPair (suc n) {A1 :: A2 :: As} a {B1 :: B2 :: Bs} b =

λ p → defPair n {A2 :: As} (a (proj1 p)) {B2 :: Bs} (b (proj2 p))

Generic Programming with Dependent Types 243

In the zero case of defPair, a and b are arguments of type A and B respectively—
the function simply pairs them up. In the successor case, a and b are functions
with types A1 → NGmap As and B1 → NGmap Bs. We want to produce a result
of type A1 × B1 → NGmap (repeat _×_ ! As ! Bs). Therefore, this case
takes an argument p and makes a recursive call, passing in a applied to the first
component of p and b applied to the second component of p.

In the case of Sum, we must check that the terms provided have the same
structure (are either all inj1 or all inj2). If the supplied sums are not all con-
structed with the same injections, there will not be enough arguments to apply
a or b. One possibility is to check the structure first and fail immediately if we
see mixed inj1s and inj2s, but we prefer a lazy approach. Below, we recursively
accumulate the results of a and b, but use the error term to fill in the missing
arguments. When all the injections agree, a or b will build up the correct result.
When they do not, the error is triggered.

defSum : (n : N)
→ {As : Vec Set (suc n)} → NGmap As
→ {Bs : Vec Set (suc n)} → NGmap Bs
→ NGmap (repeat _*_ ! As ! Bs)

defSum zero {A :: []} a {B :: []} b = (inj2 b)
defSum (suc 0) {A1 :: (A2 :: [])} a {B1 :: (B2 :: [])} b = f

where
f : A1 * B1 → A2 * B2
f (inj1 a1) = inj1 (a a1)
f (inj2 b1) = inj2 (b b1)

defSum (suc n) {A1 :: (A2 :: As)} a {B1 :: (B2 :: Bs)} b = f
where

f : A1 * B1 → NGmap (repeat _*_ ! (A2 :: As) ! (B2 :: Bs))
f (inj1 a1) = defSum n {A2 :: As} (a a1) {B2 :: Bs} (b error)
f (inj2 b1) = defSum n {A2 :: As} (a error) {B2 :: Bs} (b b1)

Note that the type of arity zero map for sums is A → B → A * B, and we
arbitrarily pick the second injection.

Lastly, we specify the behavior of map for recursive types. This function es-
sentially unrolls each argument, applies f, and then rolls up the result.

MuGen : (n : N) → (Vec Set (suc n) → Set) → Set
MuGen n b = ∀ {As} → b (As ! (repeat µ ! As)) → b (repeat µ ! As)

ngmap-mu : ∀ {n} → MuGen n NGmap
ngmap-mu {zero} {A :: []} = roll
ngmap-mu {suc n} {A1 :: A2 :: As} = λ f x →

ngmap-mu {n} {A2 :: As} (f (unroll x))

We can then define ngmap by instantiating ngen.

244 S. Weirich and C. Casinghino

ngmap : (n : N) → {k : Kind} → (e : Ty k)
→ NGmap {n} 〈 k 〉 (repeat & e ')

ngmap n e = ngen e ngmap-const (λ {As} → ngmap-mu {n} {As})

This definition is truly doubly generic. We may instantiate it to derive map
at any arity and any type in our universe. For example, in the case of lists, we
have the following definitions. Note that repeat is ngmap 0, map is ngmap 1 and
zipWith is ngmap 2.

repeat-ml : ∀ {B} → B → MyList B
repeat-ml = ngmap 0 list { :: []}
map-ml : ∀ {A1 B} → (A1 → B) → MyList A1 → MyList B
map-ml = ngmap 1 list { :: :: []}
zipWith-ml : ∀ {A1 A2 B} → (A1 → A2 → B)

→ MyList A1 → MyList A2 → MyList B
zipWith-ml = ngmap 2 list { :: :: :: []}

6 Other Doubly Generic Operations

Map is not the only arity-generic function. In this section, we examine two others
and discuss their implementations.

6.1 Equality

We saw in the previous section that doubly generic map must check that its
arguments have the same structure. We can define doubly generic equality in
a similar manner. This function takes n arguments, returning true if they are
all equal, and false otherwise. Unlike map, equality is not partial for sums as it
returns false in the case that the injections do not match.

In the specific case of vectors, arity-generic equality looks a lot like arity-
generic map. Each instance of this function follows the same pattern. Given an
n-ary equality function for the type argument, we can define n-ary equality for
vectors as:

nvec-eq : {m : N} {A1 : Set} ... {An : Set} → (A1 → ... → An → Bool)
→ Vec A1 m → ... → Vec An m → Bool

nvec-eq f v1 ... vn = all (repeat f ! v1 ! ... ! vn)

However, again this definition does not help us make equality type-generic
as well as arity-generic. For type genericity, the type of the equality function
depends on the kind of the type constructor.

For example, the definition of arity-three equality for natural numbers returns
true only if all three match:

nat-eq3 : N → N → N → Bool

Generic Programming with Dependent Types 245

Likewise, the arity-three equality for pairs requires equalities for all of the com-
ponents of the pair. Furthermore, the type arguments need not be the same. We
can pass any sort of comparison functions in to examine the values carried by
the three products.

pair-eq3 : {A1 B1 C1 A2 B2 C2 : Set}
→ (A1 → B1 → C1 → Bool) → (A2 → B2 → C2 → Bool)
→ (A1 × A2) → (B1 × B2) → (C1 × C2) → Bool

pair-eq3 f g (a1,a2) (b1,b2) (c1,c2) = f a1 b1 c1 ∧ g a2 b2 c2

For sums, we also may pass in two different comparison functions to examine
the values carried by the three sums. However, those three sums must all match
in order to use the comparison functions.

sum-eq3 : {A1 B1 C1 A2 B2 C2 : Set}
→ (A1 → B1 → C1 → Bool) → (A2 → B2 → C2 → Bool)
→ (A1 * A2) → (B1 * B2) → (C1 * C2) → Bool

sum-eq3 f g (inj1 a1) (inj1 b1) (inj1 c1) = f a1 b1 c1
sum-eq3 f g (inj2 a2) (inj2 b2) (inj2 c2) = g a2 b2 c2
sum-eq3 f g = false

The definition of ngeq, which can define all of these operations, is similar to that
of ngmap, so we will only highlight the differences. One occurs in the definition
of the arity-indexed type, NGeq. This function returns a boolean value rather
than one of the provided types, which means that ngeq makes sense even for
arity zero. In that case its type is simply Bool.

NGeq : {n : N} → (v : Vec Set n) → Set
NGeq {zero} [] = Bool
NGeq {suc n} (A1 :: As) = A1 → NGeq As

Next we must define a ConstEnv for NGeq. For simplicity, we only show the
cases for Unit and Nat. The cases for Prod and Sum are straightforward variations
of ngmap. As there is only a single member of the + type, the case for unit is
just a function that takes n arguments and returns true.

defUnit : (n : N) → NGeq (repeat +)
defUnit zero = λ x → true
defUnit (suc n) = λ x → defUnit n

For products, NGeq must project the corresponding components of each of
the tuples and pass them to the two n-ary comparison functions.

defPair : (n : N) →
{as : Vec Set (suc n)} → (NGeq as) →
{bs : Vec Set (suc n)} → (NGeq bs) →
NGeq ((repeat _×_ ! as) ! bs)

defPair zero {a :: []} at {b :: []} bt =

246 S. Weirich and C. Casinghino

λ x → at (proj1 x) ∧ bt (proj2 x)
defPair (suc n) {a1 :: a2 :: as} af {b1 :: b2 :: bs} bf =

λ x → (defPair n {a2 :: as} (af (proj1 x))
{b2 :: bs} (bf (proj2 x)))

The case for sums is similar in structure. The important part of this case
is that after the first argument as been discriminated, all remaining arguments
must match it. So this branch dispatches to two helper functions that require all
of the remaining arguments to be either first or second injections, return false if
the a mismatched argument is supplied.

-- the n-ary constant false function
constFalse : {n : N} → (v : Vec Set n) → NGeq v
constFalse {zero} [] = false
constFalse {suc m} (A1 :: As) = λ a → constFalse As
defSumFirst : (n : N) →

{as : Vec Set (suc n)} → (NGeq as) →
{bs : Vec Set (suc n)} →
NGeq (repeat _*_ ! as ! bs)

defSumFirst zero {a :: []} at {b :: []} = f
where f : a * b → Bool

f (inj1 x1) = at x1
f (inj2 x1) = false

defSumFirst (suc n) {a1 :: a2 :: as} af {b1 :: b2 :: bs} = f
where f : a1 * b1 → NGeq (repeat _*_ ! (a2 :: as) ! (b2 :: bs))

f (inj1 x1) = defSumFirst n (af x1)
f (inj2 x1) = constFalse (repeat _*_ ! (a2 :: as) ! (b2 :: bs))

defSumSecond : (n : N) →
{as : Vec Set (suc n)} →
{bs : Vec Set (suc n)} → (NGeq bs) →
NGeq (repeat _*_ ! as ! bs)

defSumSecond zero {a :: []} {b :: []} bt = f
where f : a * b → Bool

f (inj1 x1) = false
f (inj2 x1) = bt x1

defSumSecond (suc n) {a1 :: a2 :: as} {b1 :: b2 :: bs} bf = f
where f : a1 * b1 → NGeq (repeat _*_ ! (a2 :: as) ! (b2 :: bs))

f (inj1 x1) = constFalse (repeat _*_ ! (a2 :: as) ! (b2 :: bs))
f (inj2 x1) = defSumSecond n (bf x1)

defSum : (n : N) →
{as : Vec Set (suc n)} → (NGeq as) →
{bs : Vec Set (suc n)} → (NGeq bs) →
NGeq (repeat _*_ ! as ! bs)

defSum zero {a :: []} at {b :: []} bt = f
where f : a * b → Bool

Generic Programming with Dependent Types 247

f (inj1 x1) = at x1
f (inj2 x1) = bt x1

defSum (suc n) {a1 :: a2 :: as} af {b1 :: b2 :: bs} bf = f
where f : a1 * b1 → NGeq (repeat _*_ ! (a2 :: as) ! (b2 :: bs))

f (inj1 x1) = defSumFirst n (af x1)
f (inj2 x1) = defSumSecond n (bf x1)

ngeq-const : {n : N} → ConstEnv {n} NGeq
ngeq-const {n} Unit = defUnit n
ngeq-const {n} Prod = defPair n
ngeq-const {n} Sum = defSum n

Finally, because we wish to use ngeq for recursive data structures, we must de-
fine an instance of MuGen. As before, we go by recursion on the arity. Since NGeq
is an n-ary function of representable types, we simply take in each argument,
unroll it to coerce it to the appropriate type, and recurse.

ngeq-mu : ∀ {n} → MuGen n NGeq
ngeq-mu {zero} {A :: []} = λ g x → g (unroll x)
ngeq-mu {suc n} {A1 :: A2 :: As} = λ g x → ngeq-mu (g (unroll x))

With these pieces defined, the definition of ngeq is a straightforward applica-
tion of ngen.

ngeq : (n : N) → {k : Kind} → (e : Ty k)
→ NGeq 〈 k 〉 (repeat & e ')

ngeq n e = ngen e ngeq-const (λ {As} → ngeq-mu {n} {As})

6.2 Splitting
The Haskell prelude and standard library include the functions

unzip :: [(a,b)] → ([a],[b])
unzip3 :: [(a,b,c)] → ([a],[b],[c])
unzip4 :: [(a,b,c,d)] → ([a],[b],[c],[d])
unzip5 :: [(a,b,c,d,e)] → ([a],[b],[c],[d],[e])
unzip6 :: [(a,b,c,d,e,f)] → ([a],[b],[c],[d],[e],[f])

suggesting that there should be an arity-generic version of unzip that unifies all
of these definitions.

Furthermore, it makes sense that we should be able to unzip data structures
other than lists, such as Options or Choices.

unzipOption :: Option (a,b) → (Option a,Option b)
unzipTree :: Choice (a1,a2) (b1,b2) → (Choice a1 b1,Choice a2 b2)

Indeed, unzip is also datatype-generic, and Generic Haskell includes the func-
tion gunzipWith that can generate unzips for any type (of any kind). The generic
function gunzipWith is a little more general than unzip above, as the data struc-
ture need not contain pairs. For example, in the instance for Options, it requires an
additional function to describe how to divide the optional value into two pieces.

248 S. Weirich and C. Casinghino

gunzipWith { |Option|} : {A B C : Set} → (A → B × C)
→ (Option A → Option B × Option C)

By supplying the identity function, we can derive unzipOption above.

unzipOption : {A B : Set} → Option (A × B) → (Option A × Option B)
unzipOption = gunzipWith { |Option|} (λ x → x)

Here, we describe the definition of ngsplit, which generates unzipWith for arbi-
trary data structures at arbitrary arities. In some sense, ngsplit is the inverse to
ngmap. Instead of taking in n arguments (with the same structure) and combin-
ing them together to a single result, split takes a single argument and distributes
it to n results, all with the same structure.

The function NGsplit gives the type of ngsplit at base kinds. The first type in
the vector passed to NGsplit is the type to split. The subsequent types are those
the first type will be split into. If there is only one type, the function returns
unit. The helper function prodTy folds the _×_ constructor across a vector of
types.

prodTy : {n : N} → (As : Vec Set n) → Set
prodTy {0} = +
prodTy {1} (A :: []) = A
prodTy {suc (suc)} (A :: As) = (A × prodTy As)
NGsplit : {n : N} → (v : Vec Set (suc n)) → Set
NGsplit (A1 :: As) = A1 → prodTy As

The case Unit is straightforward, so we do not show it. It simply makes n
copies of the argument.

To split a product (x,y), we first split x and y, then combine together the
results. That is, we need an arity-generic function to take in arguments of types
(A1 × A2 × ... × An) and (B1 × B2 × ... × Bn) and produce a result of type:

(A1 × B1) × (A2 × B2) × ... × (An × Bn)

We call this helper function prodn

prodn : {n : N} → (As Bs : Vec Set n)
→ prodTy As → prodTy Bs
→ prodTy (repeat _×_ ! As ! Bs)

prodn {0} a b = tt
prodn {1} (A :: []) (B :: []) a b = (a,b)
prodn {suc (suc n)} (A :: As) (B :: Bs) (a,as) (b,bs) =

((a,b),prodn {suc n} as bs)

and use it to define the case for products.

Generic Programming with Dependent Types 249

defPair : (n : N)
→ {As : Vec Set (suc n)} → (NGsplit As)
→ {Bs : Vec Set (suc n)} → (NGsplit Bs)
→ NGsplit (repeat _×_ ! As ! Bs)

defPair n {A :: As} a {B :: Bs} b =
λ p → prodn {n} (a (proj1 p)) (b (proj2 p))

The case for sums scrutinizes the argument to see if it is a first or second in-
jection, and uses the appropriate provided function to split the inner expression.
Then we use either injFirst or injSecond (defined below), which simply map inj1
or inj2 onto the members of the resulting tuple.

injFirst : {n : N} {As Bs : Vec Set n}
→ prodTy As
→ prodTy (repeat _*_ ! As ! Bs)

injFirst {0} { []} { []} tt = tt
injFirst {1} {A :: []} {B :: []} a = inj1 a
injFirst {suc (suc n)} {A :: As} {B :: Bs} (a,as) =

(inj1 a,injFirst {suc n} as)
injSecond : {n : N} {As Bs : Vec Set n}

→ prodTy Bs
→ prodTy (repeat _*_ ! As ! Bs)

injSecond {0} { []} { []} tt = tt
injSecond {1} {A :: []} {B :: []} b = inj2 b
injSecond {suc (suc n)} {A :: As} {B :: Bs} (b,bs) =

(inj2 b,injSecond {suc n} bs)

defSum : (n : N)
→ {As : Vec Set (suc n)} → (NGsplit As)
→ {Bs : Vec Set (suc n)} → (NGsplit Bs)
→ NGsplit (repeat _*_ ! As ! Bs)

defSum n {A :: As} af {B :: Bs} bf = f
where f : A * B → prodTy (repeat _*_ ! As ! Bs)

f (inj1 x1) = injFirst {n} (af x1)
f (inj2 x1) = injSecond {n} (bf x1)

As before, the definition of split-const dispatches to the branches above in the
standard way.

split-const : {n : N} → ConstEnv {n} NGsplit
split-const {n} Unit = defUnit n
split-const Prod = defPair
split-const Sum = defSum

250 S. Weirich and C. Casinghino

Finally, we must define an instance of DataGen so that we may use ngsplit at
representable Agda datatypes. Since NGsplit is defined in terms of prodTy, we
must also convert instances of that type. These functions are similar to previous
examples, except that we are converting a pair instead of an arrow.

-- roll all of the components of a product
roll-all : ∀ {n : N} {As : Vec (Set → Set) n} →

prodTy (As ! (repeat µ ! As)) →
prodTy (repeat µ ! As)

roll-all {0} { []} tt = tt
roll-all {1} {A :: []} x = roll x
roll-all {suc (suc n)} {A1 :: A2 :: As} (x,xs) = (roll x,roll-all {suc n} xs)
split-mu : {n : N} → MuGen n NGsplit
split-mu {0} {A :: []} = λ g → λ x → g (unroll x)
split-mu {1} {A1 :: A2 :: []} = λ g → λ x → roll (g (unroll x))
split-mu {suc (suc n)} {A1 :: A2 :: As} =

λ g → λ x → roll-all {suc (suc n)} {A2 :: As} (g (unroll x))

With split-const, we can define ngsplit as usual.

ngsplit : (n : N) → {k : Kind} → (e : Ty k)
→ NGsplit {n} 〈 k 〉 (repeat & e ')

ngsplit n e = ngen e split-const split-mu

Splitting is a good example of generic programming’s potential to save time
and eliminate errors. Defining a separate instance of split for vectors is tricky. For
example, we would need a function to transpose vectors of products, transform-
ing Vec m (A1 × A2 × ... × An) into (Vec A1 m × Vec A2 m × ... × Vec An m).
This code is slightly tricky and potentially error-prone, but with generic pro-
gramming we get the vector split for free. Moreover, we may reason once about
the correctness of the general definition of split rather than reasoning individually
about each of its arity and type instances.

6.3 More Operations

Mapping, equality and splitting provide three worked out examples of doubly
generic functions. We know of a few others, such as a monadic map, a map
that returns a Maybe instead of an error when the Sum injections do not match,
a comparison function, and an equality function that returns a proof that the
arguments are all equal. Furthermore, there are arity-generic versions of standard
Generic Haskell functions like crushes or enumerations. For example, an arity-
generic gsum adds together all of the numbers found in n data structures. Such
examples seem less generally useful than arity-generic map or unzip, but are not
difficult to define.

Generic Programming with Dependent Types 251

Compared to the space of datatype-generic functions, the space of doubly
generic operations is limited. This is unsurprising, as there already were not many
examples of Generic Haskell functions with arities greater than one. Though
the known collection of doubly generic functions is small, this is no reason not
to study it. Indeed, it includes some of the most fundamental operations of
functional programming, and it makes sense that we should learn as much as we
can about these operations.

7 Related Work

Several researchers have used dependent types (or their encodings) to implement
Generic-Haskell-style datatype genericity. In previous work, we encoded repre-
sentations of types using Church encodings [33] and GADTs [34] and showed how
to implement a number of datatype-generic operations such as map. Hinze [13],
inspired by this approach, gave a similar encoding based on type classes. In those
encodings, doubly generic programming is not possible because datatype-generic
programs of different arities require different representations or type classes.

The most closely related encoding of Generic Haskell to this one is by Ver-
bruggen et al. [30, 32]. They use the Coq programming language to define a
framework for generic programming, but do not consider arity-genericity. Al-
tenkirch and McBride [1] show a similar development in Oleg. Though these
authors do not consider arity-genericity, their frameworks should easily support
it thanks to their dependently typed settings.

The idea of generic programming in dependent type theory via universes has
seen much attention since it was originally proposed [17, 21, 14, 6]. This tutorial
covers only one part of what is possible in a dependently typed language. In
particular, our codes do not extend to all inductive families and so we cannot
represent all types that are available (see Benke et al. [3] and Morris et al. [20] for
more expressive universes). A dependently typed language also permits the defi-
nition of generic proofs about generic programs. Chlipala [7] uses this technique
in the Coq proof assistant to generically define and prove substitution properties
of programming languages. Verbruggen et al. [31, 32] use Coq’s dependent types
to develop a framework for proving properties about generic programs.

At a more theoretical level, Hoogendijk and Backhouse [15] have provided a
foundation for polytypic programming in the theory of allegories. They consider
the operations that result from “commuting” any two datatypes, and derive
generic zip operations as the special case when pairs are chosen as one of the
types. They observe that this framework may be used with datatypes of various
arities to construct different operations, but do not consider arity-genericity
itself.

Only a few sources discuss arity-generic programming. Fridlender and Indrika
[9] show how to encode n-ary list map in Haskell, using a Church encoding
of numerals to reflect the necessary type dependencies. They remark that a
generic programming language could provide a version of zipWith that works for
arbitrary datatypes, but that no existing language provides such functionality.

252 S. Weirich and C. Casinghino

They also mention a few other arity-generic programs: taut which determines
whether a boolean expression of n variables is a tautology, and variations on
liftM, curry and uncurry from the Haskell prelude. It is not clear whether any of
these functions could be made datatype-generic. McBride [18] shows an alternate
encoding of arity-generic list map in Haskell using type classes to achieve better
safety properties. He examines several other families of operations, like crush and
sum, but does not address type genericity.

Many Scheme functions, such as map, are arity-generic (or variable-arity, in
Scheme parlance). Strickland et al. [28] extend Typed Scheme with support for
variable-arity polymorphism by adding new forms for variable-arity functions to
the type language. They are able to check many examples, but do not consider
datatype genericity.

Sheard [26] translates Fridlender and Indrika’s example to the Ωmega pro-
gramming language, using that language’s native indexed datatypes instead of
the Church encoding. He also demonstrates one other arity-generic program,
n-ary addition. Although the same work also includes an implementation of
datatype-generic programming in Ωmega, the two ideas are not combined.

8 Discussion

Termination checking. Because we wanted to model generic programming in
Haskell, we need recursive datatypes and recursive functions. Such definitions
run afoul of Agda’s termination checker, so we have disabled it using the flags
–no-termination-check and –no-positivity-check. These flags make Agda
behave like the Cayenne programming language [2].

Dependently-typed programming languages that do not guarantee termina-
tion are unsound when viewed as logics. Indeed, looping terms inhabit every
type, so every proposition is provable. However, such languages still satisfy the
property of type soundness, and ensure that programs do not crash. This weak-
ens the reasoning that can be done in such languages, because a “proof” might
diverge, but does not negate the benefits of dependency in the type system.

Generic programming in a dependently typed language. As we mentioned in the
introduction, there are several dependently typed languages that we could have
used for this development. We selected Agda because the focus of its design
has been this sort of programming. Like Coq, Agda is a full-spectrum depen-
dently typed language. That has allowed us the flexibility to use universes to
directly implement generic programming. We had the full power of the com-
putational language available to express the relationships between values and
types. A phase-sensitive language, such as Ωmega or Haskell, would have re-
quired singletons to reflect computation to the type level, and would have per-
mitted type-level computation only in a restricted language.

Compared to Coq, Agda has more vigorous type inference, especially com-
bined with pattern matching. Though some recent work has shown how to add

Generic Programming with Dependent Types 253

Agda-style pattern matching to Coq, this is still only available as an experimental
language extension [27]. Additionally, developing in Agda allowed us to deal
with non-termination more conveniently—while Coq must be able to see that a
definition terminates before moving on, Agda shows the user where it can not
prove termination and allows other work to continue.

On the other hand, using Coq would have lead to two advantages. Coq’s tactic
language can be used to automate some of the reasoning. Tactics would have
been particularly useful in proving some of the equalities needed to type check
the implementation of ngen. However, we did not see any need for tactics in any
of the uses of ngen to define doubly generic operations. More importantly, as
discussed below, differences in the way Coq and Agda handle type levels forced
us to use Agda’s –-type-in-type flag to clarify the presentation.
Type levels in Agda. Although we have hidden it, Agda actually has an infinite
hierarchy of type levels. Set, also known as Set0, is the lowest level in the type
hierarchy. Terms like Set0 and Set0 → Set0 have type Set1, which itself has type
Set2, etc.

To simplify our exposition, we collapsed all of these levels to the type Set,
with the help of the –-type-in-type flag. This flag makes Agda’s logic incon-
sistent5, but in previous work [36] we have shown that we are not using it in
an unsound way by implementing the ngen function and several arity-generic
functions without it.

Three differences between Coq and Agda make this explicit version more
complicated than the one presented here. First, Coq supports universe polymor-
phism [11], a feature which allows definitions to work on multiple type levels.
Recent versions of Agda support a new form of this feature, but they require
each universe-polymorphic function to explicitly quantify over and manipulate
universe levels. This substantially clutters the definitions. Second, since Set is
not impredicative in Agda, many definitions that could live at the level of Set in
Coq must be at the level of Set1 instead. Finally, because Set0 is not a subtype
of Set1 in Agda, it would be necessary to explicitly coerce types back and forth
between Set0 and Set1.

Conclusions. This tutorial served several purposes. It introduced type gener-
icity and arity genericity, and showed how they can be combined in powerful,
doubly generic operations. Just as importantly, it showed how a rich framework
for these operations can be defined within dependently typed programming lan-
guages. We believe generic programming can be a killer app for dependently
typed programming. Languages like Agda provide a nearly perfect environment
for investigating more generic operations and reasoning about them.

Acknowledgments. Thanks to Andres Löh and Tim Sheard for discussion.
This paper was generated from literate Agda sources using lhs2TeX. Thanks to
Jeremy Gibbons and Ralf Hinze for comments on the draft.

5 But note, type-in-type does not make a dependent type system unsound [4].

254 S. Weirich and C. Casinghino

References

[1] Altenkirch, T., McBride, C.: Generic programming within dependently typed pro-
gramming. In: Proceedings of the IFIP TC2 Working Conference on Generic Pro-
gramming (2003)

[2] Augustsson, L.: Cayenne a language with dependent types. In: Proceedings of
the Third ACM SIGPLAN International Conference on Functional Programming,
ICFP 1998, pp. 239–250. ACM, New York (1998) ISBN 1-58113-024-4,
http://doi.acm.org/10.1145/289423.289451 , doi:10.1145/289423.289451

[3] Marcin, B., Peter, D., Patrik, J.: Universes for generic programs and proofs in
dependent type theory. Nordic Journal of Computing 10(4), 265–289 (2003)

[4] Cardelli, L.: A polymorphic lambda calculus with Type:Type. Research Report 10,
DEC Systems Research Center (1986)

[5] Chakravarty, M.M.T., Keller, G., Peyton Jones, S.: Associated type synonyms. In:
ICFP 2005: Proceedings of the Tenth ACM SIGPLAN International Conference
on Functional Programming, pp. 241–253. ACM, New York (2005)

[6] Chapman, J., Dagand, P.-E., McBride, C., Morris, P.: The gentle art of levitation.
In: ICFP 2010, pp. 3–14. ACM, New York (2010) ISBN 978-1-60558-794-3,
http://doi.acm.org/10.1145/1863543.1863547

[7] Chlipala, A.: A certified type-preserving compiler from lambda calculus to assem-
bly language. In: PLDI 2007: Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 54–65. ACM, New
York (2007)

[8] Clarke, D., Hinze, R., Jeuring, J., Löh, A., de Wit, J.: The Generic Haskell user’s
guide. Technical Report UU-CS-2001-26, Utrecht University (2001)

[9] Fridlender, D., Indrika, M.: Do we need dependent types? Journal of Functional
Programming 10(4), 409–415 (2000)

[10] Girard, J.-Y.: Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII (1972)

[11] Harper, R., Pollack, R.: Type checking with universes. Theoretical Computer Sci-
ence 89, 107–136 (1991)

[12] Hinze, R.: Polytypic values possess polykinded types. Science of Computer Pro-
gramming 43(2-3), 129–159 (2002); MPC Special Issue

[13] Hinze, R.: Generics for the masses. Journal of Functional Programming 16(4-5),
451–483 (2006)

[14] Hinze, R., Löh, A.: Generic programming in 3D. Science of Computer Pro-
gramming 74(8), 590–628 (2009), doi:10.1016/j.scico.2007.10.006; Special Issue on
Mathematics of Program Construction (MPC 2006)

[15] Hoogendijk, P., Backhouse, R.: When do Datatypes Commute? In: Moggi, E.,
Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 242–260. Springer, Heidelberg
(1997) ISBN 3-540-63455-X,
http://dl.acm.org/citation.cfm?id=648335.755730

[16] Kiselyov, O.: Typed Tagless Final Interpreters. In: Gibbons, J. (ed.) Generic and
Indexed Programming. LNCS, vol. 7470, pp. 130–174. Springer, Heidelberg (2012)

[17] Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis-Napoli (1984)
[18] McBride, C.: Faking it: Simulating dependent types in Haskell. Journal of Func-

tional Programming 12(5), 375–392 (2002)
[19] Conor, M., James, M.: The view from the left. Journal of Functional Program-

ming 14(1), 69–111 (2004)

http://doi.acm.org/10.1145/289423.289451
http://doi.acm.org/10.1145/1863543.1863547
http://dl.acm.org/citation.cfm?id=648335.755730

Generic Programming with Dependent Types 255

[20] Morris, P., Altenkirch, T., Ghani, N.: Constructing strictly positive families. In:
CATS 2007: Proceedings of the Thirteenth Australasian Symposium on Theory of
Computing, Darlinghurst, Australia, Australia, pp. 111–121. Australian Computer
Society, Inc. (2007)

[21] Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type The-
ory: an introduction. Oxford University Press (1990)

[22] Norell, U.: Towards a practical programming language based on dependent type
theory. PhD thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden (September 2007)

[23] Peyton Jones, S.L., et al.: The Haskell 98 language and libraries: The revised
report. Journal of Functional Programming 13(1), 0–255 (2003),
http://www.haskell.org/definition/

[24] Peyton Jones, S.L., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-
based type inference for GADTs. In: ICFP 2006: Proceedings of the Eleventh ACM
SIGPLAN International Conference on Functional Programming, Portland, OR,
USA, pp. 50–61 (September 2006)

[25] T. Sheard. Putting Curry-Howard to work. In Proceedings of the ACM SIGPLAN
2005 Haskell Workshop. ACM Press, September 2005.

[26] Sheard, T.: Generic Programming in Ωmega. In: Backhouse, R., Gibbons, J.,
Hinze, R., Jeuring, J. (eds.) SSDGP 2006. LNCS, vol. 4719, pp. 258–284. Springer,
Heidelberg (2007)

[27] Sozeau, M.: Equations: A Dependent Pattern-Matching Compiler. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 419–434. Springer, Hei-
delberg (2010)

[28] Strickland, T.S., Tobin-Hochstadt, S., Felleisen, M.: Practical Variable-Arity Poly-
morphism. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 32–46.
Springer, Heidelberg (2009)

[29] The Coq Development Team. The Coq Proof Assistant Reference Manual, Version
8.1. LogiCal Project (2006), http://coq.inria.fr/V8.1beta/refman/

[30] Verbruggen, W., de Vries, E., Hughes, A.: Polytypic programming in Coq. In:
WGP 2008: Proceedings of the ACM SIGPLAN Workshop on Generic Program-
ming, pp. 49–60. ACM, New York (2008)

[31] Verbruggen, W., de Vries, E., Hughes, A.: Polytypic properties and proofs in Coq.
In: WGP 2009: Proceedings of the 2009 ACM SIGPLAN Workshop on Generic
Programming, pp. 1–12. ACM, New York (2009)

[32] Verbruggen, W., de Vries, E., Hughes, A.: Formal polytypic programs and proofs.
Journal of Functional Programming 20, 213–270 (2010)

[33] Weirich, S.: Type-safe run-time polytypic programming. Journal of Functional
Programming 16(10), 681–710 (2006)

[34] Weirich, S.: RepLib: A library for derivable type classes. In: Haskell Workshop,
Portland, OR, USA, pp. 1–12 (September 2006)

[35] Weirich, S.: Generic programming with dependent types: Lectures presented at
the Spring School on Generic and Indexed Programming (2010)

[36] Weirich, S., Casinghino, C.: Arity-generic datatype-generic programming. In:
PLPV 2010: Proceedings of the 4th Workshop on Programming Languages Meets
Program Verification (2010)

http://www.haskell.org/definition/
http://coq.inria.fr/V8.1beta/refman/

256 S. Weirich and C. Casinghino

A Complete Definition of Arity-Generic, Type-Generic
Framework

-- an environment of vectors
data NGEnv {n : N} (b : Vec Set (suc n) → Set)

: Ctx → Set where
NNil : NGEnv b []
NCons : {k : Kind} {G : Ctx}

→ (a : Vec ! k " (suc n))
→ b 〈 k 〉 a
→ NGEnv b G
→ NGEnv b (k :: G)

-- interpret a type with a vector of different environments.
interp∗ : ∀ {G k n} → Typ G k → Vec (Env G) n
→ Vec ! k " n

interp∗ t vs = repeat (interp t) ! vs
-- "transpose" an environment of vectors to a vector of environments

transpose : {n : N} {b : Vec Set (suc n) → Set}
{G : Ctx}

→ NGEnv b G → Vec (Env G) (suc n)
transpose NNil = repeat []
transpose (NCons a nge) =

(repeat _::_) ! a ! (transpose nge)

The generic function generator needs some equalities to type check that cannot
be shown automatically by Agda. The next few definitions prove those equalities.

-- application is congruent
≡-app : ∀ {A} {b : A → Set} {t1} {t2} → t1 ≡ t2 → b t1 → b t2
≡-app refl x = x

-- cons is congruent
≡-tail : ∀ {A} {n} {t1 t2 : Vec A n} {x : A}

→ t1 ≡ t2
→ _≡_ { } {Vec A (suc n)} (x :: t1) (x :: t2)

≡-tail {A} {n} refl = refl { } {Vec A (suc n)}
-- kind-indexed types are congruent

≡-KIT : {n : N} {b : Vec Set (suc n) → Set}
{k : Kind} {t1 t2 : Vec ! k " (suc n)}
→ t1 ≡ t2
→ b 〈 k 〉 t1
→ b 〈 k 〉 t2

≡-KIT refl x = x
c1 : {n : N} {k : Kind} {G : Ctx}

→ (a : Vec ! k " n)

Generic Programming with Dependent Types 257

→ (envs : Vec (Env G) n)
→ a ≡ interp∗ (Var VZ) (repeat _::_ ! a ! envs)

c1 {zero} [] [] = refl
c1 {suc n} (t :: ts) (x :: xs) = ≡-tail (c1 {n} ts xs)
c2 : {n : N} {k k’ : Kind} {G : Ctx}

→ (x : V G k’)
→ (t1 : Vec ! k " n)
→ (envs : Vec (Env G) n)
→ interp∗ (Var x) envs ≡

interp∗ (Var (VS x)) (repeat _::_ ! t1 ! envs)
c2 {zero} x [] [] = refl
c2 {suc n} x (t :: ts) (y :: ys) = ≡-tail (c2 x ts ys)
c3 : {n : N} {k k’ : Kind} {G : Ctx}

→ (t : Typ (k’ :: G) k)
→ (envs : Vec (Env G) n)
→ (as : Vec ! k’ " n)
→ (interp∗ (t) (repeat _::_ ! as ! envs))
≡ (interp∗ (Lam t) envs) ! as

c3 {zero} t [] [] = refl
c3 {suc n} t (a :: as) (b :: bs) = ≡-tail (c3 t as bs)
c4 : {n : N} {k1 k2 : Kind} {G : Ctx}

→ (t1 : Typ G (k1 ⇒ k2))
→ (t2 : Typ G k1)
→ (envs : Vec (Env G) n)
→ (interp∗ (t1) envs) ! (interp∗ (t2) envs)
≡ interp∗ (App t1 t2) envs

c4 {zero} [] = refl
c4 {suc n} t1 t2 (a :: as) = ≡-tail (c4 t1 t2 as)
c5 : {n : N} {k : Kind} {G : Ctx}
→ (c : Const k)
→ (envs : Vec (Env G) n)
→ repeat & Con c ' ≡ interp∗ (Con c) envs

c5 {zero} [] = refl
c5 {suc n} c (a :: as) = ≡-tail (c5 c as)
c6 : {n : N} {G : Ctx}

→ (t2 : Typ G (! ⇒ !))
→ (envs : Vec (Env G) n)
→ (interp∗ t2 envs ! (repeat µ ! (interp∗ t2 envs)))
≡ interp∗ (App t2 (Mu t2)) envs

c6 {zero} [] = refl
c6 {suc n} t2 (a :: as) = ≡-tail (c6 t2 as)
c6’ : {n : N} {G : Ctx}

→ (t2 : Typ G (! ⇒ !))
→ (envs : Vec (Env G) n)

258 S. Weirich and C. Casinghino

→ (repeat µ ! (interp∗ t2 envs))
≡ interp∗ (Mu t2) envs

c6’ {zero} [] = refl
c6’ {suc n} t2 (a :: as) = ≡-tail (c6’ t2 as)
c7 : {n : N} {A B : Set} {f : A → B} {x : A} →

(repeat {n} f) ! repeat x ≡ repeat (f x)
c7 {zero} = refl
c7 {suc n} = ≡-tail c7

nLookup : {n : N} {b : Vec Set (suc n) → Set}
{k : Kind} {G : Ctx}

→ (v : V G k)
→ (nge : NGEnv b G)
→ b 〈 k 〉 (interp∗ (Var v) (transpose nge))

nLookup {n} {b} {k} VZ (NCons a e nge) =
≡-KIT (c1 a (transpose nge)) e

nLookup (VS x) (NCons a nge) =
≡-KIT (c2 x a (transpose nge)) (nLookup x nge)

MuGen : (n : N) → (Vec Set (suc n) → Set) → Set
MuGen n b = ∀ {A} → b (A ! (repeat µ ! A)) → b (repeat µ ! A)
ngen-open : {n : N} {b : Vec Set (suc n) → Set} {G : Ctx} {k : Kind} →

(t : Typ G k) → (ve : NGEnv b G) →
(ce : ConstEnv b) → MuGen n b →
b 〈 k 〉 (interp∗ t (transpose ve))

ngen-open (Var x) ve ce d = nLookup x ve
ngen-open {n} {b} (Lam {k1 = k1} t) ve ce d =
λ {a : Vec ! k1 " (suc n)} (nwt : b 〈 k1 〉 a) →
≡-KIT (c3 t (transpose ve) a)
(ngen-open t (NCons a nwt ve) ce d)

ngen-open {n} {b} {G} (App {k1 = k1} {k2 = k2} t1 t2) ve ce d =
≡-KIT (c4 t1 t2 (transpose ve))

((ngen-open {n} {b} {G} {k1 ⇒ k2} t1 ve ce d)
{(interp∗ t2 (transpose ve))} (ngen-open t2 ve ce d))

ngen-open (Con c) ve ce d = ≡-KIT (c5 c (transpose ve)) (ce c)
ngen-open {n} {b} (Mu t) ve ce d

with (ngen-open (App t (Mu t)) ve ce d)
... | ng with d {(interp∗ t (transpose ve))}
... | BS = ≡-app { } {b} (c6’ t (transpose ve))

(BS (≡-app { } {b} (sym (c6 t (transpose ve))) ng))
ngen : {n : N} {b : Vec Set (suc n) → Set} {k : Kind} →

(t : Ty k) → (ConstEnv b) → MuGen n b → b 〈 k 〉 (repeat & t ')
ngen {n} {b} {k} t ce d = ≡-KIT {n} {b} {k} c7 (ngen-open t NNil ce d)

	Generic Programming with Dependent Types
	Introduction
	Simple Type-Generic Programming in Agda
	Basic Type-Generic Programming

	Arity-Generic Programming
	Typing Arity-Generic Vector Map
	A Curried Vector Map

	Generic Haskell in Agda
	Challenge Problem
	A Sublanguage of Types
	Representing the Simply Typed Lambda Calculus
	Type-Generic Operations
	A General Framework

	Arity-Generic Type-Generic Map
	Generic Programming at Multiple Arities
	Doubly Generic Map

	Other Doubly Generic Operations
	Equality
	Splitting
	More Operations

	Related Work
	Discussion
	Acknowledgments.

	Complete Definition of Arity-Generic, Type-Generic Framework

