
Combining Proofs and Programs
in a Dependently Typed Language

Chris Casinghino Vilhelm Sjöberg Stephanie Weirich
University of Pennsylvania

{ccasin,vilhelm,sweirich}@cis.upenn.edu

Abstract
Most dependently-typed programming languages either require
that all expressions terminate (e.g. Coq, Agda, and Epigram), or al-
low infinite loops but are inconsistent when viewed as logics (e.g.
Haskell, ATS, Ωmega). Here, we combine these two approaches
into a single dependently-typed core language. The language is
composed of two fragments that share a common syntax and over-
lapping semantics: a logic that guarantees total correctness, and a
call-by-value programming language that guarantees type safety
but not termination. The two fragments may interact: logical ex-
pressions may be used as programs; the logic may soundly reason
about potentially nonterminating programs; programs can require
logical proofs as arguments; and “mobile” program values, includ-
ing proofs computed at runtime, may be used as evidence by the
logic. This language allows programmers to work with total and
partial functions uniformly, providing a smooth path from func-
tional programming to dependently-typed programming.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

Keywords Dependent types; Termination; General recursion

1. Introduction
Dependently typed languages have developed along two different
traditions, distinguished by their attitude towards nonterminating
programs. On the one hand, languages like Cayenne [6], ATS [13],
Ωmega [33] and Haskell [29] treat dependently-typed program-
ming as an extension of ordinary functional programming. These
languages enhance ordinary functional programs, defined by gen-
eral recursion, with more expressive types. On the other hand, lan-
guages like Coq [40], Agda [28] and Epigram [23] treat depen-
dently typed programming as a use-case of constructive theorem
proving. These systems disallow nontermination because an infi-
nite loop can be given any type and would therefore make the logic
inconsistent.

We would like balance between proving and programming, with
neither activity given preferential treatment. Although we are sym-
pathetic to the ideal that all programs should be proven correct, we

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535883

understand that there are practical reasons not to do so. Instead,
we desire a language for heterogeneous verification, allowing pro-
grammers to devote their verification budget to critical sections.
Such a language must support general recursion as natively as a
functional programming language, yet at the same time must pro-
vide the expressive reasoning capabilities of a constructive logic
proof assistant.

In support of this goal, we propose a novel language that is com-
posed of two fragments: a logical fragment where every expression
is known to terminate, and a programmatic fragment that does not
provide this assurance. The key idea of our work is to distinguish
between these fragments by indexing the typing judgement with a
consistency classifier θ that may be L (“logic”) or P (“program”),
thus

Γ `θ a : A

When θ is L, the Curry-Howard Isomorphism applies, and we may
consider a a proof of the theorem A. When θ is P, the only inter-
pretation of a is as a functional program. Making this distinction
means that one language can subsume both functional program-
ming and constructive logic by embedding each in their respective
fragments. However, these activities are not too far apart—the syn-
tax and semantics of the two fragments overlap considerably, be-
cause the distinction between them is made through typing.

In this paper, we explore the consequences of this design in the
context of a dependently-typed programming language, focusing
on the following mechanisms that foster interaction between the
two fragments.

• First, we define the logical language as a sublanguage of the
programmatic language, so that all logical expressions can be
used as programs. (Of course, the programmatic language in-
cludes forms that are not available to the logic, including gen-
eral recursion and the elimination of iso-recursive types.)
• We allow uniform reasoning for logical and programmatic ex-

pressions through a heterogenous equality type. Two expres-
sions can be shown to be equal based on their evaluation, which
is the same for both fragments. Equality proofs can be used im-
plicitly by the type system.
• We internalize the labeled typing judgment as a new type form
A@θ. This type can be used by either fragment to manipulate
values belonging to the other.
• We identify a set of “mobile types”—those whose values can

freely move between the fragments.

To demonstrate the soundness and consistency of these mecha-
nisms, we define a core dependently-typed language, called λθ , that
supports these interactions (see Sections 2 and 3). In addition to the
A@θ type, this language includes dependent functions, products,
propositional equality, natural numbers, sums, recursive functions

and iso-recursive types. We prove that this language is type safe and
that the L fragment is normalizing and logically consistent (Section
4). Our normalization proof uses a combination of traditional and
step-indexed logical relations. All of our metatheoretic results have
been completely machine-checked using the Coq proof assistant
and are available online1.

We also explore how our ideas interact with other programming
language features. We have implemented a prototype language,
Zombie, based on the semantics of λθ , and discuss that imple-
mentation in Section 5. Zombie extends λθ with features that are
convenient for dependently-typed programming: parametric poly-
morphism, type-level computation, user-defined datatypes, and im-
plicit arguments. We have developed a number of examples using
Zombie; the implementation is available online2.

We are not the first to consider the combination of total and par-
tial programming in the setting of dependently-typed languages.
Partial types [14] and the coinductive partiality monad [11] em-
bed general recursive programs into constructive logic by mod-
eling nontermination. Alternatively, languages such as Idris [10],
Aura [18], and F∗ [38] identify a restricted sublanguage of pure to-
tal functions. However, neither of these approaches provide equal
support for total and partial programming. We compare them to our
work in Section 6.

1.1 Combining Proofs and Programs
Before explaining the semantics of λθ , we conclude this section
with a number of examples to demonstrate the key ideas.

In Zombie, declarations must indicate whether they belong to
the logical or programmatic fragment of the language. For exam-
ple, a boolean negation operation is trivially terminating, so it is
checkable in the logical fragment, as indicated by the tag log in its
definition:

log not : Bool → Bool
not b = if b then False else True

Likewise, addition for natural numbers can be shown terminat-
ing via natural number induction. In the case expression below,
plus may be called on any subterm of its argument. The argument
n_eq is a proof that n’ is a subterm of n.

log plus : Nat → Nat → Nat
ind plus n m =
case n [n_eq] of
Zero → m
Succ n’ → Succ (plus n’ n_eq m)

Alternatively, the following natural number division function
diverges when m is 0, so it must be tagged with prog. The rec
keyword indicates that this function is implemented using general
recursion.

prog div : Nat → Nat → Nat
rec div n m = if lt n m then 0

else plus 1 (div (minus n m) m)

Subsumption. All proofs can be used as programs. In the above
example, even though the plus operation is logical, we can seam-
lessly use it (and other logical operations such as lt and minus)
directly in a programmatic term, and call it on an argument whose
termination behavior is unknown. Thus, the fact that we know that
plus terminates does not restrict how it may be used—we do not

1 Proofs available at http://www.cis.upenn.edu/~ccasin/papers/
combining-coq.tgz
2 Implementation available at https://code.google.com/p/trellys
in the branch branches/zombie-trellys-POPL14/

need to duplicate its definition for it to be available to both frag-
ments.

Proofs containing programs. The @-type allows values to be
embedded from one fragment into another. For example, the logical
language can safely manipulate programmatic values as long as
their types indicate (with @P) that they are programmatic. Below,
consider the definition of a Maybe datatype that could contain
arbitrary programs.

data Maybe (A : Type) where
Nothing
Just of (A @ P)

As long as the programmatic component is treated carefully, ex-
pressions in the logical fragment can work with this data structure.
This includes constructing values of the Maybe type, and pattern
matching on the data structure.

log md3 : Maybe (Nat → Nat)
md3 = Just (\x. div 3 x)

log foo : Maybe (Nat → Nat) → (Nat → Nat @ P)
foo x = case x of

Just y → y
Nothing → \x. x

However, if the programmatic component is ever used, then
the definition must be marked as programmatic, as an embedded
function could cause divergence.

prog bar : Maybe (Nat → Nat) → Nat → Maybe Nat
bar x y = case x of

Just f → Just (f y)
Nothing → Nothing

prog boom : Maybe Nat
boom = bar md3 0

Proofs about programs. Having defined the programmatic func-
tion div, we might wish to verify facts about it. As a simple exam-
ple, we prove that div 6 3 evaluates to 2. We can state and prove
these facts using the logical language, even though the object of
study may not terminate.

log div63 : div 6 3 = 2
div63 = refl

The proof above (refl) is valid when both sides of an equality
proposition evaluate to the same result. (To avoid infinite loops, the
typechecker will give up and signal an error if the expression does
not reach a normal form within 1000 steps. If more evaluation is
required the programmer can write e.g. refl 5000). In languages
like Aura or F∗, this theorem cannot even be stated because non-
value expressions such as div 6 3 cannot appear in types. This
example illustrates an important property of our language, which
we call freedom of speech: although proofs cannot themselves use
general recursion, they are allowed to refer to arbitrary program-
matic expressions.

As a more complicated example, we might wish to prove that if
the divisor is not zero, then the result is less than the dividend. In
other words:

log div_le : (n:Nat) → (m:Nat) → (eq m 0 = False)
→ (le (div n m) n = True)

Above, eq is an equality function for natural numbers and le
m n determines whether m≤ n. We do not show proof of the above
theorem here, though it is available with our implementation. The

http://www.cis.upenn.edu/~ccasin/papers/combining-coq.tgz
http://www.cis.upenn.edu/~ccasin/papers/combining-coq.tgz
https://code.google.com/p/trellys

proof itself uses strong natural number induction to simultaneously
show both that division terminates and that the property above
holds for the result.

Note that we can only show properties that are provable via fi-
nite reduction sequences. For example, we cannot show that divi-
sion diverges when the dividend is 0, because that divergence is
not finitely observable. (The logic does not have a general principle
for reasoning about nonterminating programs, such as fixed-point
induction. We return to this issue in Section 6.)

Programs that return proofs. An alternative to writing separate
proofs about nonterminating programs is to give the programs
themselves more specific types that express their correctness. For
example, consider writing a SAT solver that we do not want to
prove terminating.

A SAT solver takes a formula of n variables and, if the formula
is satisfiable, returns a satisfying assignment for some subset of
those variables. We can represent the result of a SAT solver using
the following datatype declaration. The result for a given formula
is either an assignment together with a proof that that assignment
satisfies the formula, or UNSAT when the formula is unsatisfiable.

data Ans (n : Nat) (form : Formula n) : Type where
SAT of (assign : Vector (Maybe Bool) n)

(proof : satisfies assign form =
(Just True : Maybe Bool))

UNSAT

The main loop of the solver itself takes a formula and the current
assignment and returns whether that assignment can be extended to
a satisfying one. If the current assignment is known to be satisfying,
then that one is returned. Zombie can automatically fill in the
_ below with the proof that assign satisfies the formula. If the
assignment is known to invalidate the formula, then the result is
UNSAT. Otherwise the algorithm must search for an extension to the
assignment using techniques such as unit propagation, pure literal
assignment, or merely trying both possibilities for an unassigned
variable.

prog solver : (n:Nat) → (formula : Formula n)
→ Vector (Maybe Bool) n
→ Ans n formula @ L

solver n formula assign =
case (satisfies assign formula) of
Just True → SAT assign _

Just False → UNSAT
Nothing →

Since the solver is written in the programmatic fragment, it may
not terminate. It also may fail to find an assignment even though
the formula was satisfiable. However, the type of this function is
more informative than if it had been written in ML or Haskell. The
@L in its type indicates that if it does return a proof of satisfiability,
then that value was type checked in the logical fragment.

When a program contains subexpressions from both fragments,
values can be handled more freely than expressions. For example,
a logical expression cannot call solver directly because of the
possibility of divergence. However, if the result of that call has
already been bound to a variable, then the logic has access to that
result.

let prog f = (... : Formula n) in
let log empty = repeat (Nothing : Maybe Bool) n in
let prog isSat = (solver n f empty : Ans n f @L) in
let log prf = case isSat of

SAT assignment pf →
-- ... use proof of satisfiability ...

UNSAT → ...

θ ::= L | P
a, b, A, B ::= ? | (x :A)→ B | a = b

| Nat | A + B | Σx :A.B | µx .A | A@θ
| x | λx .a | rec f x .a | ind f x .a | a b
| refl | inl a | inr b
| scasez a of {inl x ⇒ a1; inr y ⇒ a2}
| 〈a, b〉 | pcasez a of {(x , y)⇒ b}
| Z | S a | ncasez a of {Z ⇒ a1; S x ⇒ a2}
| roll a | unroll a

v ::= ? | (x :A)→ B | a = b
| Nat | A + B | Σx :A.B | µx .A | A@θ
| x | λx .a | rec f x .a | ind f x .a | refl
| inl v | inr v | 〈v1, v2〉 | Z | S v | roll v

a ; b
(λx .a) v ; [v/x]a

SLAM

(rec f x .a) v ; [v/x][rec f x .a/f]a
SFUN

(ind f x .a) v ; [v/x][λy .λz .(ind f x .a) y/f]a
SIND

scasez inl v of {inl x ⇒ a1; inr x ⇒ a2}; [refl/z][v/x]a1
SCL

scasez inr v of {inl x ⇒ a1; inr x ⇒ a2}; [refl/z][v/x]a2
SCR

pcasez 〈v1, v2〉 of {(x , y)⇒ a}; [refl/z][v1/x][v2/y]a
SCP

unroll (roll v) ; v
SUNROLL

Figure 1. Expressions, values, and operational semantics (excerpt)

Mobile types Finally, some types have the same meaning in both
fragments, so they do not benefit from being tagged with a consis-
tency classifier. For example, a value of type Nat can never cause
divergence, so it is safe to be used in logical expressions even when
not marked as @L. Similarly, the Ans type above is also mobile, so
the @L annotation on the type of solver is actually unnecessary.
This observation simplifies programming as the only function ar-
guments that must be annotated with their fragment are those that
are not mobile.

2. The λθ language
We begin our technical development with an overview of the for-
mal language, λθ . This language is based on a call-by-value (CBV)
variant of lambda calculus. Its syntax is shown in Figure 1. For
uniformity, terms, types and the single kind ? (the “type” of types)
are drawn from the same syntactic category, as in pure type sys-
tems [7]. The first two lines of the figure list the type forms, the
following lines list the terms. By convention, we use lowercase
metavariables a, b for expressions that are terms and uppercase
metavariables A,B for expressions that are types.

The λθ values v and key rules of the operational semantics are
also shown in Figure 1. The reduction relation a ; b defines a
small-step call-by-value semantics. The slightly unusual beta rule
for natural number induction (SIND) is described in Section 2.1. To

save space, most rules have been omitted. The full set of rules can
be found in the companion technical report3.

Values include the standard components of functional program-
ming: recursive functions rec f x .a , nonrecursive functions λx .a ,
natural numbers (constructed by Z and S a and eliminated by
ncase), disjoint unions (constructed by inl a and inr a and elim-
inated by scase), dependently typed pairs (constructed by 〈a, b〉
and eliminated by pcase), and recursive data (introduced by roll a
and eliminated by unroll a). Values also include ?, all type forms, a
trivial equality proof refl, and variables. Including variables is safe
because CBV evaluation only substitutes values for variables and
it is useful because it allows the λθ type checker to reduce open
terms.

We chose CBV because of its simple cost model, but this choice
also affects the interaction between the logical and programmatic
fragments. As shown in Sections 2.2 and 3.3, the type system takes
advantage of the fact that values cannot induce nontermination. As
a result, some typing rules apply only to values.

Note that expressions do not contain type annotations. Types
describe terms but do not interfere with equality. We do not want
terms with the same runtime behavior to be considered unequal just
because they have different annotations.

Due to the lack of annotations, it is not possible to algorithmi-
cally compute the type of a λθ term. This is not a problem because
we do not intend programmers to write these terms directly. In-
stead, our implementation uses an annotated surface language that
the type checker elaborates into typing derivations (see Section 5).

The rest of this section describes the specific details of λθ , in-
cluding its basic judgements (Section 2.1), and treatment of equal-
ity (Section 2.2). In the next section, we introduce the novel fea-
tures of our language that permit the interaction between the logical
and programmatic fragments of the language.

2.1 Classifying terminating and nonterminating expressions
The starting point for λθ is a dependent type theory where the
typing judgment Γ `θ a : A is indexed by a consistency classifier
θ. The judgement is designed so that expressions that type check at
L always terminate.

Figure 2 shows the typing rules for the basic building blocks of
the language—variables, functions and various data structures and
their types. Because we work with a collapsed syntax, we use the
type system to identify which expressions are types: A is a well-
formed type if Γ `θ A : ?.

Contexts are lists of assumptions about the types of variables.

Γ ::= ∅ | Γ, x :θ A

Each variable in the context is tagged with θ to indicate its frag-
ment, and this tag is checked in the TVAR typing rule. A context
is valid, written ` Γ, if each type A is valid in the corresponding
fragment.

The rules TARR, TSIGMA, TSUM, and TMU check types
for well-kindedness. For example, TARR checks a function type
by checking the the domain and range. We discuss the premise
Mobile (A), which asserts that A is a mobile type, in Section 3.3.

There are three ways to define functions in λθ . Rule TLAM
types non-recursive λ-expressions in the logical fragment, whereas
rule TREC types general recursive rec-expressions and can only be
used in the programmatic fragment.

Additionally, terminating recursion over natural numbers is pro-
vided in the logical fragment by rule TIND. When typechecking the
body of a terminating recursive function (ind f x .b), the recursive

3 Available from http://www.seas.upenn.edu/~ccasin/papers/
combining-TR.pdf and as University of Pennsylvania CIS Technical Re-
port MS-CIS-13-08.

` Γ

` ·CNIL
` Γ

` Γ, x :θ ?
CSTAR

` Γ Γ `θ A : ?

` Γ, x :θ A
CTYPE

Γ `θ a : A

(x :θ A) ∈ Γ ` Γ

Γ `θ x : A
TVAR

Γ `θ A : ? Mobile (A)
Γ, x :θ A `θ B : ?

Γ `θ (x :A)→ B : ?
TARR

Γ `θ b : (x :A)→ B
Γ `θ a : A Γ `θ [a/x]B : ?

Γ `θ b a : [a/x]B
TAPP

Γ, x :L A `L b : B
Γ `L (x :A)→ B : ?

Γ `L λx .b : (x :A)→ B
TLAM

Γ, f :P (x :A)→ B , x :P A `P b : B
Γ `P (x :A)→ B : ?

Γ `P rec f x .b : (x :A)→ B
TREC

Γ, x :L Nat, f :L (y :Nat)→ (z :S y = x)→ B `L b : B
Γ `L (x :Nat)→ B : ?

Γ `L ind f x .b : (x :Nat)→ B
TIND

Γ `θ A : ?
Γ `θ B : ?

Γ `θ A + B : ?
TSUM

Γ `θ a : A
Γ `θ A + B : ?

Γ `θ inl a : A + B
TINL

Γ `θ b : B
Γ `θ A + B : ?

Γ `θ inr b : A + B
TINR

Γ `θ a : A1 + A2 Γ `θ B : ?
Γ, x :θ A1, z :L inl x = a `θ b1 : B
Γ, x :θ A2, z :L inr x = a `θ b2 : B

Γ `θ scasez a of {inl x ⇒ b1; inr x ⇒ b2} : B
TSCASE

Γ `θ A : ?
Mobile (A)
Γ, x :θ A `θ B : ?

Γ `θ Σx :A.B : ?
TSIGMA

Γ `θ Σx :A.B : ?
Γ `θ a : A
Γ `θ b : [a/x]B
Γ `θ [a/x]B : ?

Γ `θ 〈a, b〉 : Σx :A.B
TPAIR

Γ `θ a : Σx :A1.A2 Γ `θ B : ?
Γ, x :θ A1, y :θ A2, z :L 〈x , y〉 = a `θ b : B

Γ `θ pcasez a of {(x , y)⇒ b} : B
TPCASE

Γ, x :L ? `L A : ?

Γ `L µx .A : ?
TMU

Γ `θ a : [µx .A/x]A
Γ `θ µx .A : ?

Γ `θ roll a : µx .A
TROLL

Γ `P a : µx .A Γ `P [µx .A/x]A : ?

Γ `P unroll a : [µx .A/x]A
TUNROLL

Figure 2. Typing: variables, functions, and datatypes (rules for
Nat omitted)

http://www.seas.upenn.edu/~ccasin/papers/combining-TR.pdf
http://www.seas.upenn.edu/~ccasin/papers/combining-TR.pdf

call f takes an extra argument proving that it is being applied to
the predecessor of the initial argument x. This ensures termination.
When beta-reducing such an expression, this argument is ignored
by wrapping the function in an extra lambda (rule SIND from Fig-
ure 1).

The rule for function application, TAPP, differs from the usual
application rule in pure dependently-typed languages in the addi-
tional third premise Γ `θ [a/x]B : s, which checks that the re-
sult type is well-formed. Some rules of the language (such as β-
reduction) are sensitive to whether terms are values. Because values
include variables, substituting an expression a for a value x could
cause B to no longer type check.

Any dependently typed language that combines pure and effect-
ful code will likely have to restrict the application rule in some
way. Previous work [18, 21, 38] uses a more restrictive typing for
applications, by splitting it into two rules: one which permits only
value dependency and requires the argument to be a value, and one
which allows a non-dependent function to be applied to an arbitrary
argument. Since substituting a value can never violate a value re-
striction in B , our application rule subsumes the value-dependent
version. Likewise, in the case of no dependency, the premise can
never fail because the substitution has no effect on B .

Being able to call dependent functions with non-value argu-
ments is useful when writing explicit proofs. For example, a pro-
grammer may want to first prove a lemma about addition

log plus_zero : (n:Nat) → plus n 0 = n

and then instantiate the lemma to prove a theorem about a particular
expression in the logical fragment.

plus_zero (f x) : plus (f x) 0 = (f x)

The rules for sum types (TSUM, TINL, TINR, and TSCASE)
provide dependent case analysis. The term scase binds the logical
variable z inside both branches of the case. This variable provides
an equality between the scrutinee and the pattern of the branch so
that type checking is flow-sensitive. At runtime, this variable is
replaced by refl because the scrutinee must match the pattern for
the branch to be taken.

The rules for dependent products (TSIGMA, TPAIR, TPCASE)
allow the type of the second component of the pair to depend on
the value of the first component. As with function application, the
premise Γ `θ [a/x]B : ? ensures that substituting the expression a
does not violate any assumptions made about the value x in the type
of the second component. Analogously to sums, the eliminator for
pairs makes available a logical proof z that equates the scrutinee to
the pattern in the body of the match. The availability of this equality
means that the strong elimination forms (projections) for Σ-types
are derivable.

Finally, the rules TMU, TROLL and TUNROLL deal with
general recursive types. These are the standard rules for iso-
recursive types (see, e.g., [30]). But recursive types with negative
occurrences—that is, with the recursive variable appearing to the
left of an arrow, such as µx .(x → Nat)—are a potential source of
nontermination. To ensure normalization, it suffices to restrict the
the elimination rule TUNROLL to be in P. The introduction rule
TROLL can be used in both fragments. This reflects the fact that it
is not dangerous to construct negative datatype values; the potential
nontermination comes from their elimination.

2.2 Reasoning about equivalence
A big benefit of combining termination-checking with dependent
types is that it is possible to write proofs about programs. For ex-
ample, in the introduction we showed a proof that when the divisor
is not zero, natural number division produces a result less than the

Γ `θ a : A
Γ `P a : A Γ `P b : B

Γ `L a = b : ?
TEQ

a V∗ c b V∗ c
Γ `θ1 a : A Γ `θ2 b : B

Γ `L refl : a = b
TREFL

Γ `L b : b1 = b2 Γ `θ a : [b1/x]A
Γ `θ [b2/x]A : ?

Γ `θ a : [b2/x]A
TCONV

Figure 3. Typing: equality

dividend. Our rules for propositional equality (Figure 3) are de-
signed to support such reasoning uniformly, based only on the run-
time behavior of the expressions being equated, and independent of
the fragment that they are defined in.

Therefore, the rule TEQ shows that the type a = b is well-
formed and in the logical fragment even when a and b can be type
checked only programmatically. This is freedom of speech: proofs
can refer to nonterminating programs.

The term refl is the primitive proof of equality. Rule TREFL
says that refl is a proof of a = b just when a and b reduce to
a common expression. The notion of reduction used in the rule
is parallel reduction, denoted a V b. This relation extends the
ordinary evaluation a ; b by allowing reduction under binders,
e.g. (λx.1 + 1) V (λx.2) even though (λx.1 + 1) is already a
value. Having this extra flexibility makes equality more expressive
and simplifies the proof of preservation.

Proven equalities are used to substitute expressions in types by
the elimination rule TCONV. The proof term is checked in L to
ensure it is a valid proof. We demand that the equality proof used
in conversion type checks in the logical fragment for type safety.
All types are inhabited in the programmatic fragment, so if we
permitted the user to convert using a programmatic proof of, say,
Nat = Nat → Nat, it would be easy to create a stuck term.
Similar to TAPP, we need to check that b2 does not violate any
value restrictions, so the last premise checks the well-formedness of
the type given to the converted term. Rule TCONV is quite general,
and may be used to change some small part of A or the entire type
by picking x for A.

This treatment of equality is a variant of Sjöberg et al. [34].
However, that setting did not include a logical sublanguage; instead
it enforced soundness by requiring the proof term used in conver-
sion to be a value.

Uses of TCONV are not marked in the term because they are not
relevant at runtime. Again, types should describe terms without in-
terfering with equality; we do not want terms with the same runtime
behavior to be considered unequal due to uses of conversion.

3. Interactions between the fragments
What is interesting about λθ is how its two fragments interact. In
the introduction, we discussed ways in which logical and program-
matic terms work together. Below, we discuss the technical machin-
ery of the type system that supports this interaction.

3.1 Subsumption
Every logical expression can be safely used programmatically. We
reflect this fact into the type system by the rule TSUB, which
says that if a term a type checks logically, then it will also type
check programmatically. For example, a logical term can always
be supplied to a function expecting a programmatic argument. This
rule is useful to avoid code duplication. A function defined in the

Γ `θ a : A

Γ `L a : A

Γ `P a : A
TSUB

Γ `θ
′
A : ?

Γ `θ A@θ′ : ?
TAT

Γ `θ v : A@θ′

Γ `θ
′
A : ?

Γ `θ′ v : A
TUNBOXVAL

Γ `θ a : A
Γ `θ A : ?

Γ `P a : A@θ
TBOXP

Γ `L a : A
Γ `θ A : ?

Γ `L a : A@θ
TBOXL

Γ `P v : A
Γ `P A : ?

Γ `L v : A@P
TBOXLV

Figure 4. Typing: subsumption and internalized consistency clas-
sification

logical fragment can be used without penalty in the programmatic
fragment.

Subsumption also eliminates duplication in the design of the
language. For example, we need only one type a = b to talk about
when two programmatic or two logical terms are equal. In fact, we
can also equate logical and programmatic expressions.

3.2 Internalized Consistency Classification
To provide a general mechanism for logical expressions to appear
in programs and programmatic values to appear in proofs, we in-
troduce a type that internalizes the typing judgment, written A@θ.
Nonterminating programs can take logical proofs as preconditions
(with functions of type (x : A@L) → B), return them as post-
conditions (with functions of type (x : A) → (B@L)), and store
them in data structures (with pairs of type Σx :A.(B@L)). At the
same time, logical lemmas can use @ to manipulate values from the
programmatic fragment.

The rules for the A@θ type appear in Figure 4. Intuitively, the
judgment Γ `θ1 a : A@θ2 holds if the fragment θ1 may safely
observe that Γ `θ2 a : A. This intuition is captured by the three
introduction rules. The programmatic fragment can internalize any
typing judgement (TBOXP), but in the logical fragment (TBOXL
and TBOXLV) we sometimes need a restriction to ensure termina-
tion. Therefore, rule TBOXLV only applies when the subject of the
typing rule is a value. (The rule TBOXL can introduce A@θ for any
θ since logical terms are also programmatic). Both introduction and
elimination of @ is unmarked in the syntax, so the reduction behav-
ior of an expression is unaffected by whether the type system deems
it to be provably terminating or not.

For example, a recursive function f can require an argument
to be a proof by marking it @L, e.g., A@L → B , forcing that
argument to be checked in fragment L. Similarly, a logical lemma
g can be applied to a programmatic value by marking it @P:

Γ `P f : A@L→ B

Γ `L a : A

Γ `P a : A@L
TBOXP

Γ `P f a : B
TAPP

Γ `L g : A@P→ B

Γ `P v : A

Γ `L v : A@P
TBOXLV

Γ `L g v : B
TAPP

Of course, g can only be defined in the logical fragment if it is
careful to not use its argument in unsafe ways. For example, using
TCONV we can prove a lemma of type

(n: Nat) → (f: (Nat → Nat)@P) → (f (plus n 0) = f n)

because reasoning about f does not require calling f at runtime.

Mobile (A)
Mobile (A@θ)

MAT

Mobile (a = b)
MEQ

Mobile (A) Mobile (B)

Mobile (Σx :A.B)
MSIGMA

Mobile (Nat)
MNAT

Mobile (A) Mobile (B)

Mobile (A + B)
MSUM

Γ `θ a : A

Γ `P v : A Γ `L A : ? Mobile (A)

Γ `L v : A
TMVAL

Γ `θ a : (A1 + A2)@θ′ Γ `θ B : ?

Γ, x :θ
′
A1, z :L inl x = a `θ b1 : B

Γ, x :θ
′
A2, z :L inr x = a `θ b2 : B

Γ `θ scasez a of {inl x ⇒ b1; inr x ⇒ b2} : B
TSCASE’

Γ `θ a : (Σx :A1.A2)@θ′ Γ `θ B : ?

Γ, x :θ
′
A1, y :θ

′
A2, z :L 〈x , y〉 = a `θ b : B

Γ `θ pcasez a of {(x , y)⇒ b} : B
TPCASE’

Figure 5. Typing: mobile types and cross-fragment case expres-
sions

There is no way to apply a logical lemma to a programmatic
non-value expression. If an expression a may diverge then so may
f a, so we must not assign it a type in the logical fragment.4 How-
ever, we can work around this restriction by either first evaluating
a to a value in the programmatic fragment or by thunking.

The @-types are eliminated by the rule TUNBOXVAL. To pre-
serve termination, the rule is restricted to apply only to values.

Recall the function solver of type

prog solver : (n:Nat) → (f:Formula n)
→ Vector (Maybe Bool) n → (Ans n f)@L

In the introduction, we asserted that the following code type checks.

let prog isSat = (solver n f empty : Ans n f @L) in
let log prf = case isSat of

SAT a pf → -- ... here pf is logical ...
UNSAT → -- ...

In this example, the logical program prf cannot directly treat
solver n f empty as a proof because it may diverge. However,
once it has been evaluated to a value, it can be safely used by
the logical fragment. Above, the let binding forces evaluation of
the expression solver n f empty, introducing a new program-
matic variable isSat : Ans n f @ L into the context. Because
variables are values, any logical context can freely use the vari-
able through TUNBOXVAL even though it was computed by the
programmatic language.

3.3 Mobile types
The consistency classifier tracks which expressions are known to
come from a normalizing language. For some types of values, how-
ever, the rules described so far can be unnecessarily conservative.
For example, while a programmatic expression of type Nat may
diverge, a programmatic value of that type is just a number, so we
can treat it as if it were logical. On the other hand, we can not treat

4 This is one drawback of working in a strict rather than a lazy language. If
we know that f is nonstrict, then this application is indeed safe.

a programmatic function value as logical, since it might cause non-
termination when applied.

The rule TMVAL (Figure 5) allows values to be moved from
the programmatic to the logical fragment. It relies on an auxiliary
judgment Mobile (A).. Intuitively, a type is mobile if the same set
of values inhabit the type when θ = L and when θ = P. In
particular, these types do not include functions (though any type
may be made mobile by tagging its fragment with @).

Concretely, the natural number type Nat is mobile, as is the
primitive equality type (which is inhabited by the single constructor
refl, as discussed in Section 2.2). Any @-type is mobile, since it
fixes a particular θ independent of the one on the typing judgment.
Sum and pair types are mobile if their component types are.

Even if a sum type is not mobile, it is always safe to do one level
of pattern matching on one of its values, since such a value must
start with a constructor. We reflect that in the rule TSCASE’, which
generalizes TSCASE from the previous section. This rule allows a
scrutinee that type checks in one fragment θ′ to be eliminated in
another fragment θ. This lets the logical language reason by case
analysis on programmatic values. Similarly, TPCASE’ is a more
general version of the rule TPCASE. The two rules shown here are
the ones actually included in our formalization.

The mobile rule lets the programmer write simpler types, be-
cause mobile types never need to be tagged with logical classifiers.
For example, without loss of generality we can give a function the
type (a = b) → B instead of ((a = b)@L) → B , since when
needed, the body of the function can treat the argument as logical
through TMVAL. Similarly, multiple @’s have no effect beyond the
innermost @ in a type. Values of type A@P@L@P@L@P can be
used as if they had type A@P.

In fact, the arguments to functions must always have mobile
types. This restriction, enforced by rule TARR, means that higher-
order functions must use @-types to specify which fragment their
arguments belong to. For example, the type (Nat → Nat) → A is
not well-formed, so the programmer must choose either ((Nat →
Nat)@L)→ A or ((Nat→ Nat)@P)→ A.

In either case, programmers benefit from implicit unboxing. For
example, checking well-formedness of a type like

(f : (Nat → Nat)@P) → f (plus n 0) = f n

implicitly uses TUNBOXVAL. But the equation still talks about
the expression f n. If we instead had to use explicit unboxing to
eliminate the @-type, as in (unbox f) n, there would be no way
to write a logical lemma proving the original equation. By contrast,
mobile arguments do not need nor benefit from tagging.

The reason that function arguments must be mobile is to ac-
count for contravariance. Through subsumption, we can introduce
a function in the logical fragment and use it in the programmatic:

Γ, x :L A `L b : B

Γ `L (λx .b) : (x :A)→ B
TLAM

Γ `P (λx .b) : (x :A)→ B
TSUB

Here, the definition of b assumed x was logical, yet when the
function is called it can be given a programmatic argument. For
this derivation to be sound, we need to know that A means the
same thing in the two fragments, which is exactly what Mobile (A)
checks.

4. Metatheory
We now describe the metatheory of λθ . We are interested in two
properties. First, that the entire language is type safe, including
both the L and P fragments. Second, that any closed term in the
L fragment normalizes, which implies logical consistency.

Type safety is proven using standard progress and preservation
theorems. Since the rules TCONV and TCONTRA allow stuck terms
to type check given a contradiction, the progress theorem depends
on logical consistency. For this reason, we first prove preservation,
then normalization and consistency, and finally progress.

The theorems in this paper have been checked in Coq. To prove
certain facts about our logical relation we needed a standard axiom
of functional extensionality. This axiom is known to be consistent
with Coq’s logic [41].

4.1 Preservation
As usual, the preservation proof relies on weakening, substitution
and inversion lemmas. The weakening lemma is standard. Due to
the value restrictions in the type system, the substitution lemma is
restricted to values:

LEMMA 1 (Substitution). If Γ1, x :θ
′
B ,Γ2 `θ a : A and Γ1 `θ

′

v : B , then Γ1, [v/x]Γ2 `θ [v/x]a : [v/x]A.

However, our inversion lemmas are more complicated than usual,
because one of the design goals of λθ is that typing rules without
runtime effects should not require annotation. In particular, uses of
TCONV and TBOXP/L/LV are not marked.

For example, consider inversion for λ-expressions. Usually, it is
the case that if Γ ` (λx.b) : A, then A is β-convertible with some
arrow type (x :B1)→ B2 and Γ, x : B1 ` b : B2. In λθ this is not
true: if there were a hypothesis (x :L (Nat → Nat) = Nat) ∈ Γ,
the expression could also have been given type Nat using TCONV.
(Restricting preservation to empty contexts would not help, since
at this point in the proof—before proving consistency—we cannot
rule out that this equality is provable). Alternatively, if the BOX
rules were used, A may be an @-type. Taking this into account, our
inversion lemma reads:

LEMMA 2 (Inversion for λ-expressions). If Γ `θ (λx .b) : B ,
then there is some p and (x :B1)→ B2 such that either

1. Γ `L p : B = ((x :B1)→ B2) and Γ, x :θ B1 `θ b : B2,
2. or there are some θ′ . . . θ′′ such that Γ `L p : B = (((x :

B1)→ B2)@θ′ . . .@θ′′) and Γ, x :θ
′
B1 `θ

′
b : B2.

With this and other similar inversion lemmas, we can prove preser-
vation.

THEOREM 3 (Preservation). If Γ `θ a : A and a ; a ′, then
Γ `θ a ′ : A.

The proof of the preservation theorem requires the addition
of type constructor discrimination and injectivity rules (Figure 6)
to the type system. The discrimination rule TCONTRA eliminates
contradictory equalities. If we can prove a contradiction we must be
in unreachable code, so we allow giving any typeable expression a
any wellformed type B at any θ′.

An equation B1 = B2 counts as contradictory if the head forms
of both sides are defined and unequal. The head form of a type is its
outermost constructor. For example, the head form of (x :A)→ B
is→, and the head form of Nat is Nat. The complete definition of
hd(A) appears in the companion technical report.

The injectivity rules invert equality proofs between type forms.
For example, from a proof Γ `L p : ((x : A1) → A2) = ((x :
B1)→ B2) we can also derive Γ `L p : A1 = B1. Similar typing
rules are available for @, sum and pair types. These are elided here
for space, but included in the technical report.

These rules are necessitated by the weak inversion lemmas.
Consider, e.g., the case when a function application beta reduces,
(λx .b) v ; [v/x]b. From the premises of the rule TAPP we know
that Γ `θ (λx .b) : (x : A1) → A2 and Γ `θ v : A1, and from

Γ `θ a : A

Γ `θ a : ((x :A1)→ A2) = ((x :B1)→ B2)
Γ `θ A1 = B1 : ?

Γ `θ a : A1 = B1
TARRINV1

Γ `L a1 : B1 = B2

hd(B1) 6= hd(B2)
Γ `θ a : A

Γ `θ A : ? Γ `θ
′
B : ?

Γ `θ′ a : B
TCONTRA

Γ `θ a : ((x :A1)→ A2) = ((x :B1)→ B2)

Γ `θ
′
v : A1 Γ `θ [v/x]A2 = [v/x]B2 : ?

Γ `θ a : [v/x]A2 = [v/x]B2
TARRINV2

Figure 6. Typing: discrimination and injectivity of type constructors (injectivity rules for @-, µ-, pair- and sum-types omitted).

inversion we know either Γ `L p : ((x : A1) → A2) = ((x :
B1) → B2) and Γ, x :θ B1 `θ b : B1, or else (x : A1) → A2

is provably equal to an @-type. In the first case we apply the
substitution lemma, using TARRINV1 to prove A1 = B1, while
in the second case we use TCONTRA.

4.2 Normalization and Progress
Our proof of normalization builds upon the standard Girard-Tait
reducibility method [17, 39] in a CBV-style formulation. The crux
of this method is to define a “type interpretation”. For each type
A we define a set of values Vρ[[A]]θk that check in fragment θ (the
additional inputs ρ and k are discussed below). The definition of
the type interpretation (Figure 7) is a logical relation and follows
the structure of A.

Our main theorem is that the interpretation is “sound”: any
closed logical expression a of type A reduces to a value in Vρ[[A]]Lk .
The rules TUNBOXVAL and TMVAL can move values from P to
L, so for the proof to go through we must generalize the soundness
theorem to also characterize expressions in P. For these values we
prove a partial correctness property: if a closed programmatic ex-
pression a of type A reduces to a value, then the value is in Vρ[[A]]Pk .
These invariants are summarized by a computational type interpre-
tation Cρ[[A]]θk , which identifies sets of (non-value) expressions, and
is defined mutually with Vρ[[A]]θk .

The type interpretation for programmatic expressions must ac-
count for recursive functions and recursive types, which means
that it cannot be defined by recursion on A. Instead, we use step-
indexing [1, 5]. The interpretation is indexed by a number k. Any
value v in Vρ[[A]]Pk will be “well-behaved” for at least k steps of
execution. The interpretation is defined by well-founded recursion
on the lexicographically ordered triple (k,A, I), where I is one of
C or V with V < C.

However, the usual formulation of a step-indexed type interpre-
tation only lends itself to proving safety properties—it tells us that
an expression will not do anything bad for the next k steps. By con-
trast, normalization is a liveness property: every expression will
eventually do something good (namely reduce to a value). In our
definition, we take a hybrid approach by only counting steps that
happen in the P fragment. The difference can be seen by compar-
ing the definitions of Vρ[[(x :A) → B]]Lk and Vρ[[(x :A) → B]]Pk ,
which say “j ≤ k” and “j < k” respectively. If all θs in a deriva-
tion are L, then no inequalities are strict, so the step-count k never
needs to decrease.

The input ρ is a substitution mapping free variables of A to
values. We use ρ when interpreting equality types. The type a1 =
a2 is interpreted as the singleton set {refl} if ρ a1 and ρ a2 parallel-
reduce to a common expression, and as the empty set otherwise.
We inductively define the judgment Γ |=k ρ, which asserts that ρ
maps to values in the correct interpretation, by

· |=k ∅
ENIL

Γ |=k ρ v ∈ Vρ[[A]]θk Γ `θ A : ?

Γ, x :θ A |=k ρ[x 7→ v]
ECONS

Intuitively, Γ |=k ρ asserts that ρ maps term variables to well-
behaved values. Because of the premise Γ `θ A : ? it also asserts
that Γ does not contain any type variables. This is vacuously true
for the empty context, and preserved by each case of the type
interpretation.

In a normalization proof for System F or for CC [16], the type
interpretation would take an input ρ which specifies the interpreta-
tion of type variables in A, but not one which specifies the values
of term variables. Since we do not have polymorphism in our lan-
guage, we do not need to account for type variables. But unlike
CC, because of the primitive equality type we can not just ignore
term variables in types. Our ρ is similar to normalization proofs for
systems that have large elimination of datatypes, such as CIC [43].

The soundness theorem relies on a few key lemmas about the
interpretation. The first is a standard “downward closure” property
for step-indexed relations: it says that requiring values to stay
well-behaved for a larger number of steps creates a more precise
interpretation.

LEMMA 4. For any A, θ and ρ, if j ≤ k then Vρ[[A]]θk ⊆ Vρ[[A]]θj .

The next two lemmas are specific to λθ because they relate the L
and P interpretations of a type. They are used to handle the TSUB
and TMVAL rules, respectively. The first says that the set of logical
values is a subset of the corresponding programmatic sets.

LEMMA 5. For any A, k, θ and ρ, Vρ[[A]]Lk ⊆ Vρ[[A]]Pk and
Cρ[[A]]Lk ⊆ Cρ[[A]]Pk .

The second says that for mobile types, the reverse containment
also holds. For these types, the interpretations contain the same
values in both fragments.

LEMMA 6. For any k and ρ, if Mobile (A) then Vρ[[A]]Pk ⊆
Vρ[[A]]Lk .

Finally, for the TCONV rule, we need equal types to have the same
interpretation.

LEMMA 7. Suppose ρB1 V∗ A and ρB2 V∗ A and Γ `θ B1 : ?
and Γ `θ B2 : ? and Γ |=k ρ. Then a ∈ Iρ[[B1]]θk iff a ∈ Iρ[[B2]]θk .

We can now prove soundness by induction on Γ `θ a : A. Normal-
ization is an immediate corollary. We also get a characterization of
which terms can be proven equal in the empty context. We need
such a characterization to prove progress.

THEOREM 8 (Soundness). If Γ `θ a : A and Γ |=k ρ, then
ρ a ∈ Cρ[[A]]θk .

COROLLARY 9 (Normalization).
If · `L a : A, then there exists a value v such that a ;∗ v .

COROLLARY 10 (Soundness of propositional equality).
If · `L a : A1 = A2, then there exists some A such that A1 V∗ A
and A2 V∗ A.

Vρ[[?]]θk = {v | · `θ v : ?}

Vρ[[Nat]]θk = {v | v is of the form Sn Z}

Vρ[[A@θ′]]θk = {v | · `θ
′
ρA : ? and v ∈ Vρ[[A]]θ

′
k }

Vρ[[(x :A)→ B]]Lk = {λx .b | · `L λx .b : ρ ((x :A)→ B)
and ∀j ≤ k, if v ∈ Vρ[[A]]Lj then [v/x]b ∈ Cρ[x 7→v][[B]]Lj }

∪ {ind f x .b | · `L ind f x .b : ρ ((x :A)→ B)
and ∀j ≤ k, if v ∈ Vρ[[A]]Lj then [v/x][λy .λz .(ind f x .b) y/f]b ∈ Cρ[x 7→v][[B]]Lj }

Vρ[[(x :A)→ B]]Pk = {λx .b | · `P λx .b : ρ ((x :A)→ B)
and ∀j < k, if v ∈ Vρ[[A]]Pj then [v/x]b ∈ Cρ[x 7→v][[B]]Pj }

∪ {rec f x .b | · `P rec f x .b : ρ ((x :A)→ B)
and ∀j < k, if v ∈ Vρ[[A]]Pj then [v/x][rec f x .b/f]b ∈ Cρ[x 7→v][[B]]Pj }

∪ {ind f x .b | · `P ind f x .b : ρ ((x :A)→ B)
and ∀j < k, if v ∈ Vρ[[A]]Pj then [v/x][ind f x .b/f]b ∈ Cρ[x 7→v][[B]]Pj }

Vρ[[A + B]]θk = {inl v | · `θ ρ (A + B) : ? and v ∈ Vρ[[A]]θk}
∪ {inr v | · `θ ρ (A + B) : ? and v ∈ Vρ[[B]]θk}

Vρ[[Σx :A.B]]θk = {〈v1, v2〉 | · `θ ρ (Σx :A.B) : ? and v1 ∈ Vρ[[A]]θk and v2 ∈ Vρ[x 7→v1][[B]]θk}

Vρ[[µx .A]]θ
′

k = {roll v | · `θ
′

roll v : ρ (µx .A) and ∀j < k, v ∈ Vρ[[[µx .A/x]A]]θj }

Vρ[[a1 = a2]]θk = {refl | · `θ ρ (a1 = a2) : ? and ρ a1 V∗ a and ρ a2 V∗ a for some a}

Vρ[[A]]θk = ∅ otherwise

Cρ[[A]]Pk = {a | · `P a : ρA and ∀j ≤ k, if a ;j v then v ∈ Vρ[[A]]P(k−j)}

Cρ[[A]]Lk = {a | · `L a : ρA and a ;∗ v ∈ Vρ[[A]]Lk}

Figure 7. Type interpretation

Normalization holds only for closed terms. This is a result of the
fact that uses of the TCONV rule are unmarked in the syntax. It is
possible to assume a contradictory equality and use it to typecheck
a non-terminating term in the logical fragment. For example, the
following statement is derivable:

y :L Nat = (Nat→ Nat) `L (λx .x x) (λx .x x) : Nat

This distinguishes λθ from intensional type theories like Coq and
Agda. In those systems, our rule TCONV arises as the pattern-
matching elimination form for a defined equality datatype. Uses of
this eliminator would appear in the term above, and their reduction
would get “stuck” on the variable y, since it does not reduce to the
appropriate constructor.

The benefit of giving up normalization of open terms is a more
generous equality. Since uses of conversion appear in terms in Coq
and Agda, they often get in the way of judging two terms which
use such conversions equal. In our system, this can not happen. The
drawback is that the typechecker can not automatically normalize
expressions (since they may diverge), so uses of refl must be ex-
plicit and annotated with a maximum step count. However, in a lan-
guage with general recursion some explicit proofs are unavoidable,
since checking a logical term can involve reducing a programmatic
term that appears in its type. Since our language must accommodate
such proofs in any case, making conversion unmarked is appealing.

The progress theorem relies on a canonical forms lemma
(elided). In the TCONV and TCONTRA cases we need to know
that there are no proofs of inconsistent equalities such as (Nat →
Nat) = Nat. Therefore, this lemma relies on Corollary 10. The
progress theorem is then an easy induction on · `θ a : A.

Surface language (Zombie)

⇓ (elaboration)

Annotated language (ZT derivations)

⇓ (erasure)

Core language (ZT)

Figure 8. Implementation

THEOREM 11 (Progress). If · `θ a : A, then either a is a value,
or there exists a ′ such that a ; a ′.

5. Implementation
We have implemented a prototype dependently-typed language,
called Zombie, based on λθ . We have used this implementation to
gain experience with the features described in this paper. Indeed,
all of the example code in this paper can be type-checked by
our implementation. These, and other examples are available for
download.

Our language includes several features which were left out of
λθ to keep the normalization proof simple. Instead of a single sort
?, Zombie includes a full predicative hierarchy [22], which al-
lows both polymorphism and type-level functions. We also include
a general form for parameterized recursive datatypes, which sub-
sumes Nat, A + B , Σx :A.B and µx .A. Datatypes are always
mobile, and Zombie provides structural induction for all strictly

positive datatypes (not just Nat) following [20]. Finally, Zombie
distinguishes between computationally relevant and irrelevant ar-
guments [24], and includes a multiplace conversion operator, called
multiconversion [34].

Adding these features to λθ would complicate the type interpre-
tation, increasing the complexity of our machine-checked proof far
beyond its current state. In particular, to add predicative polymor-
phism and type-level computation we would have to redefine our
type interpretation as an induction over typing derivations, which
is very painful to do in Coq. However, based on work in progress,
we are optimistic that the metatheoretic requirements of these ad-
ditional features will have little interaction with the fundamental
consistency mechanism proposed here.

The general structure of our implementation appears in Fig-
ure 8. The part of our implementation that most closely resem-
bles λθ is the internal language ZT. This language defines the op-
erational behavior of Zombie expressions. However, like λθ , type
checking is not decidable for ZT expressions. Therefore, the imple-
mentation also includes an annotated version of ZT that supports
syntax-directed type checking, an approach we have explored in
previous work [34]. Annotated ZT is a direct representation of ZT
typing derivations, marking all uses of conversion, subsumption,
cumulativity, and coercion to and from A@θ types. Furthermore,
because reduction may not terminate, annotations on refl control
and limit the search for a common reduct when proving that two
terms are equal.

Directly working with ZT derivations incurs a considerable an-
notation burden for programmers. Therefore, the Zombie surface
language makes these annotations optional. We are currently exper-
imenting with a number of elaboration strategies to infer these an-
notations. These include using bidirectional type checking [31] to
propagate type information through terms, unification to automati-
cally infer some dependent arguments, and congruence closure [27]
to automatically infer equality proofs used in conversions.

For example, consider the projection functions (fst and snd)
for dependent pairs shown below. These functions pattern match
their argument and return its first and second components respec-
tively.

data Sigma (A:Type) (B:A → Type) : Type where
Pair of (x:A) (y : B x)

log fst : [A:Type] ⇒ [B:A → Type] ⇒ Sigma A B → A
fst [A] [B] p = case p of

Pair x y → x

log snd : [A:Type] ⇒ [B:A → Type] ⇒ (p:Sigma A B)
→ B (fst p)

snd [A] [B] p = case p of
Pair x y → unfold (fst p) in y

In the implementation of snd, unification can infer the arguments A
and B to fst (which were marked inferable by the fat arrow⇒in the
declaration of fst). Because not all expressions terminate, the pro-
grammer must explicitly ask the type checker to unfold (fst p)
by β-reduction, which introduces the equation (fst p) = x into
the context. That equation is then automatically used to convert the
type of y from B x to B (fst p).

The examples we have implemented fall into two categories.
The first includes the division and SAT-solving programs described
in Section 1. These examples illustrate how one can write proofs
about general recursive programs, and how general recursive pro-
grams can return proofs. Second, we have implemented functions
for length-indexed lists (Vectors), finite sets represented as binary
search trees, and data compression using run-length encoding, to-
gether with proofs of their correctness. Since these functions use

simple structural recursion, they can be done entirely in the logi-
cal fragment. They show that although our core language requires
annotations on refl and conv, the overhead of these annotations is
manageable.

6. Related Work
In previous work, we introduced the proof technique of hybrid
step-indexed/traditional logical relations, but for a simply-typed
language [12]. This paper extends the normalization proof to a
more expressive type system with dependent function types, an
equality type, and conversion. It also improves the treatment of @-
types by making them implicit. This change complicates the meta-
theory (see Lemma 2) but makes the language more expressive and
simplifies the application rule.

Terminating Sublanguage. There are other dependently-typed
languages which allow general recursion but identify a sublanguage
of terminating expressions. Aura [18] and F∗ [38] do this using the
kind system: expressions whose type has kind Prop are checked for
normalization. Types can contain values but not non-value expres-
sions, so there is no way to write separate proofs about programs.
There also is no facility to treat programmatic values as proofs, e.g.
a logical case expression cannot destruct a value from the nonter-
minating fragment.

ATS [13], GURU [36], and Sep3 [20] are dependently-typed
languages where the logical and programmatic fragments are syn-
tactically separate—in effect rejecting the rule TSUB. One of the
gains of this separation is that the logical language can be made
CBN even though the programmatic one is CBV, avoiding the need
for thunking (as discussed in Section 3.3). To do inductive reason-
ing, the Sep3 language adds an explicit “terminates” predicate.

Idris [10] is a full-spectrum dependently typed programming
language that permits non-total definitions. Internally, it applies a
syntactic test to check if function definitions are structurally de-
creasing, and programmers may ask whether particular definitions
have been judged total. The type checker will only reduce expres-
sions that have been proved terminating, again precluding separate
equational reasoning about partial programs. Idris’ metatheory has
not been studied formally.

Partiality Monad. Capretta’s partiality monad [11] uses coin-
ductive types to embed general recursion into Type Theory. This
approach treats pure functions as the default and nontermination
less conveniently. Nonterminating programs must be written using
monadic combinators (and are therefore never syntactically equal
to pure programs). The partiality monad provides recursive func-
tion definitions but not general recursive types.

Furthermore, the coinductive approach requires a separate no-
tion of equivalence to reason about partial programs. In, e.g., Coq,
one would compare pure expressions according to the standard op-
erational semantics, but define a coarser equivalence relation for
partial terms that ignores the number of steps they take to nor-
malize. Equations like ((rec f x .b) v) = [v/x][rec f x .b/f]b
do not hold with the usual Coq equality because the step counts
differ. Conveniently programming with equivalence relations like
this, which are not directly justified by the reduction behavior of
expressions, is an active area of research involving topics such as
setoids [8], quotient types, and the univalence axiom [42].

Non-constructive fixpoint semantics. The work of Bertot and
Komendantsky [9] describes a way to embed general recursive
functions into Coq that does not use coinduction. They define a
datatype partial A that is isomorphic to the usual Maybe A but
is understood as representing a lifted CPO A⊥, and use classical
logic axioms to provide a fixpoint combinator fixp. When defining
a recursive function the user must prove continuity side-conditions.

Since recursive functions are defined nonconstructively they can
not be reduced directly, so instead one must reason about them
using the fix-point equation.

Partial Types. Nuprl has at its core an untyped lambda calculus,
capable of defining a general fixed point combinator for defining re-
cursive computations. In the core type theory, all expressions must
be proven terminating when used. Constable and Smith [14] inte-
grated potentially nonterminating computations through the addi-
tion of a type A of partial terms of type A. The fixpoint opera-
tor then has type (A → A) → A. However, to preserve the con-
sistency of the logic, the type A must be restricted to admissible.
types. Crary [15] provides an expressive axiomatization of admissi-
ble types, but these conditions lead to significant proof obligations,
especially when using Σ-types.

Smith [35] provides an example which shows that Nuprl needs
this restriction. Writing a ↓ for “a terminates”, define a Σ-type T
of functions which are not total, and recursively define a p which
inhabits T .

Total (f : N→ N)
def
= (n : N)→ (f n)↓

T
def
= Σ(f : N→ N).Total f → False

(p : T)
def
= fix (λp.〈g, λh.—〉)

g
def
= λx.if x = 0 then 0 else π1(p)(x− 1)

Here the dash is an (elided) proof which sneakily derives a con-
tradiction using π2(p) and the hypothesis h that g is total. On the
other hand, a separate induction shows that π1(p) is total; it returns
0 for all arguments. This is a contradiction.
λθ has almost all the ingredients for this paradox. Instead of a

recursively defined pair we can use a recursive function Unit→ T ,
and we can encode a↓ as Σ(y : A).a = y. What saves us is that the
proof in the second component of p uses the following reasoning
principle: if π1(p) terminates, then p terminates. In Nuprl a ↓ is
a primitive predicate and this inversion principle is built in. But
using our encoding, a function (π1(p) ↓) → (p ↓) would have to
magically guess the second component of a pair knowing only the
first component. If we assume this function as an axiom we can
encode the paradox and derive inconsistency , so our consistency
proof shows that there is no way to write such a function.

Hoare Type Theory. HTT [26, 37] is another embedding of gen-
eral programs into a type theory like Coq, which goes beyond non-
termination to also handle memory effects. Instead of a unary type
constructor A, it adds the indexed type {P}x :A{Q} representing
an effectful computation returning A and with pre- and postcondi-
tions P and Q. The assertions P and Q can use all of Coq, so the
type of a computation can specify its behavior precisely. However,
computations can not be evaluated during type checking (the fix-
point combinator and memory access primitives are implemented
as Coq axioms with types but no reduction rules).

Fixpoint induction Domain-theory based formalisms provide
two basic reasoning principles for proving properties about re-
cursive functions: unfolding a function definition, and fixpoint in-
duction. The latter principle (see e.g. [44]) states that to prove a
property about a function, one may assume it as an induction hy-
pothesis for the recursive calls of the function. For this to be valid,
the property must be “admissible”, and it most hold for infinite
loops. An equivalent variant [9] is to allow induction on the num-
ber of recursive steps an expression takes to normalize.
λθ currently provides no such principle. If a theorem can not be

proved just from unfolding, there are two ways to proceed. In order
to prove div_le in Section 1 we used (strong) natural-number
induction. For this strategy to work the programmer has to find a
termination metric for the function in question, so it only works
for functions that are in fact terminating. However, it can still be

convenient to give a direct recursive definition of the function. For
functions that genuinely do not terminate, one can instead change
them to return a Σ-type asserting the property, so that the property
is automatically available for recursive calls. This is what we did
for solver in Section 1, and it is the only option in Hoare Type
Theory.

Modal types for distributed computation. Modal logic reasons
about statements whose truth varies in different “possible worlds”.
Our type system is formally similar, with the possible worlds being
L and P. Modal logic has previously been used to design type
systems for distributed computation [19, 25]. In particular, λθ was
inspired by ML5 [25], in which the typing judgment is indexed
by what “world” (computer in a distributed system) a program
is running on, and which includes a type A@θ internalizing that
judgment. Our rule TMVAL is similar to the GET rule in ML5, and
our Mobile (A) is similar to the judgment A mobile in ML5. On
the other hand, unlike λθ , ML5 does not require that the domain of
an arrow type be mobile. As we explained in Section 3.1 we make
that restriction to accommodate our rule TSUB, a rule which does
not make sense in the context of distributed computation.

7. Future work
In future work, we hope to extend the metatheory of λθ to include
more of ZT. We plan to allow polymorphic types and type-level
functions in both the L and P fragments, extending our proof us-
ing ideas from normalization proofs for the Calculus of Construc-
tions [16]. Following the ideas of Ahn and Sheard [2] and their
language Nax [3], we also hope to add combinators to define re-
cursive functions over recursive data to the logical language. Nax
places no restriction on what sorts of datatypes can be defined or
how they can be constructed. Instead, it limits the analysis of data
structures to ensure the soundness of the logic. More generally, we
would like to extend our proofs to a general theory of datatype def-
initions, maybe encoded via recursion, sums, and products as in
ΠΣ [4]. One potential worry is that we assume injectivity for all
type constructors, which can be used to encode Cantor-like para-
doxes. We hope to avoid inconsistency by forbidding impredicative
polymorphism and datatypes with “large” indices.

Adding these features will require substantial additional work
in the normalization proof, but we do not anticipate any changes to
the novel typing rules that connect the L and P fragments.

Reasoning about general recursive functions Currently λθ em-
phasizes lightweight verification. In order to turn it into a tool for
full verification of potentially nonterminating programs, we would
add stronger reasoning principles.

First, the value restrictions in ; can get in the way of equational
reasoning. If a is an expression in P there is no way to prove an
equation like (let x = a in f x) = (f a), even though the two sides
are in fact contextually equivalent. To make it provable we could
add termination-case—a case analysis on whether a programmatic
expression evaluates to a value or diverges [20]. Unfortunately, this
operator is unimplementable, so we would not want to allow proofs
that use this reasoning to be used as programs. One solution is to
introduce a new consistency classifier O, for oracular, in addition
to L and P. By not allowing O expressions to be used as programs,
we could control and track the use of termination case.

Second, we would like to investigate whether some (perhaps
weakened) form of fixpoint induction can be consistently added.
The experience with partial types in Nuprl suggests that this may
require a notion of admissible predicates.

8. Conclusion
This paper presents a framework for interacting logics and pro-
gramming languages. The consistency classifiers, θ, describe the
set of typing rules that determine the properties of each well-typed
expression. At the same time, many standard typing rules are poly-
morphic in this classifier, leading to uniformity between the sys-
tems. Internalizing this judgment as a type and observing that some
values can move freely allows the fragments to interact in nontriv-
ial ways, leading to an expressive foundation for dependently-typed
programming.

Acknowledgments
This material is based upon work supported by the National Science
Foundation under Grant Nos. 0910500 and 1116620. The Zombie
implementation was developed with the assistance of the Trellys
team, and the ideas in this paper benefitted greatly from that col-
laboration. This paper was written with the help of the excellent
Ott tool [32]. The authors would also like to thank the anonymous
reviewers for their considered and helpful comments.

References
[1] Ahmed, A.: Step-indexed syntactic logical relations for recursive and

quantified types. In: ESOP ’06: European Symposium on Program-
ming. LNCS, vol. 3924. Springer (2006)

[2] Ahn, K.Y., Sheard, T.: A hierarchy of mendler style recursion com-
binators: taming inductive datatypes with negative occurrences. In:
ICFP ’11: International Conference on Functional programming. pp.
234–246. ACM (2011)

[3] Ahn, K.Y., Sheard, T., Fiore, M., Pitts, A.M.: The Nax programming
language (work in progress) (2012), talk presented at IFL 2012: the
24th Symposium on Implementation and Application of Functional
Languages

[4] Altenkirch, T., Danielsson, N.A., Löh, A., Oury, N.: ΠΣ: Dependent
types without the sugar. Functional and Logic Programming pp. 40–55
(2010)

[5] Appel, A.W., McAllester, D.: An indexed model of recursive types for
foundational proof-carrying code. ACM Trans. Program. Lang. Syst.
23(5), 657–683 (2001)

[6] Augustsson, L.: Cayenne – a language with dependent types. In: ICFP
’98: International Conference on Functional Programming. pp. 239–
250. ACM (1998)

[7] Barendregt, H.P.: Lambda calculi with types. In: Abramsky, S., Gab-
bay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer
Science. pp. 117–309. Oxford University Press (1992)

[8] Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. Journal of
Functional Programming 13(2), 261–293 (2003)

[9] Bertot, Y., Komendantsky, V.: Fixed point semantics and partial re-
cursion in coq. In: PPDP ’08: Principles and practice of declarative
programming. pp. 89–96. ACM (2008)

[10] Brady, E.C.: Idris—systems programming meets full dependent types.
In: PLPV’11: Programming languages meets program verification. pp.
43–54. ACM (2011)

[11] Capretta, V.: General recursion via coinductive types. Logical Meth-
ods in Computer Science 1(2), 1–18 (2005)

[12] Casinghino, C., Sjöberg, V., Weirich, S.: Step-indexed normalization
for a language with general recursion. In: MSFP ’12: Mathemati-
cally Structured Functional Programming. EPTCS, vol. 76, pp. 25–39
(2012)

[13] Chen, C., Xi, H.: Combining programming with theorem proving.
In: Proceedings of the tenth ACM SIGPLAN international con-
ference on Functional programming. pp. 66–77. ICFP ’05, ACM,
New York, NY, USA (2005), http://doi.acm.org/10.1145/
1086365.1086375

[14] Constable, R.L., Smith, S.F.: Partial objects in constructive type the-
ory. In: Logic in Computer Science (LICS’87). pp. 183–193. IEEE
(1987)

[15] Crary, K.: Type Theoretic Methodology for Practical Programming
Languages. Ph.D. thesis, Cornell University (1998)

[16] Geuvers, H.: A short and flexible proof of Strong Normalization for
the Calculus of Constructions. In: TYPES ’94. LNCS, vol. 996, pp.
14–38 (1995)

[17] Girard, J.Y.: Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Ph.D. thesis, Université Paris VII
(1972)

[18] Jia, L., Vaughan, J.A., Mazurak, K., Zhao, J., Zarko, L., Schorr, J.,
Zdancewic, S.: AURA: A programming language for authorization
and audit. In: ICFP ’08: International Conference on Functional
Programming). pp. 27–38. ACM (2008)

[19] Jia, L., Walker, D.: Modal proofs as distributed programs (extended
abstract). In: ESOP’04: European Symposium on Programming.
LNCS, vol. 2986, pp. 219–233. Springer (2004)

[20] Kimmell, G., Stump, A., Eades III, H.D., Fu, P., Sheard, T., Weirich,
S., Casinghino, C., Sjöberg, V., Collins, N., Ahn, K.Y.: Equational
reasoning about programs with general recursion and call-by-value
semantics. In: PLPV ’12: Programming languages meets program
verification. ACM (2012)

[21] Licata, D.R., Harper, R.: Positively dependent types. In: PLPV ’09:
Programming languages meets program verification. pp. 3–14. ACM
(2008)

[22] Luo, Z.: Computation and Reasoning: A Type Theory for Computer
Science. Oxford University Press, USA (1994)

[23] McBride, C., McKinna, J.: The view from the left. J. Funct. Program.
14(1), 69–111 (2004)

[24] Miquel, A.: The implicit calculus of constructions - extending pure
type systems with an intersection type binder and subtyping. In: TLCA
’01: Proceeding of 5th international conference on Typed Lambda
Calculi and Applications. LNCS, vol. 2044, pp. 344–359. Springer
(2001)

[25] Murphy, VII, T., Crary, K., Harper, R.: Type-safe distributed program-
ming with ML5. In: Trustworthy Global Computing 2007 (2007)

[26] Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.:
Ynot: dependent types for imperative programs. In: ICFP ’08: Inter-
national Conference on Functional Programming. pp. 229–240. ACM
(2008)

[27] Nieuwenhuis, R., Oliveras, A.: Fast congruence closure and exten-
sions. Inf. Comput. 205(4), 557–580 (2007)

[28] Norell, U.: Towards a practical programming language based on de-
pendent type theory. Ph.D. thesis, Chalmers University of Technology
(2007)

[29] Peyton-Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple
unification-based type inference for GADTs. In: ICFP ’06: Inter-
national Conference on Functional Programming. pp. 50–61. ACM
(2006)

[30] Pierce, B.C.: Types and Programming Languages. MIT Press (2002)

[31] Pierce, B.C., Turner, D.N.: Local type inference. In: ACM SIGPLAN–
SIGACT Symposium on Principles of Programming Languages
(POPL), San Diego, California (1998)

[32] Sewell, P., Nardelli, F., Owens, S., Peskine, G., Ridge, T., Sarkar, S.,
Strnisa, R.: Ott: Effective tool support for the working semanticist. J.
Funct. Program. 20(1), 71–122 (2010)

[33] Sheard, T., Linger, N.: Programming in ωmega. In: Horváth, Z.,
Plasmeijer, R., Soós, A., Zsók, V. (eds.) 2nd Central European Func-
tional Programming School (CEFP). LNCS, vol. 5161, pp. 158–227.
Springer (2007)

[34] Sjöberg, V., Casinghino, C., Ahn, K.Y., Collins, N., Eades III, H.D.,
Fu, P., Kimmell, G., Sheard, T., Stump, A., Weirich, S.: Irrelevance,
heterogeneous equality, and call-by-value dependent type systems.
In: MSFP ’12: Mathematically Structured Functional Programming.
EPTCS, vol. 76, pp. 112–162 (2012)

http://doi.acm.org/10.1145/1086365.1086375
http://doi.acm.org/10.1145/1086365.1086375

[35] Smith, S.F.: Partial Objects in Type Theory. Ph.D. thesis, Cornell
University (1988)

[36] Stump, A., Deters, M., Petcher, A., Schiller, T., Simpson, T.W.: Ver-
ified programming in guru. In: Altenkirch, T., Millstein, T.D. (eds.)
PLPV. pp. 49–58. ACM (2009)

[37] Svendsen, K., Birkedal, L., Nanevski, A.: Partiality, state and depen-
dent types. In: Typed lambda calculi and applications (TLCA’11).
LNCS, vol. 6690, pp. 198–212. Springer (2011)

[38] Swamy, N., Chen, J., Fournet, C., Strub, P.Y., Bhargavan, K., Yang,
J.: Secure Distributed Programming with Value-dependent Types. In:
ICFP ’11: International Conference on Functional Programming. pp.
285–296. ACM (2011)

[39] Tait, W.W.: Intensional interpretations of functionals of finite type i.
The Journal of Symbolic Logic 32(2), pp. 198–212 (1967)

[40] The Coq Development Team: The Coq Proof Assistant Reference
Manual, Version 8.3. INRIA (2010), http://coq.inria.fr/V8.
3/refman/

[41] The Coq Development Team: The Coq Proof Assistant, Frequently
Asked Questions. INRIA (2011), http://coq.inria.fr/faq/

[42] The Univalent Foundations Program: Homotopy Type Theory: Univa-
lent Foundations of Mathematics (2013), http://arxiv.org/abs/
1308.0729

[43] Werner, B.: Une Théorie des Constructions Inductives. Ph.D. thesis,
Université Paris 7 (1994)

[44] Winskel, G.: The formal semantics of programming languages: an
introduction. MIT Press, Cambridge, MA, USA (1993)

http://coq.inria.fr/V8.3/refman/
http://coq.inria.fr/V8.3/refman/
http://coq.inria.fr/faq/
http://arxiv.org/abs/1308.0729
http://arxiv.org/abs/1308.0729

	Introduction
	Combining Proofs and Programs

	The language
	Classifying terminating and nonterminating expressions
	Reasoning about equivalence

	Interactions between the fragments
	Subsumption
	Internalized Consistency Classification
	Mobile types

	Metatheory
	Preservation
	Normalization and Progress

	Implementation
	Related Work
	Future work
	Conclusion

