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Abstract
Generic functions can specialize their behaviour depending on the
types of their arguments, and can even recurse over the structure
of the types of their arguments. Such functions can be programmed
using type representations. Generic functions programmed this way
possess certain parametricity properties, which become interesting
in the presence of higher-order polymorphism. In this Theoretical
Pearl, we give a rigorous roadmap through the proof of parametric-
ity for a calculus with higher-order polymorphism and type repre-
sentations. We then use parametricity to derive the partial correct-
ness of type-safe cast.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Abstract
data types, Polymorphism; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages–Operational Se-
mantics
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1. Generic programming via type representations
Generic programming refers to the ability to specialize the be-
haviour of functions based on the types of their arguments. There
are many tools, libraries, and language extensions that support
generic programming, particularly for the Haskell programming
language [5, 7, 17, 9, 22, 38, 37]. Although the theory that un-
derlies these mechanisms differs considerably, the common goal
of these mechanisms is to eliminate boilerplate code. Examples of
generic programs range from very generic equality functions, mar-
shallers, reductions and maps, to application-specific traversals and
queries [22], user interface generators [1], XML-inspired transfor-
mations [21], and compilers [6].

Representation types [11] is an attractive mechanism for generic
programming. The key idea is simple: because polymorphic func-
tions are parametric in Haskell (their behaviour cannot be influ-
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enced by the types at which they are instantiated), generic functions
dispatch on term arguments that represent types.

Representation types were originally proposed in the context of
type-preserving compilation, but they may be encoded in Haskell in
several ways [7, 38, 37]. The most natural implementation of repre-
sentation types is with generalized algebraic datatypes (GADTs) [4,
8, 31, 32], a recent extension to the Glasgow Haskell Compiler
(GHC) compiler. 1

For example, in GHC one can define a GADT for representation
types as follows:

data R a where
Rint :: R Int
Runit :: R ()
Rprod :: R a -> R b -> R (a,b)
Rsum :: R a -> R b -> R (Either a b)

The datatype R includes four data constructors: The constructor
Rint provides a representation for Int, hence its type is R Int.
The constructor Runit provides a representation for () and has
type R (). The constructors Rprod and Rsum represent products
and sums (the latter expressed by Haskell’s Either datatype). They
take as inputs a representation for a (of type R a), a representation
for b (of type R b), and return representations for (a,b) and
Either a b respectively. The important property of this datatype
is that the return type of the constructors is not uniform—Rint
has type R Int whereas Runit has type R (). In fact, the type
parameter is determined by the data constructor. In contrast, in an
ordinary algebraic datatype, all data constructors must return the
same type.

A simple example of a generic function is add, shown below,
that adds together all of the integers that appear in a data structure.

add :: R c -> c -> Int
add (Rint) x = x
add (Runit) x = 0
add (Rprod ra rb) x
= add ra (fst x) + add rb (snd x)

add (Rsum ra rb) (Left x) = add ra x
add (Rsum ra rb) (Right x) = add rb x

The add function may be applied to any argument composed of
integers, products, unit, and sums.

*> add (Rprod Rint Rint) (1,3)
4
*> add (Rprod Rint (Rprod Runit Rint)) (2, ((), 3))
5

Note that in the definition of add, the argument x is treated as inte-
ger, product or sum depending on the clause of the definition. This

1 http://www.haskell.org/ghc
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cast :: R a -> R b -> Maybe (a -> b)
cast Rint Rint = Just (\x -> x)
cast Runit Runit = Just (\x -> x)
cast (Rprod ra0 rb0) (Rprod ra0’ rb0’) =
do g <- cast ra0 ra0’

h <- cast rb0 rb0’
Just (\(a,b) -> (g a, h b))

cast (Rsum ra0 rb0) (Rsum ra0’ rb0’) =
do g <- cast ra0 ra0’

h <- cast rb0 rb0’
Just (\x -> case x of

Left a -> Left (g a)
Right b -> Right (h b))

cast _ _ = Nothing

Figure 1: cast

newtype CL f c a d = CL (c (f d a))
unCL (CL e) = e
newtype CR f c a d = CR (c (f a d))
unCR (CR e) = e

gcast :: forall a b c.
R a -> R b -> Maybe (c a -> c b)

gcast Rint Rint = Just (\x -> x)
gcast Runit Runit = Just (\x -> x)
gcast (Rprod (ra0 :: R a0) (rb0 :: R b0))

(Rprod (ra0’:: R a0’) (rb0’ :: R b0’))
= do g <- gcast ra0 ra0’

h <- gcast rb0 rb0’
let g’ :: c (a0, b0) -> c (a0’, b0)

g’ = unCL . g . CL
h’ :: c (a0’, b0) -> c (a0’, b0’)
h’ = unCR . h . CR

Just (h’ . g’)
gcast (Rsum ra0 rb0) (Rsum ra0’ rb0’)
= do g <- gcast ra0 ra0’

h <- gcast rb0 rb0’
Just (unCR . h . CR . unCL . g . CL)

gcast _ _ = Nothing

Figure 2: gcast

behaviour of the type checker is sound because pattern matching on
the representation argument reveals information about the type of
x. For example, in the third clause of the definition, the type vari-
able c is refined to be equal to some (a,b) such that ra :: R a
and rb :: R b.

In this paper, we focus on the generic type-safe cast function,
which compares two different type representations and, if they
match, produces a coercion function from one type to the other.
Type-safe cast can be used to test, at runtime, whether a value
of a given representable type can safely be viewed as a value of
a second representable type—even when the two types cannot be
shown equal at compile-time. Previously, Weirich [36] defined two
different versions of type-safe cast, shown in Figures 1 and 2.2 To
distinguish between these two versions, we call them cast and
gcast respectively.

The first version, cast, works by comparing the two representa-
tions and then producing a coercion function that takes its argument

2 These implementations differ slightly from Weirich’s pearl, but the essen-
tial structure remains the same.

apart, coerces the subcomponents individually, and then puts it
back together. In the case for products and sums, Haskell’s monadic
syntax for Maybe ensures that cast returns Nothing when one of
the recursive calls returns Nothing; otherwise g and h are bound
to the underlying coercions.

Alternatively, gcast produces a coercion function that never
needs to decompose (or even evaluate) its argument—it merely
changes its type. The key inspiration is the use of the higher-kinded
type argument c. This type constructor allows the recursive calls
to gcast to create a coercion that changes the type of a part of
its argument. In a recursive call, the instantiation of c hides the
parts of the type that remain unchanged. To show how this works,
the case for products has been decorated with type annotations.
In this case we know that the argument has type c (a0,b0).
We first produce g and h, with types c1 a0 -> c1 a0’ and
c2 b0 -> c2 b0’ respectively for some c1 and c2, by recur-
sively calling gast for the sub-representations. We are interested
in the particular cases where c1 a0 can act as c (a0,b0), and
c1 a0’ can act as c (a0’,b0). Since Haskell does not support
type-level abstractions, we introduce the newtype CL (for “cast
left”). In particular we let the type checker implicitly unify c1 with
CL (,) c b0 where (,) is the pair constructor. This means that
an element of c1 a0 is the application of the CL data constructor
to an element of type c (a0,b0). Then g returns an element of
CL (,) c b0 a0’, which is actually an application CL to an ele-
ment of type c (a0’,b0). Hence we create g’ that first wraps an
element of c (a0,b0) with the CL constructor, calls g on it, and
finally un-wraps the returned CL (,) c b0 a0’ as the required
c (a0’,b0), by calling unCL. The net effect is that g’ is a coer-
cion of type c (a0,b0) -> c (a0’,b0). For the instantiation of
c2 we introduce the newtype CR (for “cast right”) and make sure
c2 can be instantiated to CR (,) c a0’. The net effect is that h’
is a coercion of type c (a0’,b0) -> c (a0’,b0’). Compos-
ing them is the required conversion. The case for sums is similar
but we omit the intermediate type annotations and compose all the
intermediate functions directly.

An important difference between the two versions has to do
with correctness. When the type comparison succeeds, type-safe
cast should behave like an identity function. Informal inspection
reveals that both implementations have this property. However in
the case of cast, it is possible to mess up. In particular, it is type
sound to replace the clause for Rint with:

cast Rint Rint = Just (\x -> 21)

However, the type of gcast more strongly constrains its implemen-
tation. We could not replace the first clause with

gcast Rint Rint = Just (\x -> 21)

because the type of the returned coercion must be c Int -> c Int,
not Int -> Int. Informally, we can argue that the only coercion
function that could be returned must be an identity function as c is
abstract. The only way to produce a result of type c Int (discount-
ing divergence) is to use exactly the one that was supplied.3

1.1 Contributions
In this pearl, we make the above arguments precise and rigorous.
In particular, we show using a free theorem [34] that, if gcast
returns a coercion function then that function must be an identity
function. In fact, because we use a free theorem, any function with
the type of gcast must behave in this manner. To do so, we start
with a formalization of the λ-calculus with representation types

3 Baars and Sweirstra [5] originally made this observation about the differ-
ences between these versions, and concurrently with Cheney and Hinze [7]
point out that gcast corresponds to Leibniz equality.

2 2007/7/17



and higher-order polymorphism, called Rω [11] (Section 2.1). We
then extend Reynolds’s abstraction theorem [30] to this language
(Section 2.2). Reynolds’s abstraction theorem, also referred to as
the “parametricity theorem” [34], asserts that every well-typed
expression of the second-order polymorphic λ-calculus (System
F) [13, 14] satisfies a particular property directly derivable from
its type. After proving a version of the abstraction theorem for Rω ,
we show how to apply it to the type of gcast to get the desired
results (Section 3).

Our broader goal is not just to prove the correctness of gcast—
there are certainly simpler ways to do so, and there are some limi-
tations in our approach, as we describe in Section 4.4. Instead, our
intention is to demonstrate that it is possible to use parametricity
and free theorems to reason about generic functions written with
representation types. In previous work [33], which was limited to
the case of second-order polymorphism, we had difficulty finding
free theorems for generic functions that were not trivial. This pearl
demonstrates a fruitful example of such reasoning when higher-
order polymorphism is present, and encourages the use of varia-
tions of this method to reason about other generic functions.

A second goal of this pearl is to explore free theorems for
higher-order polymorphism. Our use of these theorems exhibits an
intriguing behaviour. Free theorems for types with second-order
polymorphism quantify over arbitrary relations but are typically
used only with relations that happen to be expressible as functions
in the polymorphic λ-calculus. In contrast, we must instantiate free
theorems with non-parametric functions to get the desired result.

Finally, although the ideas that we use to define parametricity
for Fω are folklore, they appear in very few sources in the litera-
ture. Therefore, an additional contribution of this work is an acces-
sible roadmap to the proof of parametricity for higher-order poly-
morphism using the technique of syntactic logical relations. Our
development is most closely related to the proof of strong normal-
ization of Fω by Jean Gallier [12], but we are more explicit about
the requirements from the meta-logic and the well-formedness of
our definitions. Therefore, we expect our development to be par-
ticularly well-suited for mechanical verification in proof assistants,
such as Coq4.

2. Parametricity formalized
In the following, we assume familiarity with higher-order polymor-
phic λ-calculi, such as the language Fω [13]. Our version of Fω

resembles that of Pierce [27, Ch.30], although there are several dif-
ferences that we discuss below.

2.1 The Rω calculus
We begin with a formal description of the Rω calculus. The syntax
appears in Figure 3. Kinds include the kind, ?, which classifies the
types of expressions, and constructor kinds, κ → κ. The type syn-
tax includes type variables, type constants, type-level applications,
and type functions. We treat impredicative polymorphism by intro-
ducing an infinite family of universal type constructors ∀κ indexed
by kinds. Standard Fω polymorphic types can be viewed as appli-
cations of some ∀κ constructor to some type-level abstraction. In
the rest of the paper we use the following abbreviations:

∀a:κ.τ , ∀κ (λa:κ.τ)

σ1 → σ2 , (→) σ1 σ2

σ1 + σ2 , (+) σ1 σ2

σ1 × σ2 , (×) σ1 σ2

and associate infix applications of → to the right; for instance
σ1 → σ2 → σ3 means σ1 → (σ2 → σ3). Although our

4 http://coq.inria.fr

Kinds κ ::= ? | κ → κ
Type constants K ::= R | () | int |→| × | + | ∀κ

Types σ, τ ::= a | K | σ1 σ2 | λa:κ.σ
Expressions e ::= Rint | R() | R× e1 e2 | R+ e1 e2

| typerec e of {eint ; e() ; e× ; e+}
| fst e | snd e | (e1, e2)
| inl e | inr e
| case e of {x .el ; x .er}
| () | i | x | λx.e | e1 e2

Values v ,w ::= Rint | R() | R× e1 e2 | R+ e1 e2

| (e1, e2) | inl e | inr e
| () | i | λx.e

Environments Γ ::= · | Γ, a:κ | Γ, x :τ

Figure 3: Syntax of System Rω

e ⇓ v

e ⇓ Rint eint ⇓ v

typerec e of {eint ; e() ; e× ; e+} ⇓ v

e ⇓ R() e() ⇓ v

typerec e of {eint ; e() ; e× ; e+} ⇓ v

e ⇓ R× e1 e2

e× e1 (typerec e1 of {eint ; e() ; e× ; e+})
e2 (typerec e2 of {eint ; e() ; e× ; e+}) ⇓ v

typerec e of {eint ; e() ; e× ; e+} ⇓ v

e ⇓ R+ e1 e2

e+ e1 (typerec e1 of {eint ; e() ; e× ; e+})
e2 (typerec e2 of {eint ; e() ; e× ; e+}) ⇓ v

typerec e of {eint ; e() ; e× ; e+} ⇓ v

Figure 4: Operational rules for type recursion

Γ ` e : τ

Γ ` Rint : R int Γ ` R() : R ()

Γ ` e1 : R σ1 Γ ` e2 : R σ2

Γ ` R× e1 e2 : R (σ1, σ2)

Γ ` e1 : R σ1 Γ ` e2 : R σ2

Γ ` R+ e1 e2 : R (σ1 + σ2)

Γ ` σc : ? → ? Γ ` e : R σ
Γ ` eint : σc int Γ ` e() : σc ()

Γ ` e× : ∀(a:?)(b:?).R a → σc a → R b → σc b → σc (a × b)
Γ ` e+ : ∀(a:?)(b:?).R a → σc a → R b → σc b → σc (a + b)

Γ ` typerec e of {eint ; e() ; e× ; e+} : σc σ

Figure 5: Typing relation—Rω specifics

syntax does not include constructs for binding lists of type vari-
ables, we further write ∀(a1:κ1) . . . (an :κn).σ to abbreviate
∀a1:κ1. . . . ∀an :κn.σ.

Expressions of the language include the standards of many
typed λ-calculi: abstractions, products, sums, integers and unit.
To simplify our discussion, we treat type abstractions and type
applications implicitly—this omission makes no difference for the
metatheory discussed here.
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Γ ` τ : κ

(a:κ) ∈ Γ

Γ ` a : κ

kind(K) = κ

Γ ` K : κ

Γ ` τ1 : κ1 → κ Γ ` τ2 : κ1

Γ ` τ1 τ2 : κ

Γ, a:κ1 ` τ : κ2 a#Γ

Γ ` λa:κ1.τ : κ1 → κ2

kind(→) = ? → ? → ?
kind(×) = ? → ? → ?
kind(+) = ? → ? → ?
kind(∀κ) = (κ → ?) → ?

kind(int) = ?
kind(()) = ?
kind(R) = ? → ?

Figure 6: Well-formed types

Rω includes the type representations Rint, R(), R× and R+,
which must be fully applied to their arguments. The language is
terminating, but includes a term typerec that can perform prim-
itive recursion on type representations, and includes branches for
each possible representation. Programming in this calculus with
this primitive recursion operator (and without the syntactic sugar
of pattern matching) is somewhat tedious. For completeness, we
give the Rω implementations of cast and gcast in Appendix A.

We do not include representations for function or polymorphic
types in Rω . Neither are that useful for generic programming, and
the latter significantly changes the semantics of the language: we
return to this point in Section 4.2. Another omission from this
language is a uniform representation, which represents any type
without specifying exactly what type that is (see our previous work
for an example of such a representation [33]).

The operational semantics of the language is standard, so
we only present the rules for typerec in Figure 4. Essentially
typerec performs a fold over its type representation argument.
We use a big-step formalization for simplicity and a call-by name
semantics to maintain a connection to the semantics of Haskell.
The syntax of Rω values is also shown in Figure 3.

Environments, Γ, contain bindings for type variables (a:κ) and
bindings for term variables (x :τ). We use · for the empty environ-
ment, and write a#Γ to mean that a does not appear anywhere in
Γ. The judgement Γ ` τ : κ in Figure 6 states that τ is a well-
formed type of kind κ and ensures that all the free type variables
of the type τ appear in the environment Γ with correct kinds. The
following rule, which is standard in treatments of Fω , is derivable
in our system:

Γ, a:κ ` τ : ? a#Γ

Γ ` ∀a:κ.τ : ?

The main typing judgement of Rω has the form Γ ` e : τ . The
interesting typing rules are the introduction and elimination forms
for type representations. These rules appear in Figure 5. The rest
of the definition of this typing relation is standard, except that our
language is implicitly typed. This means that the standard rule for
type abstraction is replaced with a generalization rule and the rule
for type applications is replaced with an instantiation rule, neither
of which is syntax-directed.

Γ, a:κ ` e : τ a#Γ

Γ ` e : ∀a:κ.τ

Γ ` e : ∀a:κ.τ Γ ` σ : κ

Γ ` e : τ{σ/a}

We write τ{σ/a} for the capture avoiding substitution of a
for σ inside τ . Notably, our typing relation includes the standard

Γ ` τ1 ≡ τ2 : κ

Γ ` τ : κ
REFL

Γ ` τ ≡ τ : κ

Γ ` τ2 ≡ τ1 : κ
SYM

Γ ` τ1 ≡ τ2 : κ

Γ ` τ1 ≡ τ2 : κ Γ ` τ2 ≡ τ3 : κ
TRANS

Γ ` τ1 ≡ τ3 : κ

Γ ` τ1 ≡ τ3 : κ1 → κ2 Γ ` τ2 ≡ τ4 : κ1

APP
Γ ` τ1 τ2 ≡ τ3 τ4 : κ2

Γ, a:κ1 ` τ1 ≡ σ1 : κ2 Γ ` τ2 ≡ σ2 : κ2

BETA
Γ ` (λa:κ1.τ1) τ2 ≡ σ2{σ1/a} : κ2

Γ, a:κ1 ` τ1 ≡ τ2 a#Γ
ABS

Γ ` λa:κ1.τ1 ≡ λa:κ1.τ2 : κ1 → κ2

Figure 7: Type equivalence

conversion rule:
Γ ` e : τ1 Γ ` τ1 ≡ τ2 : ?

T-EQ
Γ ` e : τ2

The judgement Γ ` τ1 ≡ τ2 : κ defines type equivalence, as
a congruence relation that includes β conversion for types. For
completeness we give its definition in Figure 7.

Our type equivalence does not include η conversion, but this is
not significant for the rest of the development. Additionally, we im-
plicitly identify α-equivalent types, and treat them as syntactically
equal in the rest of the paper.

The presence of the rule T-EQ is important for Rω , but compli-
cates significantly the formalization of parametricity; a significant
part of this paper is devoted to taking care of complications intro-
duced by type equivalence.

2.2 The abstraction theorem
Deriving free theorems relies on first defining an appropriate inter-
pretation of types that classify terms as binary relations between
terms and showing that these relations are reflexive. This result is
the core of Reynolds’s abstraction theorem:

If · ` e : τ then (e, e) ∈ C J· ` τ : ?K·
The definition of the interpretation of types appears in Figure 9,

but before we can describe that Figure (and the notation used in the
statement of the abstraction theorem), we must define a number of
auxiliary concepts.

First, we refer to arbitrary closed types of a particular kind with
the following predicate:

2.1 Definition [Closed types]: We write τ ∈ ty(κ) iff · ` τ : κ.

Only types of kind ? will be interpreted as term relations. Types
of higher kind are interpreted as sets of functions in the meta-logic.
To distinguish between Rω and meta-logical functions, we use the
term morphism for the latter. For example, the interpretation of a
type of kind ? → ? should be a set of morphisms taking term
relations to appropriate term relations. Additionally, we use greek
letters (such as α, β) to represent meta-logical parameters that stand
for arbitrary types, in contrast to the latin letters (such as a , b) that
we use for Rω type variables.

To uniformly classify the interpretation of types of any kind,
we define the predicate GRelκ by induction on the kind κ. This
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wfGRel?(τ1, τ2) (r ∈ GRel?) = r ∈ VRel(τ1, τ2)
wfGRelκ1→κ2(τ1, τ2) (f ∈ GRelκ1→κ2) = for all α1, α2 ∈ ty(κ1),

for all gα ∈ GRelκ1 , wfGRelκ1(α1, α2)(gα) =⇒
wfGRelκ2(τ1 α1, τ2 α2)(f α1 α2 gα) ∧
(for all β1, β2 ∈ ty(κ1), gβ ∈ GRelκ1 , wfGRelκ1(β1, β2)(gb) =⇒
· ` α1 ≡ β1 : κ1 ∧ · ` α2 ≡ β2 : κ1 =⇒

gα ≡κ1 gβ =⇒ f α1 α2 gα ≡κ2 f β1 β2 gβ)

(rα ∈ GRel?) ≡? (rβ ∈ GRel?) = for all e1, e2, (e1, e2) ∈ rα ⇐⇒ (e1, e2) ∈ rβ

(rα ∈ GRelκ1→κ2) ≡κ1→κ2 (rβ ∈ GRelκ1→κ2) = for all γ1, γ2 ∈ ty(κ1), g ∈ GRelκ1 ,
wfGRelκ1(γ1, γ2)(g) =⇒ (rα γ1 γ2 g) ≡κ2 (rβ γ1 γ2 g)

Figure 8: Well-formed generalized relations and equality

predicate determines when a particular set is the interpretation of
some type of kind κ. In the base case, the elements of GRel are
binary term relations, whereas in the higher-kind case, the elements
of GRel are morphisms.

2.2 Definition [Generalized relations]: We extend term relations
to higher kinds by induction on the kind index:

GRel? = P(term× term)
GRelκ1→κ2 = type ⊃ type ⊃ GRelκ1 ⊃ GRelκ2

The notation P(term × term) stands for the space of binary
relations on terms of Rω , and we use type for the syntactic domain
of the types of Rω . We use ⊃ for the function space constructor of
our meta-logic, to avoid confusion with the → constructor of Rω .

Generalized morphisms at higher kinds accept two type argu-
ments that are intended to index the input relation of type GRelκ1 .
These extra arguments allow elements of GRelκ1→κ2 to dispatch
control depending on types as well as on relational arguments. This
flexibility is important for the free theorems about Rω programs.

At first glance, Definition 2.2 seems strange because it returns
the term relation space at kind ?, while at higher kinds it returns
a particular function space of the meta-logic. These two do not
necessarily “type check” with a common type. However, in an
expressive enough meta-logic (such as CIC [26] or ZF set theory),
such a definition is indeed well-formed, as there exists a type
containing both spaces (for example Type in CIC 5, or pure ZF
sets in ZF set theory).

The objects of GRelκ are either arbitrary term relations or func-
tions. However, not all such objects are suitable for the interpreta-
tion of types, so we refine our definition to pick out particular GRel
objects. For this refinement, we impose certain conditions on GRel,
which are summarized below:

• First, the relations that are the interpretation of types of kind ?
must be between well-typed closed values. The types of these
values need not be identical.

• Second, morphisms that are the interpretation of types of higher
kinds must respect type equivalence classes, that is, although
objects of GRelκ1→κ2 may dispatch control based on the equiv-
alence classes of their type arguments, they must not be able
to distinguish different syntactic forms within an equivalence
class. We explain this requirement in more detail below.

Before precisely stating these conditions, we first stratify term
relations into value relations and computation relations. This dis-
tinction is not theoretically strictly necessary but is common in the
literature and exposes the connection between our definitions and
the operational semantics of Rω .

5 One can find a Coq definition of GRel and other relevant definitions in
Appendix B.

2.3 Definition [Type-indexed value relations]: Assume that τ1,
τ2 ∈ ty(?). Then r ∈ P(term × term) is a type-indexed
value relation, written r ∈ VRel(τ1, τ2), iff for every e1, e2 with
(e1, e2) ∈ r , e1 and e2 are values, · ` e1 : τ1 and · ` e2 : τ2.

2.4 Definition [Type-indexed computation relations]: The com-
putation lifting of a relation r ∈ VRel(τ1, τ2), written as C(r), is
the set of all (e1, e2) such that · ` e1 : τ1, · ` e2 : τ2 and e1 ⇓ v1,
e2 ⇓ v2, and (v1, v2) ∈ r .

Note that because of rule T-EQ, we can view value and compu-
tation relations as being indexed by equivalence classes of types: if
· ` τ1 ≡ τ ′1 : ? and · ` τ2 ≡ τ ′2 : ?, then r ∈ VRel(τ1, τ2) iff
r ∈ VRel(τ ′1, τ

′
2).

Now we may state the conditions on GRelκ objects that make
them appropriate for use as type interpretations. In Figure 8 we de-
fine well-formed generalized relations, a type-indexed predicate on
GRel. The motivation behind this definition of the wfGRel pred-
icate in Figure 8 is the proof of a theorem which states that the
interpretation of types respects type equivalence (Coherence, The-
orem 2.16). This predicate, written wfGRelκ(τ1, τ2)(·), is defined
for objects of GRelκ by induction on the kind κ. We define this
predicate mutually with equality on generalized relations. Equal-
ity on generalized relations is also indexed by kinds; for any two
r1, r2 ∈ GRelκ, the proposition r1 ≡κ r2 asserts that the two gen-
eralized relations are extensionally equal. We use =⇒ and ∧ for
meta-logical implication and conjunction, respectively.

At kind ?, wfGRel?(τ1, τ2)(r) checks that r is a value relation
indexed by types τ1 and τ2. At the higher kind κ1 → κ2 we require
a few conditions on f . First, if f is applied to two type arguments
and an appropriate well-formed GRel indexed by these types, then
the result must also be well-formed. Second, for any equivalent
types · ` β1 ≡ α1 : κ1 and · ` β2 ≡ α2 : κ1 and equivalent
well-formed relations gα and gβ indexed by these types, the results
f α1 α2 gα and f β1 β2 gβ must also be equal. This condition
asserts that objects that satisfy wfGRel at higher kinds respect the
type equivalence classes of their type arguments.

Extensional equality between generalized relations asserts that
at kind ? the two relation arguments denote the same set, whereas
at higher kinds it asserts that the relation arguments return equal
results, when given the same argument g which must satisfy the
wfGRel predicate. Note that the only dependency of≡κ on wfGRel
is exactly this applicative test. Dropping the requirement that g be a
wfGRel produces a definition that is not suitable for our purposes,
as we discuss in the proof of Coherence, Theorem 2.16.

Generalized relation equality is reflexive, symmetric, and tran-
sitive, and hence is an equivalence relation. All properties follow
from simple induction on the kind κ, and we state the reflexivity
property, which will be used later.
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2.5 Lemma [Reflexivity of ≡κ]: Let r ∈ GRelκ. Then r ≡κ r .

Additionally, the wfGRel predicate is indexed by equivalence
classes of types.

2.6 Lemma [wfGRel respects type equivalence classes]: Assume
that · ` τ1 ≡ τ2 : κ, · ` σ1 ≡ σ2 : κ, and r ∈ GRelκ. If
wfGRelκ(τ1, τ2)(r) then wfGRelκ(σ1, σ2)(r).

We turn now to the key to the abstraction theorem, the interpre-
tation of Rω types as relations between closed terms. This interpre-
tation makes use of a substitution δ from type variables to triples:
pairs of types and a value relation.

2.7 Definition [Substitution kind checks in environment]: We
say that a substitution δ kind checks in an environment Γ, and write
δ ∈ SubstΓ, when for every (a:κ) ∈ Γ, it is δ(a) = (τ1, τ2, r)
with r ∈ GRelκ. And conversely, for every a ∈ dom(δ),
(a:κ) ∈ Γ for some κ.

We project the individual mappings from an environment with
the notations δ1(a) = τ1, δ2(a) = τ2, and δ[a] = r . We
define δ1τ and δ2τ to be the extension of δ1 and δ2 to types
applied to the type τ . We write dom(δ) for the domain of the
substitution, that is, the subset of all type variables on which δ is
not the identity. We use · for the identity-everywhere substitution,
and write δ, a 7→ (τ1, τ2, r) for the extension of δ that maps a to
(τ1, τ2, r) and require that a /∈ dom(δ).

The interpretation of Rω types is shown in Figure 9 and is
defined inductively over the structure of well-formedness deriva-
tions for types. The interpretation function J·K· accepts a derivation
Γ ` τ : κ, and a substitution δ ∈ SubstΓ and returns a general-
ized relation at kind κ. Hence the meta-logical type of JΓ ` τ : κK
is SubstΓ ⊃ GRelκ. We write the δ argument as a subscript to
JΓ ` τ : κK. When τ is a type variable a we project the relation
component out of δ(a). In the case where τ is a constructor K we
call the auxiliary function JKK, to which we return shortly. For an
application τ1 τ2 we apply the interpretation of τ1 to appropriate
type arguments and the interpretation of τ2. In the definition we
assume that Γ ` τ1 : κ1 → κ is the immediate subderivation of
Γ ` τ1 τ2 : κ. Since JΓ ` τ1 : κ1 → κKδ is a generalized mor-
phism of higher kind, according to Definition 2.2, we must apply it
to δ1τ2 and δ2τ2 before applying it to JΓ ` τ2 : κ1Kδ . Type-level
λ-abstractions are interpreted as abstractions in the meta-logic. We
use λ and 7→ for meta-logic abstractions. Interpretations of type ab-
stractions first abstract two types, α and β, a generalized relation r ,
and interpret the body of the function in the extended substitution
map δ, a 7→ (α, β, r) that maps the previously bound variable a
to the new triple. Finally, confirming that JΓ ` τ : κKδ ∈ GRelκ is
straightforward using the fact that δ ∈ SubstΓ.

The interpretation JKK gives the relation that corresponds to
constructor K. For integer and unit types, JintK and J()K give the
identity value relations respectively on int and (). The operation
J→K lifts two relations r1 and r2 to a new relation between func-
tions that send related arguments in r1 to related results in r2. The
operation J×K lifts two relations r1 and r2 to a relation between
products such that the first components of the products belong in
r1, and the second in r2. The operation J+K on relations r1 and
r2 consists of all the pairs of left injections between elements of
r1 and right injections between elements of r2. Because sums and
products are call-by-name, their subcomponents must come from
the computation lifting of the value relations. For the ∀κ construc-
tor, since its type is (κ → ?) → ? we define J∀κK to be a morphism
that, given a GRelκ→? argument f , returns the intersection over all
r that are well-formed generalized relations (hence the requirement
wfGRelκ(β1, β2)(r)) of the applications of f to r . The requirement
that wfGRelκ(β1, β2)(r) and β1, β2 ∈ ty(κ) is necessary in order

R ∈ GRel?→?

R = λα, β, r ∈ GRel? 7→
{(Rint, Rint) | r ≡? JintK ∧ · ` α ≡ β ≡ int : ?}

∪ {(R(), R()) | r ≡? J()K ∧ · ` α ≡ β ≡ () : ?}
∪ {(R× e1

a e1
b , R× e2

a e2
b ) |

∃τ1
a , τ2

a ∈ ty(?), ra ∈ GRel?, wfGRel?(τ1
a , τ2

a )(ra ) ∧
∃τ1

b , τ2
b ∈ ty(?), rb ∈ GRel?, wfGRel?(τ1

b , τ2
b )(rb) ∧

r ≡? J×K τ1
a τ2

a ra τ1
b τ2

b rb ∧
· ` α ≡ τ1

a × τ1
b : ? ∧ · ` β ≡ τ2

a × τ2
b : ? ∧

(e1
a , e2

a ) ∈ C(R τ1
a τ2

a ra )∧(e1
b , e2

b ) ∈ C(R τ1
b τ2

b rb)}
∪ {(R+ e1

a e1
b , R+ e2

a e2
b ) |

∃τ1
a , τ2

a ∈ ty(?), ra ∈ GRel?, wfGRel?(τ1
a , τ2

a )(ra ) ∧
∃τ1

b , τ2
b ∈ ty(?), rb ∈ GRel?, wfGRel?(τ1

b , τ2
b )(rb) ∧

r ≡? J+K τ1
a τ2

a ra τ1
b τ2

b rb ∧
· ` α ≡ τ1

a + τ1
b : ? ∧ · ` β ≡ τ2

a + τ2
b : ? ∧

(e1
a , e2

a ) ∈ C(R τ1
a τ2

a ra )∧(e1
b , e2

b ) ∈ C(R τ1
b τ2

b rb)}

Figure 11: Representation type interpretation

to show that the interpretation of the ∀κ constructor is indeed a
well-formed generalized relation (Lemma 2.9).

For the case of representation types R, the definition relies on
an auxiliary morphism R, defined by induction on the size of the
β-normal form of its type arguments, and shown in Figure 11.
The interesting property about this definition is that it imposes
requirements on the relational argument r in every case of the
definition. For example, in the first clause of the definition of
R τ1 τ2 r , the case for integer representations, r is required to
be equal to JintK, and consequently τ1 and τ2 must be equivalent
to int. In the case for unit representations, r is required to be equal
to J()K and τ1, τ2 equivalent to (). In the case for products, r is
required to be some product of relations, and in the case for sums, r
is required to be some sum of relations. In general, r must be equal
to the interpretation of the argument types τ1 and τ2 in the empty
environment, which themselves must be equivalent to each other.

2.8 Lemma: Assume that τ1, τ2 ∈ ty(?), and wfGRel?(τ1, τ2)(r).
If R τ1 τ2 r 6= ∅ then · ` τ1 ≡ τ2 : ? and r ≡? J· ` τ1 : ?K·.

Importantly, the interpretation of any constructor K, including
R, not only is an element of GRelkind(K), but satisfies the condi-
tions of well-formed generalized relations.

2.9 Lemma [Constructor interpretation is well-formed]:

wfGRel
kind(K)(K,K)(JKK)

PROOF. The only interesting case is the one for ∀κ, which we show
below. We need to show that

wfGRel
(κ→?)→?(∀κ, ∀κ)(J∀κK)

Let us fix α1, α2 ∈ ty(κ → ?), and a generalized relation gα ∈
GRelκ→?, with wfGRelκ→?(α1, α2)(gα), Then we know that

J∀κK α1 α2 gα = {(v1, v2) | · ` v1,2 : ∀κ α1,2 ∧
for all γ1, γ2 ∈ ty(κ), r ∈ GRelκ,
wfGRelκ(γ1, γ2)(r) =⇒

(v1, v2) ∈ (gα γ1 γ2 r)}

which belongs in wfGRel?(∀κ α1, ∀κ α2) since it is a relation
between values of the correct types. Additionally, we need to show
that ∀κ can only distinguish between equivalence classes of its type
arguments. For this fix β1, β2 in ty(κ → ?), and gβ ∈ GRelκ→?,
with wfGRelκ→?(α1, α2)(gβ). Assume that · ` α1 ≡ β1 : κ → ?,
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JΓ ` τ : κK ∈ SubstΓ ⊃ GRelκ

JΓ ` a : κKδ = δ[a]
JΓ ` K : κKδ = JKK
JΓ ` τ1 τ2 : κKδ = JΓ ` τ1 : κ1 → κKδ δ1τ2 δ2τ2 JΓ ` τ2 : κ1Kδ

for the unique κ1 such that Γ ` τ1 : κ1 → κ and Γ ` τ2 : κ1

JΓ ` λa:κ1.τ : κ1 → κ2Kδ = λα, β, r ∈ GRelκ1 7→ JΓ, a:κ1 ` τ : κ2Kδ,a 7→(α,β,r)

where a#Γ

Figure 9: Relational interpretation of Rω

JKK ∈ GRelkind(K)

JintK = {(i , i) | for all i}
J()K = {((), ())}
J→K = λα1, α2, r1 ∈ GRel?, λβ1, β2, r2 ∈ GRel? 7→

{(v1, v2) | (· ` v1 : α1 → β1) ∧ (· ` v2 : α2 → β2) ∧ for all (e ′1, e
′
2) ∈ C(r1), (v1 e ′1, v2 e ′2) ∈ C(r2)}

J×K = λα1, α2, r1 ∈ GRel?, λβ1, β2, r2 ∈ GRel? 7→
{(v1, v2) | (fst v1, fst v2) ∈ C(r1)} ∩ {(v1, v2) | (snd v1, snd v2) ∈ C(r2)}

J+K = λα1, α2, r1 ∈ GRel?, λβ1, β2, r2 ∈ GRel? 7→
{(inl e1, inl e2) | (e1, e2) ∈ C(r1)} ∪ {(inr e1, inr e2) | (e1, e2) ∈ C(r2)}

J∀κK = λα1, α2, f ∈ GRelκ→? 7→
{(v1, v2) | (· ` v1 : ∀κ α1) ∧ (· ` v2 : ∀κ α2) ∧

for all β1, β2 ∈ ty(κ), r ∈ GRelκ, wfGRelκ(β1, β2)(r) =⇒ (v1, v2) ∈ (f β1 β2 r)}
JRK = R (see Figure 11)

Figure 10: Operations of type constructors on relations

· ` α2 ≡ β2 : κ → ?, and gα ≡κ→? gβ . Then we know that:

J∀κK β1 β2 gβ = {(v1, v2) | · ` v1,2 : ∀κ β1,2 ∧
for all γ1, γ2 ∈ ty(κ), r ∈ GRelκ,
wfGRelκ(γ1, γ2)(r) =⇒

(v1, v2) ∈ (gβ γ1 γ2 r)}
We need to show that

J∀κK α1 α2 gα ≡? J∀κK β1 β2 gβ

To finish the case, using rule T-EQ to take care of the typing
requirements, it is enough to show that, for any γ1, γ2 in ty(κ),
any r with wfGRelκ(γ1, γ2)(r), it is:

gα γ1 γ2 r ≡? gβ γ1 γ2 r

But this follows from reflexivity of ≡κ, Lemma 2.5, and the fact
that gα and gβ are well-formed.

Generalizing Lemma 2.9, we wish to show that the inter-
pretation of any type is a well-formed generalized relation (see
Lemma 2.13 below). To show this we need to strengthen the con-
dition δ ∈ SubstΓ to force δ to map type variables to well-formed
generalized relations.

2.10 Definition [Environment respecting substitution]: We write
δ � Γ iff δ ∈ SubstΓ and moreover, for every a 7→ (τ1, τ2, r),
such that (a : κ) ∈ Γ it is the case that · ` τ1 : κ, · ` τ2 : κ and
wfGRelκ(τ1, τ2)(r).

Given equal substitutions, the interpretation of types gives
equivalent results.

2.11 Definition [Equal substitutions]: Assume that δa � Γ, δb �
Γ. Then we write δa ≡ δb iff for every (a:κ) ∈ Γ, it is the case that
a 7→ (τ1, τ2, r) ∈ δa , a 7→ (σ1, σ2, s) ∈ δb and · ` τ1 ≡ σ1 : κ,
· ` τ2 ≡ σ2 : κ and r ≡κ s .

2.12 Lemma: If Γ ` τ : κ and δa � Γ, δb � Γ and δa ≡ δb , it is
the case that

JΓ ` τ : κKδa
≡κ JΓ ` τ : κKδb

2.13 Lemma [Type interpretation is well-formed]: Assume that
Γ ` τ : κ and δ � Γ. Then:

wfGRel
κ(δ1τ, δ2τ)(JΓ ` τ : κKδ)

PROOF. Straightforward induction over the type well-formedness
derivations, appealing to Lemma 2.9. The only interesting case is
the case for type abstractions, which follows from Lemma 2.12 and
Lemma 2.6.

The interpretation of types supports weakening:

2.14 Lemma [Weakening]: Assume that Γ ` τ : κ, δ � Γ, a#Γ,
τ1, τ2 ∈ ty(κa), and wfGRelκa (τ1, τ2)(r). Then:

JΓ, a:κa ` τ : κKδ,a 7→(τ1,τ2,r) ≡κ JΓ ` τ : κKδ

Furthermore, the interpretation of types is compositional, in the
sense that the interpretation of a type depends on the interpretation
of its sub-terms.

2.15 Lemma [Compositionality]: If δ � Γ, Γ, a:κa ` τ : κ,
Γ ` τa : κa , and ra = JΓ ` τa : κaKδ then

JΓ, a:κa ` τ : κKδ,a 7→(δ1τa ,δ2τa ,ra ) ≡κ JΓ ` τ{τa/a} : κKδ

The proof of compositionality depends on the fact that type
interpretations are well formed relations (Lemma 2.13). Finally, the
interpretation of types respects the equivalence classes of types.

2.16 Theorem [Coherence]: If Γ ` τ1 : κ, δ � Γ, and Γ ` τ1 ≡
τ2 : κ, then

JΓ ` τ1 : κKδ ≡κ JΓ ` τ2 : κKδ
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PROOF. The proof can proceed by induction on derivations of
Γ ` τ1 ≡ τ2 : κ. The case for rule BETA follows by appealing to
Lemma 2.15, and the cases for rules APP and ABS we give below.
The rest of the cases are straightforward.

• Case APP. In this case we have that Γ ` τ1 τ2 ≡ τ3 τ4 : κ2

given that Γ ` τ1 ≡ τ3 : κ1 → κ2 and Γ ` τ2 ≡ τ4 : κ1. It is
easy to show as well that Γ ` τ1,3 : κ1 → κ2 and Γ ` τ2,4 : κ1.
We need to show that

JΓ ` τ1 τ3 : κ2Kδ ≡κ2 JΓ ` τ2 τ4 : κ2Kδ

Let
r1 = JΓ ` τ1 : κ1 → κ2Kδ r2 = JΓ ` τ2 : κ1Kδ
r3 = JΓ ` τ3 : κ1 → κ2Kδ r4 = JΓ ` τ4 : κ1Kδ

We know by induction hypothesis that r1 ≡κ1→κ2 r3 and
r2 ≡κ1 r4. By Lemma 2.13, we have that:

wfGRelκ1→κ2(δ1τ1, δ
2τ1)(r1) wfGRelκ1(δ1τ2, δ

2τ2)(r2)
wfGRelκ1→κ2(δ1τ3, δ

2τ3)(r3) wfGRelκ1(δ1τ4, δ
2τ4)(r4)

Finally it is not hard to show that · ` δ1τ2 ≡ δ1τ4 : κ1 and
· ` δ2τ2 ≡ δ2τ4 : κ1. Hence, by the properties of well-formed
relations, and our definition of equivalence, we can show that

r1 δ1τ2 δ2τ2 r2 ≡κ2 r3 δ1τ4 δ2τ4 r4

which finishes the case.
• Case ABS. Here we have that

Γ ` λa:κ1.τ1 ≡ λa:κ2.τ2 : κ1 → κ2

given that Γ, a:κ1 ` τ1 ≡ τ2 : κ2. To show the re-
quired result let us pick σ1, σ2 in ty(κ1), g ∈ GRelκ1 , with
wfGRelκ1(σ1, σ2)(g). Then for δa = δ, a 7→ (σ1, σ2, g), it is
δa � Γ, (a:κ1), and hence by induction hypothesis we get:

JΓ, a:κ1 ` τ1 : κ2Kδa
≡κ2 JΓ, a:κ1 ` τ2 : κ2Kδa

and the case is finished. As a side note, the important condi-
tion that wfGRelκ1(σ1, σ2)(g) allows us to show that δa �
Γ, (a:κ1) and therefore enables the use of the induction hy-
pothesis. If ≡κ1→κ2 tested against any possible g ∈ GRelκ1

that would no longer be true, and hence the case could not be
proved.

With the above definitions and properties, we may now state the
abstraction theorem.

2.17 Theorem [Abstraction theorem for Rω ]: Assume · ` e :
τ . Then (e, e) ∈ C J· ` τ : ?K·.

To account for open terms, the theorem must be generalized
slightly, in the standard manner. The proof then proceeds by induc-
tion on the typing derivation, with an inner induction for the case
of typerec expressions. It relies on Coherence (Theorem 2.16) for
the case of rule T-EQ, and on Compositionality (Lemma 2.15) for
the case of the instantiation rule.

Incidentally, this statement of the abstraction theorem shows
that all well-typed expressions of Rω terminate. All such expres-
sions belong in computation relations, which include only terms
that reduce to values. Moreover, since these values are well-typed,
the abstraction theorem also proves type soundness.

As a warm-up exercise, we next show how we can use the
abstraction theorem to reason about programs using their types.
The following is a free theorem about an Fω type.

2.18 Lemma [Free theorem for ∀c:? → ?.c ()→ c ()]: Any
expression e with type ∀c:? → ?.c () → c () may only

be inhabited by the identity function. In other words, for every
τc ∈ ty(? → ?) and value u with · ` u : τc (), e u ⇓ u .

PROOF. Assume that · ` e : ∀c:? → ?.c () → c (). Then by
Theorem 2.17 we have:

(e, e) ∈ C J· ` ∀c:? → ?.c ()→ c () : ?K

By expanding definition of the interpretation, for any

τ1
c ∈ ty(? → ?)

τ2
c ∈ ty(? → ?)
fc ∈ GRel?→? with wfGRel?→?(τ1

c , τ2
c )(fc)

(e1, e2) ∈ C Jc:? → ? ` c () : ?Kc 7→(τ1
c ,τ2

c ,fc)

it is the case that:

(e e1, e e2) ∈ C Jc:? → ? ` c () : ?Kc 7→(τ1
c ,τ2

c ,fc)
(1)

We can now pick τ1
c = τ2

c = τc and an appropriate fc :

fc ∈ type ⊃ type ⊃ GRel? ⊃ GRel?

fc α β = if (· ` α ≡ () : ? ∧ · ` β ≡ () : ?)
then {(v , u) | · ` v : τc ()} else ∅

Intuitively, the morphism fc returns the graph of a constant func-
tion that always returns u when called with type arguments equiv-
alent to (), and the empty relation otherwise. It is straightforward
to see that wfGRel?→?(τc , τc)(fc). Therefore

Jc:? → ? ` c () : ?Kc 7→(τc ,τc ,fc)
= {(v , u) | · ` v : τc ()}

Because (u, u) is in this set, we can pick e1 and e2 both to be u and
use (1) to show that that e e2 ⇓ u , hence e u ⇓ u as required.

Note a departure from the approach to free theorems for System
F. For System F, useful theorems are derived by instantiating rela-
tions to be graphs of functions expressible in System F. Here, we
instantiated a generalized relation to be a morphism in our meta-
logic that is itself not representable in Fω . In particular, this mor-
phism is not parametric: it behaves differently at type () than at
other types. This same idea will be used with a free theorem for the
gcast function in the next Section.

3. Free theorem for generic cast
We are now ready to move on to showing the (partial) correctness
of generic cast. The Rω type for generic cast is:

gcast : ∀(a:?)(b:?)(c:? → ?).R a → R b → (() + (c a → c b))

The abstraction theorem for this type follows. Assume that:

τ1
a , τ2

a , τ1
b , τ2

b ∈ ty(?)
τ1
c , τ2

c ∈ ty(? → ?)
Γ = (a:?), (b:?), (c:? → ?)
ra ∈ GRel? with wfGRel?(τ1

a , τ2
a )(ra)

rb ∈ GRel? with wfGRel?(τ1
b , τ2

b )(rb)
fc ∈ GRel?→? with wfGRel?→?(τ1

c , τ2
c )(fc)

δ = a 7→ (τ1
a , τ2

a , ra), b 7→ (τ1
b , τ2

b , rb),
c 7→ (τ1

c , τ2
c , fc)

(e1
ra , e2

ra) ∈ C JΓ ` R a : ?Kδ

(e1
rb , e

2
rb) ∈ C JΓ ` R b : ?Kδ

Then, either the cast fails and

gcast e1
ra e1

rb ⇓ inl e ′1 ∧ gcast e2
ra e2

rb ⇓ inl e ′2 ∧ e ′1,2 ⇓ ()

or the cast succeeds and

gcast e1
ra e1

rb ⇓ inr e ′1 ∧ gcast e2
ra e2

rb ⇓ inr e ′2 ∧
for all (e1, e2) ∈ C(fc τ1

a τ2
a ra),

(e ′1 e1, e
′
2 e2) ∈ C(fc τ1

b τ2
b rb)
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We can use this theorem to derive properties about any imple-
mentation of gcast . The first property that we can show (which is
only auxiliary to the proof of the main theorem about gcast) is that
if gcast returns positively then the two types must be equivalent.

3.1 Lemma: If · ` era : R τa , · ` erb : R τb , and gcast era erb ⇓
inr e then it follows that · ` τa ≡ τb : ?.

PROOF. From the assumptions we get that for any τc ∈ ty(? → ?):

· ` gcast era erb : () + (τc τa → τc τb)

Assume by contradiction now that · 6` τa ≡ τb : ?. Then
we instantiate the abstraction theorem with τ1,2

c = λa: ? .(),
τ1,2
a = τa , τ1,2

b = τb , ra = J· ` τa : ?K·, rb = J· ` τb : ?K·,
e1,2
ra = era , e1,2

rb = erb . We additionally take

fc ∈ type ⊃ type ⊃ GRel? ⊃ GRel?

fc α β r = if (· ` α ≡ τa : ? ∧ · ` β ≡ τa : ?)
then J· ` (λa: ? .()) τa : ?K· else ∅

One can confirm that wfGRel?→?(λa: ? .(), λa: ? .())(fc). More-
over (era , era) ∈ C(R τa τa ra) by the abstraction theorem, and
similarly (erb , erb) ∈ C(R τb τb rb). Then by the free theorem
for gcast above we know that since ((), ()) ∈ C(fc τa τa ra) it is:
(e (), e ()) ∈ C(fc τb τb rb) (e is equal to both e ′1 and e ′2 in the
theorem for gcast). But, if · 6` τa ≡ τb then C(fc τb τb rb) = ∅, a
contradiction.

We can now show our important result about gcast : if gcast
succeeds and returns a conversion function, then that function must
behave as the identity. Note that if the type representations agree,
we cannot conclude that gcast will succeed. An implementation of
gcast may always fail for any pair of arguments and still be well
typed.

3.2 Lemma [Partial correctness of gcast]: If · ` era : R τa ,
· ` erb : R τb , gcast era erb ⇓ inr e , and ea is such that
· ` ea : τc τa , with ea ⇓ w , then e ea ⇓ w .

PROOF. First, by Lemma 3.1 we get that · ` τa ≡ τb : ?. We
may then instantiate the free theorem for the type of gcast as in
Lemma 3.1. and pick the same instantiation for types and relations
except for the instantiation of c. We choose c to be instantiated with
(τc , τc , fc) where fc is:

fc ∈ type ⊃ type ⊃ GRel? ⊃ GRel?

fc α β r = if (· ` α ≡ τa : ? ∧ · ` β ≡ τa : ?)
then {(v ,w) | · ` v : τc τa} else ∅

and τc can be any type in ty(? → ?). It is easy to see that
wfGRel?→?(τc , τc)(fc). Then, using the abstraction theorem we
get that:

gcast era erb ⇓ inr e1 (2)

gcast era erb ⇓ inr e2 (3)

∀(e ′1, e ′2) ∈ C(fc τa τa ra), (e1 e ′1, e2 e ′2) ∈ C(fc τb τb rb) (4)
Because of the particular choice for fc we know that (ea , ea) ∈
C(fc τa τa ra). From determinacy of evaluation and equations (2)
and (3) we get that e1 = e2 = e . Then, from (4) we get that
(e ea , e ea) ∈ C(fc τb τb rb), hence e ea ⇓ w as required.

3.3 Remark: A similar theorem as the above would be true for
any term of type ∀(a:?)(b:?)(c:? → ?).() + (c a → c b), if
such a term could be constructed that would return a right injection.
What is important in Rω is that the extra R a and R b arguments
and typerec make the programming of such a function possible!
While the theorem is true in Fω , we cannot really use it because
there are no terms of that type that can return right injections.

The condition that the function fc has to operate uniformly
for equivalence classes of type α and β, which is imposed in the
definition of wfGRel, is not to be taken lightly. If this condition is
violated, the coherence theorem breaks. The abstraction theorem
then can no longer be true. By contradiction, if the abstraction
theorem remained true if this condition was violated, we could
derive a false statement about gcast . Assume that we had picked
a function f which does not satisfy this property:

f ∈ type ⊃ type ⊃ GRel? ⊃ GRel?

f () () = {(v , v) | · ` v : τc ()}
f = ∅

Let τc = λc: ? .c. We instantiate the type of gcast as follows:
we instantiate c with (τc , τc , f ), a with ((), (), J()K), and b with
((λd : ? .d) (), (), J()K). The important detail is that although f
can take any relation that satisfies wfGRel?(α1, α2) to a relation
that satisfies wfGRel?(τc α1, τc α2), it can return different results
for equivalent but syntactically different type arguments. In partic-
ular, the instantiation of b involves types not syntactically equal to
(). Then, if gcast R() R() returns inr e , it has to be the case that
(e (), e ()) ∈ ∅, a contradiction! Hence the abstraction theorem
must break when generalized morphisms at higher kinds do not re-
spect type equivalence classes of their type arguments.

4. Discussion
4.1 Relational interpretation and contextual equivalence
How does the relational interpretation of types given here compare
to contextual equivalence? We write e1 ≡ctx e2 : τ , and read e1 is
contextually equivalent to e2 at type τ , for e1,2 closed expressions
of type τ whenever the following condition holds: For any program
context that returns int and has a hole of type τ , plugging e1 and
e2 in that context returns the same integer value. It can be shown
that the relational interpretation of Rω is sound with respect to
contextual equivalence, and hence can be used as a proof method
for establishing contextual equivalence between expressions.

On the other hand it is known that in the presence of sums and
polymorphism the interpretation of types is not complete with re-
spect to contextual equivalence. There exists a standard fix to this
problem which involves modifying the clauses of the definition
that correspond to sums (such as the J+K and R operations) by
>>-closing them [29, 28]. The >>-closure of a value relation can
be defined by taking the set of pairs of program contexts under
which related elements are indistinguishable, and taking again the
set of pairs of values that are indistinguishable under related pro-
gram contexts. In the presence of polymorphism, >>-closure is
additionally required in the interpretation of type variables of kind
?, or as an extra condition on the definition of wfGRel at kind ?.

4.2 Parametricity, polymorphism, and non-termination
Rω does not include representations of all types for a good reason.
Some type representations complicate the relational interpretation
of types and even change the fundamental properties of the lan-
guage.

To demonstrate these complications, what would happen if we
added the following representation to Rω?

Rid::R (∀a: ? .R a → a → a)

Suppose we extend typerec with a branch for this representation,
and extended gcast accordingly. To simplify the presentation, be-
low we abbreviate the type (∀a: ? .R a → a → a) as Rid .

Then, we could encode an infinite loop in Rω , based on an
example by Mitchell and Harper [15]. This example begins by
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using gcast to enable a self-application term with a concise type.

delta :: ∀a: ? .R a → a → a
delta ra = case (gcast Rid ra) of { inr y .y (λx.x Rid x );

inl z .(λx.x ) }
Above, if the cast succeeds, then y has type ∀c:? → ?.c Rid →
c a , and we can then instantiate y to (Rid → Rid) → (a → a).
We can now add another self-application to get an infinite loop:

omega :: ∀a: ? .R a → a → a
omega = delta Rid delta

Unfolding the definitions shows that omega is divergent:

omega ∼= delta Rid delta
∼= (λx.x Rid x ) delta
∼= delta Rid delta

What this example demonstrates is that we cannot extend the
relational interpretation to Rid and the proof of the abstraction
theorem in a straightforward manner. Recall the definition of the
morphism R in Figure 11. The application R α β r depends
on whether r can be constructed as an application of morphisms
JintK, J()K, J×K, and J+K. If we are to add a new representation
constructor Rid, we must restrict r in a similar way. To do so, it is
tempting to add:

R = . . . as before . . .
∪ {(Rid, Rid) | · ` α ≡ Rid : ? ∧ · ` β ≡ Rid : ? ∧

r ≡? J· ` Rid : ?K·}
And recall that

JΓ ` R τ : ?Kδ = R δ1τ δ2τ JΓ ` τ : ?Kδ

However, this definition is not well-founded. In particular,R recur-
sively calls the main interpretation function on the type Rid , which
is not necessarily smaller than τ .

However, this example does not mean that we cannot give any
relational interpretation to Rid. One strategy might be based on
contextual equivalence:

R = . . . as before . . .
∪ {(Rid, Rid) | · ` α ≡ Rid : ? ∧ · ` β ≡ Rid : ? ∧

r ≡? (· ≡ctx · : Rid)val}

where (· ≡ctx · : Rid)val is the restriction of contextual equiv-
alence on type Rid on values. Although this is a plausible exten-
sion, quite a bit of our infrastructure would have to change. Im-
portantly, the computation lifting of value relations would have to
take into account the non-termination, and for the proof of the ab-
straction theorem (case for typerec) we would have to show that
J· ` Rid : ?K· coincides with (· ≡ctx · : Rid)val , a change that re-
quires even further modifications in other clauses of the definition
of the relational interpretation of types (as outlined in the previous
section). We have not carried out this experiment.

A different question is: what class of polymorphic types can
we represent with our current methodology (i.e. without breaking
strong normalization)? The answer is that we can represent poly-
morphic types as long as those types contain only representations
of closed types. For example, the problematic behaviour above was
caused because the type ∀a.R a → a → a includes R a , the
representation of a quantified type. Such behaviour cannot happen
when we only include representations of types such as ∀a.a → a ,
∀a.a → R int → a , or even ∀a.a . We can still give a defi-
nition of R that calls recursively the main interpretation function,
but the definition can be shown well-formed using a more elaborate
metric on types that takes into account the return types of the repre-
sentation constructors. One can come up with various such ad-hoc
restrictions but it is not clear whether these restrictions are useful
to programmers or theoreticians.

4.3 Related work
Surprisingly, although the interpretation of higher-kinded types
as morphisms in the meta-logic between syntactic term relations
seems to be folklore in the programming languages theory [24], it
can be found in very few sources in the literature.

Kučan [20] interprets the higher-order polymorphic λ-calculus
within a second-order logic in a way similar to ours. However,
the type arguments (which are important for our examples) are
missing from the higher-order interpretations, and it is not clear that
the particular second-order logic that Kučan employs is expressive
enough to host the large type of generalized relations. On the
other hand, Kučan’s motivation is rather different from ours: he
shows the correspondence between free theorems obtained directly
from algebraic datatype signatures, and free theorems derived from
Church encodings.

Gallier gives a detailed formalization [12] closer to ours, al-
though his motivation is a strong normalization proof for Fω , based
on Girard’s reducibility candidates method, and not free-theorem
reasoning about Fω programs. Therefore the interpretation that he
gives is a unary instead of binary relation. Our inductive definition
of GRel, corresponds to his definition of (generalized) candidate
sets. The important requirement that the generalized morphisms re-
spect equivalence classes of types (wfGRel) is also present in this
formalization (Definition 16.2, Condition (4)). Nevertheless there is
no explicit account of what equality means, and what assumptions
are made about the meta-logic. In contrast, we explicitly define ex-
tensional equality for GRels with the extra complication that this
must be given simultaneously with the definition of wfGRel.

Concerning the interpretation of representation types, this paper
extends the ideas developed in previous work by the authors [33]
to a calculus with higher-order polymorphism.

A similar (but more general) approach of performing recur-
sion over the type structure of the arguments for generic program-
ming has been employed in Generic Haskell. Free theorems about
generic functions written in Generic Haskell have been explored
by Hinze [17]. Hinze derives equations about generic functions by
generalizing the usual equations for base kinds using an appropriate
logical relation at the type level, assuming a cpo model, assuming
the main property for the logical relation, and assuming a polytypic
fixpoint induction scheme. Our approach relies on no extra assump-
tions, and our goal is slightly different: While Hinze aims to gen-
eralize behaviour of Generic Haskell functions from base kind to
higher kinds, we are more interested in investigating the abstrac-
tion properties that higher-order types carry. Representation types
simply make programming interesting generic functions possible.

Finally, Washburn and Weirich give a relational interpretation
for a language with non-trivial type equivalence [35], but without
quantification over higher-kinded types. To deal with the complica-
tions of type equivalence that we explain in this paper, Washburn
and Weirich use canonical forms of types (β-normal η-long forms
of types [16]) as canonical representatives of equivalence classes.
Though perhaps more complicated, our analysis (especially outlin-
ing the necessary wfGRel conditions) provides better insight on the
role of type equivalence in the interpretation of higher-order poly-
morphism.

4.4 Future work
There are some limitations of this work to be addressed before it
can move from being a theoretical pearl to a practical reasoning
technique. In the first place, the language Rω , is not full Haskell.
If we wished to use these results to reason about Haskell im-
plementations of gcast, we must extend our model to include
more of Haskell—in particular, general recursion and recursive
types [25, 19, 3, 2, 10]. We believe that the techniques developed
here are independent of those for advanced language features, so
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did not include them in this pearl. However, including arbitrary re-
cursive types is probably all that is required to extend this work to
free theorems for all GADTs.

Another Haskell feature lacking from Rω is support for gen-
erative types. In Haskell, these are newtypes and datatype defini-
tions where each declaration creates a new type that is structurally
isomorphic to existing types, but not equal. Dealing with these
datatypes in generic programming is tricky—the desired behaviour
is that generic functions should automatically extend to new type
definitions based on its isomorphic structure, optionally allowing
“after-the-fact” specialization for specific types [23, 18, 37]. How-
ever, techniques that allow this behavior cannot define gcast. As
a result, generic programming libraries that depend on gcast [22]
implement it as a language extension, not directly in Haskell.

Free theorems for programs with higher-order polymorphic
types were derived in this pearl using morphisms that ignore their
relational arguments. An interesting question to address, especially
when recursive features are added in the language, is whether more
expressive functions, such as recursive morphisms on the type ar-
guments, or morphisms that manipulate their relational arguments,
lead to more interesting free theorems. Is there a classification of
the equations that we can derive about programs according to the
expressive power of the interpretation morphisms? Can we show
for example that the free theorem for generic cast cannot be proved
using morphisms that treat their type arguments parametrically?

4.5 Conclusion
We have given a rigorous roadmap through the proof of the abstrac-
tion theorem for a language with higher-order polymorphism and
representation types, by interpreting types of higher kind directly
into the meta-logic. We have shown how parametricity can be used
to derive the partial correctness of generic cast from its type. In con-
clusion, this pearl demonstrates that parametric reasoning is possi-
ble in the representation-based approach to generic programming.
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A. Definition of cast in Rω

The Rω definition of cast appears below.

1 cast :: ∀a : ?.∀b : ?.R a → R b → () + (a → b)
2 cast = λx.typerec x of {
3 λy.typerec y of {inr λz .z ; inl () ; inl () ; inl ()};
4 λy.typerec y of {inl () ; inr λz .z ; inl () ; inl ()};
5 λra1.λf1.λra2.λf2.λy.typerec y of {
6 inl ();
7 inl ();
8 λrb1.λg1.λrb2.λg2.
9 case f1 rb1 of {h.inl () ; h1.
10 case f2 rb2 of {h.inl () ; h2.
11 inr λz.(h1 (fst z ), h2 (snd z ))
12 }};
13 λrb1.λg1.λrb2.λg2.inl ()}
14 λra1.λf1.λra2.λf2.λy.typerec y of {
15 inl ();
16 inl ();
17 λrb1.λg1.λrb2.λg2.inl ();
18 λrb1.λg1.λrb2.λg2.
19 case f1 rb1 of {h.inl () ; h1.
20 case f2 rb2 of {h.inl () ; h2.
21 inr (λz.case z of {z1.h1 z1 ; z2.h2 z2})
22 }}}}

Thanks to implicit types, the definition of gcast may be obtained
from this one by replacing lines 11 and 21 with inr (λz .h2 (h1 z )).

B. Generalized relations, in Coq
A Coq definition of GRel, wfGRel, and eqGRel (≡κ), follows.

Inductive kind : Set :=
| KStar : kind
| KFun : kind -> kind -> kind.

(* types and a constant for type applications *)
Parameter type : Set.
Parameter TyApp : type -> type -> type.

Parameter term : Set.

(* environments and constant for empty envs *)
Parameter env : Set.
Parameter empty : env.

Parameter teq : env ->
type -> type -> kind -> Prop.

Definition rel : Type := term -> term -> Prop.
Definition eq_rel (r1 : rel) (r2 : rel) :=

forall e1 e2, r1 e1 e2 <-> r2 e1 e2.

(* value relations as a predicate on relations *)
Parameter vrel : type -> type -> rel -> Prop.

Fixpoint GRel (k : kind) : Type :=
match k with

| KStar => rel
| KFun k1 k2 => type -> type -> GRel k1 -> GRel k2

end.

Fixpoint wfGRel (k:kind) : type -> type ->
GRel k -> Prop :=

match k as kr
return type -> type -> GRel kr -> Prop with

| KStar => fun t1 t2 r => vrel t1 t2 r
| KFun k1 k2 => fun c1 c2 r =>

(forall a1 a2 ga b1 b2 gb,
wfGRel k1 a1 a2 ga ->

wfGRel k2 (TyApp c1 a1)
(TyApp c2 a2) (r a1 a2 ga) /\

wfGRel k1 b1 b2 gb ->
teq empty a1 b1 k1 ->
teq empty a2 b2 k1 -> eqGRel k1 ga gb ->

eqGRel k2 (r a1 a2 ga) (r b1 b2 gb))
end

with eqGRel (k:kind) : GRel k -> GRel k -> Prop :=
match k as kr return GRel kr -> GRel kr -> Prop with

| KStar => fun r1 r2 => eq_rel r1 r2
| KFun k1 k2 => fun r1 r2 =>

(forall a1 a2 g,
wfGRel k1 a1 a2 g ->

eqGRel k2 (r1 a1 a2 g) (r2 a1 a2 g))
end.

We assume datatypes that encode Rω syntax, such as kind,
term, type, and env. Moreovere we assume constants such as
TyApp (for type applications) and empty (for empty environments).
Term relations are represented with the datatype rel, for which we
give an equality predicate eq_rel. rel contains functions that re-
turn objects of type Prop. Prop is Coq’s universe for propositions,
therefore rel itself lives in Coq’s Type universe. Then the defini-
tions of wfGRel and eqGRel follow the paper definitions. Impor-
tantly, since rel lives in Type, the whole definition of GRel is a
well-typed inhabitant of Type.
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