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Abstract

Generic functions can specialize their behavior depending on the types of their arguments,
and can even recurse over the structure of the types of their arguments. Such functions can
be programmed using type representations. Generic functions programmed this way possess
certain parametricity properties, which become interesting in the presence of higher-order
polymorphism. In this paper, we give a rigorous road map through the proof of para-
metricity for a calculus with higher-order polymorphism and type representations. We
then use parametricity to derive the correctness of type-safe cast.

1 Introduction

Generic programming refers to the ability to specialize the behavior of functions
based on the types of their arguments. There are many tools, libraries, and lan-
guage extensions that support generic programming, particularly for the Haskell
programming language (Baars & Swierstra, 2002; Cheney & Hinze, 2002; Hinze,
2002; Clarke etal., 2001; Lämmel & Peyton Jones, 2003; Weirich, 2006b; Weirich,
2006a). Although the theory that underlies these mechanisms differs considerably,
the common goal of these mechanisms is to eliminate boilerplate code. Examples
of generic programs range from generic equality functions, marshalers, reductions
and maps, to application-specific traversals and queries (Lämmel & Peyton Jones,
2003), user interface generators (Achten etal., 2004), XML-inspired transforma-
tions (Lämmel, 2007), and compilers (Cheney, 2005).

Representation types (Crary etal., 2002) are an attractive mechanism for generic
programming. The key idea is simple: because the behavior of parametrically poly-
morphic functions cannot be influenced by the types at which they are instantiated,
generic functions dispatch on term arguments that represent types. Representation
types were originally proposed in the context of type-preserving compilation, but
they may be encoded in Haskell in several ways (Cheney & Hinze, 2002; Weirich,
2006b; Weirich, 2006a). The most natural implementation uses generalized alge-



2 Dimitrios Vytiniotis and Stephanie Weirich

braic datatypes (gadts) (Cheney & Hinze, 2003; Sheard & Pasalic, 2004), a recent
extension to the Glasgow Haskell Compiler (GHC).
For example:

data R a where

Rint :: R Int

Runit :: R ()

Rprod :: R a -> R b -> R (a,b)

Rsum :: R a -> R b -> R (Either a b)

The datatype R includes four data constructors: The constructor Rint provides a
representation for type Int, hence its type is R Int. Likewise Runit represents ()

and has type R (). The constructors Rprod and Rsum represent products and sums
(called Either in Haskell). They take as inputs a representation for a, a representa-
tion for b, and return representations for (a,b) and Either a b respectively. The
important property of datatype R t is that the type parameter t is determined by
the data constructor. In contrast, in an ordinary datatype, all data constructors
must return the same type.

A simple example of a generic function is add, shown below, which adds together
all integers that appear in a data structure.

add :: R c -> c -> Int

add (Rint) x = x

add (Runit) x = 0

add (Rprod ra rb) x

= add ra (fst x) + add rb (snd x)

add (Rsum ra rb) (Left x) = add ra x

add (Rsum ra rb) (Right x) = add rb x

The add function may be applied to any argument composed of integers, products,
unit, and sums.

*> add (Rprod Rint Rint) (1,3)

4

Note that in the definition of add, the argument x is treated as integer, product or
sum depending on the clause. This behavior is sound because pattern matching on
the representation argument reveals information about the type of x. For example,
in the third clause of the definition, the type variable c is refined to be equal to
some (a,b) such that ra :: R a and rb :: R b.

In this paper, we focus on generic type-safe cast, which compares two different
type representations and, if they match, produces a coercion function from one type
to the other. Type-safe cast can be used to test, at runtime, whether a value of a
given representable type can safely be viewed as a value of a second representable
type—even when the two types cannot be shown equal at compile-time. Previously,
Weirich (2004) defined two different versions of type-safe cast, cast and gcast,
shown in Figures 1 and 2. Our implementations differ slightly from Weirich’s—
namely they use Haskell’s Maybe type to account for potential failure, instead of an
error primitive—but the essential structure is the same.
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cast :: R a -> R b -> Maybe (a -> b)

cast Rint Rint = Just (\x -> x)

cast Runit Runit = Just (\x -> x)

cast (Rprod (ra0 :: R a0) (rb0 :: R b0))

(Rprod (ra0’ :: R a0’) (rb0’ :: R b0’))

= do g :: ra0 -> ra0’

g <- cast ra0 ra0’

h :: rb0 -> rb0’

h <- cast rb0 rb0’

Just (\(a,b) -> (g a, h b))

cast (Rsum (ra0 :: R a0) (rb0 :: R b0))

(Rsum (ra0’ :: R a0’)(rb0’ :: R b0’))

= do g :: ra0 -> ra0’

g <- cast ra0 ra0’

h :: rb0 -> rb0’

h <- cast rb0 rb0’

Just (\x -> case x of

Left a -> Left (g a)

Right b -> Right (h b))

cast _ _ = Nothing

Fig. 1: cast

newtype CL f c a d = CL (c (f d a))

unCL (CL e) = e

newtype CR f c a d = CR (c (f a d))

unCR (CR e) = e

gcast :: forall a b c. R a -> R b -> Maybe (c a -> c b)

gcast Rint Rint = Just (\x -> x)

gcast Runit Runit = Just (\x -> x)

gcast (Rprod (ra0 :: R a0) (rb0 :: R b0))

(Rprod (ra0’:: R a0’) (rb0’ :: R b0’))

= do g <- gcast ra0 ra0’

h <- gcast rb0 rb0’

let g’ :: c (a0, b0) -> c (a0’, b0)

g’ = unCL . g . CL

h’ :: c (a0’, b0) -> c (a0’, b0’)

h’ = unCR . h . CR

Just (h’ . g’)

cast (Rsum (ra0 :: R a0) (rb0 :: R b0))

(Rsum (ra0’ :: R a0’)(rb0’ :: R b0’))

= do g <- gcast ra0 ra0’

h <- gcast rb0 rb0’

let g’ :: c (a0, b0) -> c (a0’, b0)

g’ = unCL . g . CL

h’ :: c (a0’, b0) -> c (a0’, b0’)

h’ = unCR . h . CR

Just (h’ . g’)

gcast _ _ = Nothing

Fig. 2: gcast
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The first version, cast, works by comparing the two representations and then
producing a coercion function that takes its argument apart, coerces the subcom-
ponents individually, and then puts it back together. In the first clause, both rep-
resentations are Rint, so the type checker knows that a=b=Int, and so the iden-
tity function may be returned. Similar reasoning holds for Runit. In the case for
products and sums, Haskell’s monadic syntax for Maybe ensures that cast returns
Nothing when one of the recursive calls returns Nothing; otherwise g and h are
bound to coercions of the subcomponents. To show how this works, the cases for
products and sums have been decorated with type annotations.

Alternatively, gcast produces a coercion function that never needs to decompose
(or even evaluate) its argument. The key ingredient is the use of the higher-kinded
type argument c, that allows gcast to return a coercion from c a to c b. As Baars
and Swierstra (2002), and Cheney and Hinze (2002) point out, gcast corresponds
to Leibniz equality. From an implementation point of view, the type constructor c

allows the recursive calls to gcast to create a coercion that changes the type of a
part of its argument. In a recursive call, the instantiation of c hides the parts of the
type that remain unchanged. The case for sums is identical.

An important difference between the two versions has to do with correctness.
When the type comparison succeeds, type-safe cast should behave like an identity
function. Informal inspection suggests that both implementations do so. However
in the case of cast, it is possible to mess up. In particular, it is type sound to
replace the clause for Rint with:

cast Rint Rint = Just (\x -> 21)

The type of gcast more strongly constrains its implementation. We could not re-
place the first clause with

gcast Rint Rint = Just (\x -> 21)

because the type of the returned coercion must be c Int -> c Int, not Int -> Int.
Informally, we can argue that the only coercion function that could be returned must
be an identity function as c is abstract. The only way to produce a result of type
c Int (discounting divergence) is to use exactly the one that was supplied.

Contributions. In this paper, we make the above arguments precise and rigorous.
In particular, we show using a free theorem (Reynolds, 1983; Wadler, 1989) that, if
gcast returns a coercion function then that function must be an identity function.
In fact, because we use a free theorem, any function with the type of gcast must
behave in this manner. To do so, we start with a formalization of the λ-calculus with
representation types and higher-order polymorphism, called Rω (Crary etal., 2002)
(Section 2.1). We then extend Reynolds’s abstraction theorem (Reynolds, 1983) to
this language (Section 2.2). Reynolds’s abstraction theorem, also referred to as the
“parametricity theorem” (Wadler, 1989), asserts that every well-typed expression of
the polymorphic λ-calculus (System F) (Girard, 1972) satisfies a particular property
directly derivable from its type. After proving a version of the abstraction theorem
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Kinds κ ::= ? | κ1 → κ2

Types σ, τ ::= a | K | σ1 σ2 | λa:κ.σ
Type constants K ::= R | () | int |→| × | + | ∀κ

Expressions e ::= Rint | R() | R× e1 e2 | R+ e1 e2

| typerec e of {eint ; e() ; e× ; e+}
| fst e | snd e | (e1, e2) | inl e | inr e
| case e of {x.el ; x.er}
| () | i | x | λx.e | e1 e2

Typing contexts Γ ::= · | Γ, a:κ | Γ, x:τ

Fig. 3: Syntax of System Rω

for Rω, we show how to apply it to the type of gcast to get the desired results
(Section 3).

Our broader goal is not just to prove the correctness of gcast—there are cer-
tainly simpler ways to do so, and there are some limitations in our approach, as
we describe in Section 6. Instead, our intention is to demonstrate that it is possible
to use parametricity and free theorems to reason about generic functions written
with representation types. In previous work (Vytiniotis & Weirich, 2007), which
was limited to the case of second-order polymorphism, we had difficulty finding
free theorems for generic functions that were not trivial. This paper demonstrates
a fruitful example of such reasoning when higher-order polymorphism is present,
and encourages the use of variations of this method to reason about other generic
functions.

A second goal of this work is to explore free theorems for higher-order polymor-
phism. Our use of these theorems exhibits an intriguing behaviour. Free theorems
for types with second-order polymorphism quantify over arbitrary relations but are
often used with relations that happen to be expressible as functions in the polymor-
phic λ-calculus. In contrast, we must instantiate free theorems with non-parametric
functions to get the desired result.

Finally, although the ideas that we use to define parametricity are folklore, there
are few explicit proofs of parametricity for Fω available in the literature. Therefore,
an additional contribution of this work is an accessible roadmap to the proof of para-
metricity for higher-order polymorphism using the technique of syntactic logical re-
lations. Our development is most closely related to the proof of strong normalization
of Fω by Gallier (1990), but we do our reasoning in a typed meta-logic. Therefore,
we expect our development to be particularly well-suited for mechanical verification
in proof assistants based on Type Theory, such as Coq (http://coq.inria.fr).

2 Parametricity for Rω

2.1 The Rω calculus.

We begin with a formal description of the Rω calculus, an extension of a Curry-style
variant of Fω (Girard, 1972). The syntax of this language appears in Figure 3, and
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Γ ` τ : κ

(a:κ) ∈ Γ

Γ ` a : κ

kind(K) = κ

Γ ` K : κ

Γ ` τ1 : κ1 → κ
Γ ` τ2 : κ1

Γ ` τ1 τ2 : κ

a#Γ
Γ, a:κ1 ` τ : κ2

Γ ` λa:κ1.τ : κ1 → κ2

kind(→) = ? → ? → ?
kind(×) = ? → ? → ?
kind(+) = ? → ? → ?
kind(∀κ) = (κ → ?) → ?

kind(int) = ?
kind(()) = ?
kind(R) = ? → ?

Γ ` τ1 ≡ τ2 : κ

Γ ` τ : κ
refl

Γ ` τ ≡ τ : κ

Γ ` τ2 ≡ τ1 : κ
sym

Γ ` τ1 ≡ τ2 : κ

Γ ` τ1 ≡ τ2 : κ Γ ` τ2 ≡ τ3 : κ
trans

Γ ` τ1 ≡ τ3 : κ

Γ ` τ1 ≡ τ3 : κ1 → κ2 Γ ` τ2 ≡ τ4 : κ1

app
Γ ` τ1 τ2 ≡ τ3 τ4 : κ2

Γ, a:κ1 ` τ1 : κ2 Γ ` τ2 : κ2

beta
Γ ` (λa:κ1.τ1) τ2 ≡ τ1{τ2/a} : κ2

Γ ` τ : κ1 → κ2 a 6∈ fv(τ)
eta

Γ ` (λa:κ1.τ a) ≡ τ : κ1 → κ2

Γ, a:κ1 ` τ1 ≡ τ2 a#Γ
abs

Γ ` λa:κ1.τ1 ≡ λa:κ1.τ2 : κ1 → κ2

Fig. 4: Type well-formedness and equivalence

the static semantics appears in Figures 4 and 5. Kinds κ include the base kind, ?,
which classifies the types of expressions, and constructor kinds, κ1 → κ2. The type
syntax, σ, includes type variables, type constants, type-level applications, and type
functions. Although type-level λ-abstractions complicate the formal development of
the parametricity theorem, they simplify programming—for example, in Figure 2
we had to introduce the constructors CL and CR only because Haskell does not
include type-level λ-abstractions.

Type constructor constants, K, include standard operators, plus representation
types R. In the following, we write →, ×, and + using infix notation and asso-
ciate applications of → to the right. We treat impredicative polymorphism with
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Γ ` e : τ

int
Γ ` i : int

unit
Γ ` () : unit

Γ, (x:τ1) ` e : τ2 Γ ` τ1 : ?
abs

Γ ` λx.e : τ1 → τ2

(x:τ) ∈ Γ
var

Γ ` x : τ

Γ ` e1 : σ → τ Γ ` e2 : σ
app

Γ ` e1 e2 : τ

Γ ` e1 : σ Γ ` e2 : τ
prod

Γ ` (e1, e2) : σ × τ

Γ ` e : σ × τ
fst

Γ ` fst e : σ

Γ ` e : σ × τ
snd

Γ ` snd e : τ

Γ ` e : σ1 + σ2 Γ, x : σ1 ` el : τ Γ, x : σ2 ` er : τ
case

Γ ` case e of {x . el ; x . er} : τ

Γ ` e : σ
inl

Γ ` inl e : σ + τ

Γ ` e : σ
inr

Γ ` inr e : σ + τ

Γ ` e : τ1 Γ ` τ1 ≡ τ2 : ?
t-eq

Γ ` e : τ2

Γ ` e : ∀κσ Γ ` τ : κ
inst

Γ ` e : σ τ

Γ, (a:κ) ` e : σ a a#Γ
gen

Γ ` e : ∀κσ

rint
Γ ` Rint : R int

runit
Γ ` R() : R ()

Γ ` e1 : R σ1 Γ ` e2 : R σ2

rprod
Γ ` R× e1 e2 : R (σ1, σ2)

Γ ` e1 : R σ1 Γ ` e2 : R σ2

rsum
Γ ` R+ e1 e2 : R (σ1 + σ2)

Γ ` σ : ? → ? Γ ` e : R τ
Γ ` eint : σ int Γ ` e() : σ ()

Γ ` e× : ∀(a b:?).R a → σ a → R b → σ b → σ (a× b)
Γ ` e+ : ∀(a b:?).R a → σ a → R b → σ b → σ (a + b)

trec
Γ ` typerec e of {eint ; e() ; e× ; e+} : σ τ

Fig. 5: Typing relation for Rω

an infinite family of universal type constructors ∀κ indexed by kinds. We write
∀(a1:κ1) . . . (an:κn).σ to abbreviate

∀κ1(λa1:κ1. . . .∀κn(λan:κn.σ) . . .) .

Rω expressions e include abstractions, products, sums, integers and unit. For
simplicity, type abstractions and type applications are implicit. Rω includes type
representations Rint, R(), R×and R+, which must be fully applied to their arguments.
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1 cast :: ∀a : ?.∀b : ?.R a → R b → () + (a → b)
2 cast = λx.typerec x of {
3 λy.typerec y of {inr λz.z ; inl () ; inl () ; inl ()};
4 λy.typerec y of {inl () ; inr λz.z ; inl () ; inl ()};
5 λra1.λf1.λra2.λf2.λy.typerec y of {
6 inl ();
7 inl ();
8 λrb1.λg1.λrb2.λg2.

9 case f1 rb1 of {h.inl () ; h1.
10 case f2 rb2 of {h.inl () ; h2.
11 inr λz.(h1 (fst z), h2 (snd z))
12 }};
13 λrb1.λg1.λrb2.λg2.inl ()}
14 λra1.λf1.λra2.λf2.λy.typerec y of {
15 inl ();
16 inl ();
17 λrb1.λg1.λrb2.λg2.inl ();
18 λrb1.λg1.λrb2.λg2.

19 case f1 rb1 of {h.inl () ; h1.
20 case f2 rb2 of {h.inl () ; h2.
21 inr (λz.case z of {z1.h1 z1 ; z2.h2 z2})
22 }}}}

Fig. 6: Definition of cast in Rω. The definition of gcast may be obtained from this
one by replacing both lines 11 and 21 with inr (λz.h2 (h1 z))

We do not include representations for function or polymorphic types in Rω as
neither are that useful for generic programming. The former can be added in a
straightforward manner, but the latter significantly changes the semantics of the
language, as we discuss in Section 4.2. The language is terminating, but includes
a term typerec that can perform primitive recursion on type representations, and
includes branches for each possible representation.

For completeness, we give the Rω implementations of cast and gcast in Figure 6.
Thanks to implicit types, almost the same code defines both functions.

The dynamic semantics of Rω is a standard large-step non-strict operational
semantics, presented in Figure 7. Essentially typerec performs a fold over its type
representation argument. We use u, v, w for Rω values, the syntax of which is also
given in Figure 7.

The static semantics of Rω contains judgments for kinding, type equivalence,
and typing. Each of these judgments uses a unified environment, Γ, containing
bindings for type variables (a:κ) and term variables (x:τ). We use · for the empty
environment and write a#Γ to mean that a does not appear anywhere in Γ. The
kinding judgment Γ ` τ : κ (in Figure 4) states that τ is a well-formed type of
kind κ and ensures that all the free type variables of the type τ appear in the
environment Γ with correct kinds.

We refer to arbitrary closed types of a particular kind with the following predicate:

2.1 Definition [Closed types]: We write τ ∈ ty(κ) iff · ` τ : κ.
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Values v, w, u ::= Rint | R() | R× e1 e2 | R+ e1 e2

| (e1, e2) | inl e | inr e
| () | i | λx.e

e ⇓ v

v ⇓ v

e1 ⇓ λx.e′ e′{e2/x} ⇓ v

e1 e2 ⇓ v

e ⇓ (e1, e2) e1 ⇓ v

fst e ⇓ v

e ⇓ (e1, e2) e2 ⇓ v

snd e ⇓ v

e ⇓ inl e1 el{e1/x} ⇓ v

case e of {x.el ; x.er} ⇓ v

e ⇓ inr e2 er{e2/x} ⇓ v

case e of {x.el ; x.er} ⇓ v

e ⇓ Rint eint ⇓ v

typerec e of {eint ; e() ; e× ; e+} ⇓ v

e ⇓ R() e() ⇓ v

typerec e of {eint ; e() ; e× ; e+} ⇓ v

e ⇓ R× e1 e2

e× e1 (typerec e1 of {eint ; e() ; e× ; e+})
e2 (typerec e2 of {eint ; e() ; e× ; e+}) ⇓ v

typerec e of {eint ; e() ; e× ; e+} ⇓ v

e ⇓ R+ e1 e2

e+ e1 (typerec e1 of {eint ; e() ; e× ; e+})
e2 (typerec e2 of {eint ; e() ; e× ; e+}) ⇓ v

typerec e of {eint ; e() ; e× ; e+} ⇓ v

Fig. 7: Operational rules

The typing judgment has the form Γ ` e : τ and appears in Figure 5. The interest-
ing typing rules are the introduction and elimination forms for type representations.
The rest of this typing relation is standard. Notably, our typing relation includes
the standard conversion rule:

Γ ` e : τ1 Γ ` τ1 ≡ τ2 : ?
t-eq

Γ ` e : τ2

The judgment Γ ` τ1 ≡ τ2 : κ defines type equivalence as a congruence relation that
includes βη-conversion for types. (In rule beta, we write τ{σ/a} for the capture
avoiding substitution of a for σ inside τ .) In addition, we implicitly identify α-
equivalent types, and treat them as syntactically equal in the rest of the paper.
We give its definition in Figure 4. The presence of the rule t-eq is important for
Rω because it allows expressions to be typed with any member of an equivalence
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classes of types. This behavior fits our intuition, but complicates the formalization of
parametricity; a significant part of this paper is devoted to complications introduced
by type equivalence.

2.2 The abstraction theorem.

Deriving free theorems requires first defining an appropriate interpretation of types
as binary relations between terms and showing that these relations are reflexive.
This result is the core of Reynolds’s abstraction theorem:

If · ` e : τ then (e, e) ∈ C J· ` τ : ?K·
Free theorems result from unfolding the definition of the interpretation of types
(which appears in Figure 9, using Definition 2.5). However, before we can present
that definition, we must first explain a number of auxiliary concepts.

First, we define a (meta-logical) type, GRelκ, to describe the interpretation of
types of arbitrary kind. Only types of kind ? are interpreted as term relations—types
of higher kind are interpreted as sets of morphisms. (To distinguish between Rω

and meta-logical functions, we use the term morphism for the latter.) For example,
the interpretation of a type of kind ? → ?, a type level function from types to types,
is the set of morphisms that take term relations to appropriate term relations.
2.2 Definition [(Typed-)Generalized Relations]:

r, s ∈ GRel? 4
= P(term× term)

GRelκ1→κ2
4
= TyGRelκ1 ⊃ GRelκ2

ρ, π ∈ TyGRelκ 4
= ty(κ)× ty(κ)× GRelκ

The notation P(term × term) stands for the space of binary relations on terms
of Rω. We use ⊃ for the function space constructor of our meta-logic, to avoid
confusion with the → constructor of Rω.

Generalized relations are mutually defined with Typed-Generalized Relations,
TyGRelκ, which are triples of generalized relations and types of the appropriate kind.
Elements of GRelκ1→κ2 accept one of these triples. These extra ty(κ) arguments
allow the morphisms to dispatch control depending on types as well as relational
arguments. This flexibility is important for the free theorems about Rω programs,
as we demonstrate in Example 2.13.

At first glance, Definition 2.2 seems strange because it returns the term relation
space at kind ?, while at higher kinds it returns a particular function space of
the meta-logic. These two do not necessarily “type check” with a common type.
However, in an expressive enough meta-logic, such as CIC (Paulin-Mohring, 1993)
or ZF set theory, such a definition is indeed well-formed, as there exists a type
containing both spaces (for example Type in CIC1, or pure ZF sets in ZF set theory).
In contrast, in HOL it is not clear how to build a common type “hosting” the
interpretations at all kinds.

1 One can find a Coq definition of GRel and other relevant definitions in Appendix A.
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r ∈ VRel(τ1, τ2)
4
= ∀(e1, e2) ∈ r,

e1 and e2 are values ∧ (· ` e1 : τ1) ∧ (· ` e2 : τ2)

(τ1, τ2, r) ∈ wfGRel? 4
= r ∈ VRel(τ1, τ2)

(τ1, τ2, r) ∈ wfGRelκ1→κ2 4
=

for all ρ ∈ wfGRelκ1 , (τ1 ρ1, τ2 ρ2, r ρ) ∈ wfGRelκ2∧
for all π ∈ wfGRelκ1 , ρ ≡ π =⇒ r ρ ≡κ2 r π

r ≡? s
4
= for all e1 e2, (e1, e2) ∈ r ⇐⇒ (e1, e2) ∈ s

r ≡κ1→κ2 s
4
= for all ρ ∈ wfGRelκ1 , (r ρ) ≡κ2 (s ρ)

ρ ≡ π
4
= (· ` ρ1 ≡ π1 : κ) ∧ (· ` ρ2 ≡ π2 : κ) ∧ ρ̂ ≡κ π̂

Fig. 8: Well-formed generalized relations and equality

Unfortunately, not all objects of GRelκ are suitable for the interpretation of types.
In Figure 8, we define well-formed generalized relations, wfGRelκ, a predicate on
objects in TyGRelκ. We define this predicate mutually with extensional equality
on generalized relations (≡κ) and on typed-generalized relations (≡). Because our
wfGRelκ conditions depend on equality for type GRelκ, we cannot include those
conditions in the definition of GRelκ itself.

At kind ?, (τ1, τ2, r) ∈ wfGRel? checks that r is not just any relation between
terms, but a relation between values of types τ1 and τ2. (We use =⇒ and ∧ for meta-
logical implication and conjunction, respectively.) At kind κ1 → κ2 we require two
conditions. First, if r is applied to a well-formed TyGRelκ1 , then the result must
also be well-formed. (We project the three components of ρ with the notations ρ1,
ρ2 and ρ̂ respectively.) Second, for any pair of equivalent triples, ρ and π, the results
r ρ and r π must also be equal. This condition asserts that morphisms that satisfy
wfGRelκ respect the type equivalence classes of their type arguments.

Equality on generalized relations is also indexed by kinds; for any two r, s ∈
GRelκ, the proposition r ≡κ s asserts that the two generalized relations are exten-
sionally equal. Extensional equality between generalized relations asserts that at
kind ? the two relation arguments denote the same set,2, whereas at higher kinds
it asserts that the relation arguments return equal results, when given the same
argument ρ which must satisfy the wfGRelκ1 predicate.3 Dropping the requirement
that ρ be well-formed is not possible, as we discuss in the proof of Coherence,
Theorem 2.11.

2 We use extensional equivalence for relations in this case instead of the simpler intensional
equivalence (r = s) to again reduce the requirements of the meta-logic. Stating it in the sim-
pler form would require the logic to include propositional extensionality. Propositional exten-
sionality is consistent with but independent of the Calculus of Inductive Constructions. (see
http://coq.inria.fr/V8.1/faq.html)

3 Equivalence at higher-kind may equivalently be defined relationally (i.e. r and s are equivalent
if they take equivalent arguments to equivalent results) instead of point-wise. This version is
slightly simpler, but no less expressive. See lemma 2.10.
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JΓ ` τ : κK ∈ SubstΓ ⊃ GRelκ

JΓ ` a : κKδ

4
= δ̂(a)

JΓ ` K : κKδ

4
= JKK

JΓ ` τ1 τ2 : κKδ

4
=

JΓ ` τ1 : κ1 → κKδ (δ1τ2, δ2τ2, JΓ ` τ2 : κ1Kδ)
when Γ ` τ1 : κ1 → κ and Γ ` τ2 : κ1

JΓ ` λa:κ1.τ : κ1 → κ2Kδ

4
=

λρ ∈ TyGRelκ1 7→ JΓ, a:κ1 ` τ : κ2Kδ,a7→ρ

where a#Γ

Fig. 9: Relational interpretation of Rω

Equality for typed-generalized relations, ρ ≡ π, is defined point-wise. Generalized
relation equality is reflexive, symmetric, and transitive, and hence is an equivalence
relation. All properties follow from simple induction on the kind κ.

Importantly, the wfGRelκ predicate respects this equivalence.

2.3 Lemma: For all ρ ≡ π, if ρ ∈ wfGRelκ then π ∈ wfGRelκ.

We turn now to the key to the abstraction theorem, the interpretation of Rω types
as relations between closed terms. This interpretation makes use of a substitution δ

from type variables to typed-generalized relations. We write dom(δ) for the domain
of the substitution, that is, the subset of all type variables on which δ is not the
identity. We use · for the identity-everywhere substitution, and write δ, a 7→ ρ for
the extension of δ that maps a to ρ and require that a /∈ dom(δ). If δ(a) = (τ1, τ2, r),
we define the notations δ1(a) = τ1, δ2(a) = τ2, and δ̂(a) = r. We also define δ1τ

and δ2τ to be the extension of the domain of the substitutions δ1 and δ2 to include
full types τ .

2.4 Definition [Substitution kind checks in environment]: We say that a
substitution δ kind checks in an environment Γ, and write δ ∈ SubstΓ, when
dom(δ) = dom(Γ) and for every (a:κ) ∈ Γ, we have δ(a) ∈ TyGRelκ.

The interpretation of Rω types is shown in Figure 9 and is defined inductively over
kinding derivations for types. The interpretation function J·K· accepts a derivation
Γ ` τ : κ, and a substitution δ ∈ SubstΓ and returns a generalized relation at kind
κ, hence, the meta-logical type, SubstΓ ⊃ GRelκ. We write the δ argument as a
subscript to JΓ ` τ : κK.

When τ is a type variable a we project the relation component out of δ(a). In
the case where τ is a constructor K, we call the auxiliary function JKK, shown in
Figure 10. For an application, τ1 τ2, we apply the interpretation of τ1 to appro-
priate type arguments and the interpretation of τ2. Type-level λ-abstractions are
interpreted as abstractions in the meta-logic. We use λ and 7→ for meta-logic ab-
stractions. Confirming that JΓ ` τ : κKδ ∈ GRelκ is straightforward using the fact
that δ ∈ SubstΓ.
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JKK ∈ GRelkind(K)

JintK 4
= {(i, i) | for all i}

J()K 4
= {((), ())}

J→K 4
= λρ, π ∈ TyGRel? 7→

{(v1, v2) | (· ` v1 : ρ1 → π1)∧
(· ` v2 : ρ2 → π2)∧
for all (e′1, e

′
2) ∈ C(ρ̂),

(v1 e′1, v2 e′2) ∈ C(π̂) }
J×K 4

= λρ, π ∈ TyGRel? 7→
{(v1, v2) | (fst v1, fst v2) ∈ C(ρ̂)} ∩
{(v1, v2) | (snd v1, snd v2) ∈ C(π̂)}

J+K 4
= λρ, π ∈ TyGRel? 7→

{(inl e1, inl e2) | (e1, e2) ∈ C(ρ̂)} ∪
{(inr e1, inr e2) | (e1, e2) ∈ C(π̂)}

J∀κK 4
= λρ ∈ TyGRelκ→? 7→

{(v1, v2) | (· ` v1 : ∀κ ρ1) ∧ (· ` v2 : ∀κ ρ2)∧
for all π ∈ wfGRelκ, (v1, v2) ∈ (ρ̂ π)}

JRK 4
= R

R 4
= λ(τ, σ, r) ∈ TyGRel? 7→

{(Rint, Rint) | (τ, σ, r) ≡ (int, int, JintK}
∪ {(R(), R()) | (τ, σ, r) ≡ ((), (), J()K)}
∪ {(R× e1

a e1
b , R× e2

a e2
b) |

∃ρa, ρb ∈ wfGRel?∧
· ` τ ≡ ρ1

a × ρ1
b : ? ∧ · ` σ ≡ ρ2

a × ρ2
b : ?∧

r ≡? J×K ρa ρb∧
(e1

a, e2
a) ∈ C(R ρa) ∧ (e1

b , e
2
b) ∈ C(R ρb) }

∪ {(R+ e1
a e1

b , R+ e2
a e2

b) |
∃ρa, ρb ∈ wfGRel?∧
· ` τ ≡ ρ1

a + ρ1
b : ? ∧ · ` σ ≡ ρ2

a + ρ2
b : ?

∧r ≡? J+K ρa ρb∧
(e1

a, e2
a) ∈ C(R ρa) ∧ (e1

b , e
2
b) ∈ C(R ρb) }

Fig. 10: Operations of type constructors on relations

The interpretation JKK gives the relation that corresponds to constructor K.
This relation depends on the following definition, which extends a value relation to
a relation between arbitrary well-typed terms.

2.5 Definition [Computational lifting]: The computational lifting of a relation
r ∈ VRel(τ1, τ2), written as C(r), is the set of all (e1, e2) such that · ` e1 : τ1,
· ` e2 : τ2 and e1 ⇓ v1, e2 ⇓ v2, and (v1, v2) ∈ r.

For integer and unit types, JintK and J()K give the identity value relations re-
spectively on int and (). The operation J→K lifts ρ and π to a new relation between
functions that send related arguments in ρ̂ to related results in π̂. The operation
J×K lifts ρ and π to a relation between products such that the first components
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of the products belong in ρ̂, and the second in π̂. The operation J+K on ρ and π

consists of all the pairs of left injections between elements of ρ̂ and right injections
between elements of π̂. Because sums and products are call-by-name, their subcom-
ponents must come from the computational lifting of the value relations. For the
∀κ constructor, since its kind is (κ → ?) → ? we define J∀κK to be a morphism that,
given a TyGRelκ→? argument ρ, returns the intersection over all well-formed π of
the applications of ρ̂ to π. The requirement that π ∈ wfGRelκ is necessary to show
that the interpretation of the ∀κ constructor is itself well-formed (Lemma 2.6).

For the case of representation types R, the definition relies on an auxiliary mor-
phism R, defined by induction on the size of the β-normal form of its type argu-
ments. The interesting property about this definition is that it imposes requirements
on the relational argument r in every case of the definition. For example, in the
first clause of the definition of R (τ, σ, r), the case for integer representations, r

is required to be equal to JintK. In the case for unit representations, r is required
to be equal to J()K. In the case for products, r is required to be some product of
relations, and in the case for sums, r is required to be some sum of relations. Note
that the definition R is all that is required to extend the parametricity proof of Fω

to Rω—representation types are a fairly isolated addition to this development.
Importantly, the interpretation of any constructor K, including R, is well-formed.

2.6 Lemma [Constructor interpretation is well-formed]: For allK, (K,K, JKK) ∈
wfGRelkind(K).

Proof
The only interesting case is the one for ∀κ, which we show below. We need to show
that

(∀κ,∀κ, J∀κK) ∈ wfGRel(κ→?)→?

Let us fix τ1, τ2 ∈ ty(κ → ?), and a generalized relation gτ ∈ GRelκ→?, with
(τ1, τ2, gτ ) ∈ wfGRelκ→?, Then we know that:

J∀κK (τ1, τ2, gτ ) = {(v1, v2) |
· ` v1 : ∀κ τ1 ∧ · ` v2 : ∀κ τ2∧
for all ρ ∈ TyGRelκ

ρ ∈ wfGRelκ =⇒ (v1, v2) ∈ (gτ ρ)}

which belongs in wfGRel? since it is a relation between values of the correct types.
Additionally, we need to show that ∀κ can only distinguish between equivalence
classes of its type arguments. For this fix σ1, σ2 ∈ ty(κ → ?), and gσ ∈ GRelκ→?,
with (σ1, σ2, gσ) ∈ wfGRelκ→?. Assume that · ` τ1 ≡ σ1 : κ → ?, · ` τ2 ≡ σ2 : κ →
?, and gτ ≡κ→? gσ. Then we know that:

J∀κK (σ1, σ2, gσ) = {(v1, v2) |
· ` v1 : ∀κ σ1 ∧ ` v2 : ∀κ σ2∧
for all ρ ∈ TyGRelκ,

ρ ∈ wfGRelκ =⇒ (v1, v2) ∈ (gσ ρ)}

We need to show that

J∀κK (τ1, τ2, gτ ) ≡? J∀κK (σ1, σ2, gσ)
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To finish the case, using rule t-eq to take care of the typing requirements, it is
enough to show that, for any ρ ∈ TyGRelκ, with ρ ∈ wfGRelκ, we have gτ ρ ≡? gσ ρ.
But this follows from reflexivity of ≡κ, and the fact that gτ and gσ are well-formed.

We next show that the interpretation of types is well-formed. We must prove this
result simultaneously with the fact that the interpretation of types gives equivalent
results when given equal substitutions. We define equivalence for substitutions,
δ1 ≡ δ2, pointwise. This result only holds for substitutions that map type variables
to well-formed generalized relations.

2.7 Definition [Environment-respecting substitution]: We write δ � Γ iff
δ ∈ SubstΓ and for every a ∈ dom(δ), it is the case that δ(a) ∈ wfGRelκ.

With this definition we can now state the lemma.

2.8 Lemma [Type interpretation is well-formed]: If Γ ` τ : κ then

1. for all δ � Γ, (δ1τ, δ2τ, JΓ ` τ : κKδ) ∈ wfGRelκ.
2. for all δ � Γ, δ′ � Γ such that δ ≡ δ′, it is the case that JΓ ` τ : κKδ ≡κ

JΓ ` τ : κKδ′ .

Proof
Straightforward induction over the type well-formedness derivations, appealing to
Lemma 2.6. The only interesting case is the case for type abstractions, which follows
from Lemma 2.3.

Furthermore, the interpretation of types is compositional, in the sense that the
interpretation of a type depends on the interpretation of its sub-terms. The proof
of this lemma depends on the fact that type interpretations are well-formed.

2.9 Lemma [Compositionality]: Given an environment-respecting substitution,
δ � Γ, a well-formed type with a free variable, Γ, a:κa ` τ : κ, a type to substitute,
Γ ` τa : κa, and its interpretation, ra = JΓ ` τa : κaKδ, it is the case that

JΓ, a:κa ` τ : κKδ,a7→(δ1τa,δ2τa,ra) ≡κ JΓ ` τ{τa/a} : κKδ

Furthermore, our extensional definition of equality for Generalized relations
means that it also preserves η-equivalence.

2.10 Lemma [Extensionality]: Given an environment-respecting δ � Γ, a well-
formed type Γ ` τ : κ1 → κ2, and a fresh variable a#fv(τ), Γ, it is the case that

JΓ ` λa:κ1.τ a : κ1 → κ2Kδ ≡κ1→κ2 JΓ ` τ : κ1 → κ2Kδ

Proof
Unfolding the definitions we get that the left-hand side is the morphism

λρ ∈ TyGRelκ1 7→ JΓ, a:κ1 ` τ : κ2Kδ,a7→ρ

Pick ρ ∈ wfGRelκ1 . To finish the case we have to show that

JΓ, a:κ1 ` τ a : κ2Kδ,a7→ρ ≡κ2 JΓ ` τ : κ1 → κ2Kδ ρ
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The left-hand side becomes

JΓ, a:κ1 ` τ : κ1 → κ2Kδ,a7→ρ (ρ1, ρ2, JΓ, a:κ1 ` a : κ1Kδ,a7→ρ)

which is equal to

JΓ, a:κ1 ` τ : κ1 → κ2Kδ,a7→ρ ρ

By a straightforward weakening property, this is equal (not just equivalent) to
JΓ ` τ : κ1 → κ2Kδ ρ. Reflexivity of ≡κ2 finishes the case.

Finally, we show that the interpretation of types respects the equivalence classes
of types.

2.11 Theorem [Coherence]: If Γ ` τ1 : κ, δ � Γ, and Γ ` τ1 ≡ τ2 : κ, then
JΓ ` τ1 : κKδ ≡κ JΓ ` τ2 : κKδ.

Proof
The proof can proceed by induction on derivations of Γ ` τ1 ≡ τ2 : κ. The case for
rule beta follows by appealing to Lemma 2.9, the case for rule eta follows from
Lemma 2.10, and the cases for rules app and abs we give below. The rest of the
cases are straightforward.

• Case app. In this case we have that Γ ` τ1 τ2 ≡ τ3 τ4 : κ2 given that
Γ ` τ1 ≡ τ3 : κ1 → κ2 and Γ ` τ2 ≡ τ4 : κ1. It is easy to show as well that
Γ ` τ1,3 : κ1 → κ2 and Γ ` τ2,4 : κ1. We need to show that

JΓ ` τ1 τ3 : κ2Kδ ≡κ2 JΓ ` τ2 τ4 : κ2Kδ

Let
r1 = JΓ ` τ1 : κ1 → κ2Kδ

r2 = JΓ ` τ2 : κ1Kδ

r3 = JΓ ` τ3 : κ1 → κ2Kδ

r4 = JΓ ` τ4 : κ1Kδ

We know by induction hypothesis that r1 ≡κ1→κ2 r3 and r2 ≡κ1 r4. By
Lemma 2.8, we have that:

(δ1τ1, δ
2τ1, r1) ∈ wfGRelκ1→κ2

(δ1τ2, δ
2τ2, r2) ∈ wfGRelκ1

(δ1τ3, δ
2τ3, r3) ∈ wfGRelκ1→κ2

(δ1τ4, δ
2τ4, r4) ∈ wfGRelκ1

Finally it is not hard to show that · ` δ1τ2 ≡ δ1τ4 : κ1 and · ` δ2τ2 ≡ δ2τ4 :
κ1. Hence, by the properties of well-formed relations, and our definition of
equivalence, we can show that

r1 (δ1τ2, δ
2τ2, r2) ≡κ2 r3 (δ1τ4, δ

2τ4, r4)

which finishes the case.
• Case abs. Here we have that

Γ ` λa:κ1.τ1 ≡ λa:κ1.τ2 : κ1 → κ2

given that Γ, a:κ1 ` τ1 ≡ τ2 : κ2. To show the required result let us pick ρ ∈
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TyGRelκ1 with ρ ∈ wfGRelκ1 . Then for δa = δ, a 7→ ρ, we have δa � Γ, (a:κ1),
and hence by induction hypothesis we get:

JΓ, a:κ1 ` τ1 : κ2Kδa
≡κ2 JΓ, a:κ1 ` τ2 : κ2Kδa

and the case is finished. As a side note, the important condition that ρ ∈
wfGRelκ1 allows us to show that δa � Γ, (a:κ1) and therefore enables the use of
the induction hypothesis. If ≡κ1→κ2 tested against any possible ρ ∈ TyGRelκ1

that would no longer be true, and hence the case could not be proved.

With the above definitions and properties, we may now state the abstraction
theorem.

2.12 Theorem [Abstraction theorem for Rω ]: Assume · ` e : τ . Then
(e, e) ∈ C J· ` τ : ?K·.

To account for open terms, the theorem must be generalized in the standard manner.

If Γ is well-formed, and γ � Γ and Γ ` e : τ then (γ1e, γ2e) ∈ C JΓ ` τ : ?Kγ .

Above, we extend the definition of substitutions to include also mappings of term
variables to pairs of closed expressions.

γ, δ := · | δ, (τ 7→ (τ1, τ2, r)) | δ, (x 7→ (e1, e2))

The definition of SubstΓ remains the same, but we add one more clause to γ � Γ:
for all x such that γ(x) = (e1, e2), it is the case that (e1, e2) ∈ C JΓ ` τ : ?Kγ where
(x:τ) ∈ Γ. We write γ1(x), γ2(x) for the left and write projections of γ(x), and ex-
tend this notation to arbitrary terms. For example, if γ(x) = (e1, e2) then the term
γ1((λz.λy.z) x x) is (λz.λy.z) e1 e1 and γ2((λz.λy.z) x x) is (λz.λy.z) e2 e2.
A well-formed environment is one with disjoint domain of term and type variables,
and where for all (x:τ) ∈ Γ, Γ ` τ : ?, so the above definition makes sense for
well-formed environments.

We give a detailed sketch below of the proof of the abstraction theorem.

Proof
The proof proceeds by induction on the typing derivation, Γ ` e : τ with an
inner induction for the case of typerec expressions. It crucially relies on Coherence
(Theorem 2.11) for the case of rule t-eq.

• Case int. Straightforward.
• Case var. The result follows immediately from the fact that the environment

is well-formed and the definition of γ � Γ.
• Case abs. In this case we have that Γ ` λx.e : τ1 → τ2 given that Γ, (x:τ1) `

e : τ2, and where we assume w.l.o.g that x#Γ, fv(γ). It suffices to show that
(λx.γ1e, λx.γ2e) ∈ JΓ ` τ1 → τ2 : ?Kγ . To show this, let us pick (e1, e2) ∈
JΓ ` τ1 : ?Kγ , it is then enough to show that

((λx.γ1e) e1, (λx.γ2e) e2) ∈ C JΓ ` τ2 : ?Kγ (1)
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But we can take γ0 = γ, (x 7→ (e1, e2)), which certainly satisfies γ0 � Γ, (x:τ1)
and by induction hypothesis: (γ1

0e, γ2
0e) ∈ C JΓ, (x:τ1) ` τ2 : ?Kγ0

. By an easy
weakening lemma for term variables in the type interpretation we have that
(γ1

0e, γ2
0e) ∈ C JΓ ` τ2 : ?Kγ and by unfolding the definitions, equation (1)

follows.
• Case app. In this case we have that Γ ` e1 e2 : τ given that Γ ` e1 : σ → τ

and Γ ` e2 : σ. By induction hypothesis,

(γ1e1, γ
2e1) ∈ C JΓ ` σ → τ : ?Kγ (2)

(γ1e2, γ
2e2) ∈ C JΓ ` σ : ?Kγ (3)

From (2) we get that γ1e1 ⇓ w1 and γ2e1 ⇓ w2 such that (w1 (γ1e2), w2 (γ2e2)) ∈
C JΓ ` τ : ?Kγ , where we made use of equation (3) and unfolded definitions.
Hence, by the operational semantics for applications, we also have that:
((γ1e1) (γ1e2), (γ2e1) (γ2e2)) ∈ C JΓ ` τ : ?Kγ , as required.

• Case t-eq. The case follows directly from appealing to the Coherence theo-
rem 2.11.

• Case inst. In this case we have that Γ ` e : σ τ , given that Γ ` e :
∀κσ and Γ ` τ : κ. By induction hypothesis we get that (γ1e, γ2e) ∈
C(J∀κK (γ1σ, γ2σ, JΓ ` σ : κ → ?Kγ)); hence by the definition of J∀κK and
by making use of the fact that (γ1τ, γ2τ, JΓ ` τ : κKγ) ∈ wfGRelκ (by
Lemma 2.8), we get that γ1e ⇓ v1 and γ2e ⇓ v2 such that

(v1, v2) ∈ JΓ ` σ : κ → ?Kγ (γ1τ, γ2τ, JΓ ` τ : κKγ)

hence, (v1, v2) ∈ JΓ ` σ τ : ?Kγ as required.
• Case gen. We have that Γ ` e : ∀κσ, given that Γ, (a:κ) ` e : σ a where

a#Γ, and we assume w.l.o.g. that a#ftv(γ) as well. We need to show that
(γ1e, γ2e) ∈ C(J∀κK (γ1σ, γ2σ, JσKγ). Hence we can fix ρ ∈ TyGRelκ such that
ρ ∈ wfGRelκ. We can form the substitution γ0 = γ, (a 7→ ρ), for which it is
easy to show that γ0 � Γ, (a:κ). Then, by induction hypothesis (γ1

0e, γ2
0e) ∈

C JΓ, (a:κ) ` σ a : ?Kγ0
which means (γ1

0e, γ2
0e) ∈ C JΓ, (a:κ) ` σ : κ → ?Kγ0

ρ.
By an easy weakening lemma this implies (γ1

0e, γ2
0e) ∈ C JΓ ` σ : κ → ?Kγ ρ

and moreover since terms do not contain types γi
0e = γie and the case is

finished.
• Case rint. We have that Γ ` Rint : R int, hence (Rint, Rint) ∈ R (int, int, JintK)

by unfolding definitions.
• Case runit. Similar to the case for rint.
• Case rprod. We have that Γ ` R× e1 e2 : R (σ1×σ2), given that Γ ` e1 : R σ1

and Γ ` e2 : R σ2. It suffices to show that (R× γ1e1 γ1e2, R× γ2e1 γ2e2) ∈
R (γ1(σ1 × σ2), γ2(σ1 × σ2), JΓ ` σ1 × σ2 : ?Kγ). The result follows by tak-
ing as ρa = (γ1σ1, γ

2σ1, JΓ ` σ1 : ?Kγ), ρb = (γ1σ2, γ
2σ2, JΓ ` σ2 : ?Kγ . By

Lemma 2.8, regularity and inversion on the kinding relation, one can show
that ρa and ρb are well-formed and hence to finish the case we only need to
show that (γ1e1, γ

2e1) ∈ C(R ρa) and (γ1e2, γ
2e2) ∈ C(R ρb), which follow

by induction hypotheses for the typing of e1 and e2.
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• Case rsum. Similar to the case for rprod.
• Case trec. This is really the only interesting case. After we decompose the

premises and get the induction hypotheses, we proceed with an inner induc-
tion on the type of the scrutinee. In this case we have that:

Γ ` typerec e of {eint ; e() ; e× ; e+} : σ τ

Let us introduce some abbreviations:

u[e] = typerec e of {eint ; e() ; e× ; e+}
σ× = ∀(a:?)(b:?).R a → σ a →

R b → σ b → σ (a× b)

σ+ = ∀(a:?)(b:?).R a → σ a →
R b → σ b → σ (a + b)

By the premises of the rule we have:

Γ ` σ : ? → ? (4)

Γ ` e : R τ (5)

Γ ` eint : σ int (6)

Γ ` e() : σ () (7)

Γ ` e× : σ× (8)

Γ ` e+ : σ+ (9)

We also know the corresponding induction hypotheses for (6),(7),(8), (9). We
now show that:

∀e1 e2 ρ ∈ TyGRel?, τ1 ∈ ty(?) τ2 ∈ ty(?) r,

ρ ∈ wfGRel? ∧ (e1, e2) ∈ C(R ρ)
=⇒ (γ1u[e1], γ2u[e2]) ∈ C(JΓ ` σ : ? → ?Kγ ρ)

by introducing our assumptions, and performing inner induction on the
size of the normal form of τ1. Let us call this property for fixed e1, e2, ρ,
INNER(e1, e2, ρ). We have that (e1, e2) ∈ C(R ρ) and hence we know that
e1 ⇓ w1 and e2 ⇓ w2, such that:

(w1, w2) ∈ R ρ

We then have the following cases to consider by the definition of R:

— w1 = w2 = Rint and ρ ≡ (int, int, JintK). In this case, γ1u ⇓ w1 such
that γ1eint ⇓ w1 and similarly γ2u ⇓ w2 such that γ2eint ⇓ w2, and
hence it is enough to show that: (γ1eint, γ

2eint) ∈ C(JΓ ` σ : ? → ?Kγ ρ).
From the outer induction hypothesis for (6) we get that: (γ1eint, γ

2eint) ∈
C JΓ ` σ int : ?Kγ And we have that:

JΓ ` σ int : ?Kγ =

JΓ ` σ : ? → ?Kγ (int, int, JintK) ≡?

JΓ ` σ : ? → ?Kγ ρ
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where we have made use of the properties of well-formed generalized rela-
tions to substitute equivalent types and relations in the middle step.

— w1 = w2 = () and JΓ ` τ : ?Kγ ≡? J()K. The case is similar to the previous
case.

— w1 = R× e1
a e2

a and w2 = R× e1
b e2

b , such that there exist ρ1
a and ρ2

a,
well-formed, such that

ρ ≡? ((ρ1
a × ρ1

b), (ρ2
a × ρ2

b), J×K ρa ρb (10)

(e1
a, e2

a) ∈ C(R ρa) (11)

(e1
b , e

2
b) ∈ C(R ρb) (12)

In this case we know that γ1u[e1] ⇓ wi and γ2u[e2] ⇓ w2 where

(γ1e×) e1
a (γ1u[e1

a]) e1
b (γ1u[e1

b ]) ⇓ w1

(γ2e×) e2
a (γ2u[e2

a]) e2
b (γ2u[e2

b ]) ⇓ w2

By the outer induction hypothesis for (8) we will be done, as before, if we
instantiate with relations ra and rb for the quantified variables a and b,
respectively. But we need to show that, for γ0 = γ, (a 7→ ρa), (b 7→ ρb),
Γ0 = Γ, (a:?), (b:?), we have:

(γ1u[e1
a], γ2u[e2

a]) ∈ C JΓ0 ` σ a : ?Kγ0
(13)

(γ1u[e1
b ], γ2u[e2

b ]) ∈ C JΓ0 ` σ b : ?Kγ0
(14)

But notice that the size of the normal form of τ1
a must be less than the

size of the normal form of τ1, and similarly for τ1
b and τb, and hence we

can apply the (inner) induction hypothesis for (11) and (12). From these,
compositionality, and an easy weakening‘ lemma, we have that (13) and
(14) follow. By the outer induction hypothesis for (8) we then finally have
that:

(w1, w2) ∈ JΓ, (a:?), (b:?) ` σ (a× b) : ?Kγ0

which gives us the desired (w1, w2) ∈ JΓ ` σ : ? → ?Kγ ρ by appealing to
the properties of well-formed generalized relations.

We now have by the induction hypothesis for (5), that (γ1e, γ2e) ∈
C(R (γ1τ, γ2τ, JΓ ` τ : ?Kγ)), and hence we can get

INNER(γ1e, γ2e, (γ1τ, γ2τ, JΓ ` τ : ?Kγ)),

which gives us that:

(γ1u[e], γ2u[e]) ∈ C(JΓ ` σ : ? → ?Kγ (γ1τ, γ2τ, JΓ ` τ : ?Kγ)),

or (γ1u[e], γ2u[e]) ∈ C(JΓ ` σ τ : ?Kγ), as required.

Incidentally, this statement of the abstraction theorem shows that all well-typed
expressions of Rω terminate. All such expressions belong in computation relations,
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which include only terms that reduce to values. Moreover, since these values are
well-typed, the abstraction theorem also proves type soundness.

We next show how we can use the abstraction theorem to reason about programs
using their types. The following is a free theorem about an Fω type.

2.13 Example [Theorem for ∀c:? → ?.c ()→ c ()]: Any e with type ∀c:? →
?.c () → c () may only be inhabited by the identity function. In other words, for
every τc ∈ ty(? → ?) and value u with · ` u : τc (), e u ⇓ u.

Proof
Assume that · ` e : ∀c:? → ?.c ()→ c (). Then by Theorem 2.12 we have: (e, e) ∈
C J· ` ∀c:? → ?.c ()→ c () : ?K. By expanding the definition of the interpretation,
for any ρc ∈ wfGRel?→?, and (e1, e2) ∈ C Jc:? → ? ` c () : ?Kc7→ρc

, it is the case
that:

(e e1, e e2) ∈ C Jc:? → ? ` c () : ?Kc7→ρc
(15)

We can now pick ρc = (τc, τc, fc) where:

fc (τ, σ, )
4
= if (· ` τ ≡ () : ? ∧ · ` σ ≡ () : ?)

then {(v, u) | · ` v : τc ()} else ∅

Intuitively, the morphism fc returns the graph of a constant function that always
returns u when called with type arguments equivalent to (), and the empty relation
otherwise. It is straightforward to see that (τc, τc, fc) ∈ wfGRel?→?. Therefore

Jc:? → ? ` c () : ?Kc7→(τc,τc,fc)
= {(v, u) | · ` v : τc ()}

Because (u, u) is in this set, we can pick e1 and e2 both to be u and use (15) to
show that e e2 ⇓ u, hence e u ⇓ u as required.

As a side-remark, notice that our choice for the morphism fc is not unique.
Another proof of the same theorem could simply use the singleton relation {(u, u)}
instead of the graph of the constant function that always returns u.

We observe that to derive our result we had to instantiate a generalized relation to
be a morphism that is itself not representable in Fω. In particular, this morphism is
not parametric: it behaves differently at type () than at other types. Hence, despite
the fact that we are discussing a theorem for an Fω type, we needed morphisms at
higher kinds to accept both types and morphisms as arguments. This same idea will
be used with a free theorem for the gcast function in the next section.

3 Free theorem for generic cast

We are now ready to move on to showing the correctness of generic cast. The Rω

type for generic cast is:

gcast : ∀(a, b:∗, c:? → ∗).R a → R b → (() + (c a → c b))
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The abstraction theorem for this type follows. Assume that, ρa ∈ wfGRel∗, ρb ∈
wfGRel∗, and ρc ∈ wfGRel∗→∗. Moreover, assume that:

Γ = (a:?), (b:?), (c:? → ?)
δ = a 7→ ρa, b 7→ ρb, c 7→ ρc

(e1
ra, e2

ra) ∈ C JΓ ` R a : ?Kδ

(e1
rb, e

2
rb) ∈ C JΓ ` R b : ?Kδ

Then, either the cast fails and

gcast e1
ra e1

rb ⇓ inl e′1∧
gcast e2

ra e2
rb ⇓ inl e′2 ∧ e′1 ⇓ () ∧ e′2 ⇓ ()

or the cast succeeds and

gcast e1
ra e1

rb ⇓ inr e′1 ∧ gcast e2
ra e2

rb ⇓ inr e′2∧
for all (e1, e2) ∈ C(ρ̂c ρa), (e′1 e1, e

′
2 e2) ∈ C(ρ̂c ρb)

We can use this theorem to derive properties about any implementation of gcast.
The first property that we can show (which is only auxiliary to the proof of the
main theorem about gcast) is that if gcast returns positively then the two types
must be equivalent.

3.1 Lemma: If · ` era : R τa, · ` erb : R τb, and gcast era erb ⇓ inr e then it
follows that · ` τa ≡ τb : ?.

Proof
From the assumptions we get that for any τc ∈ ty(? → ?), it is the case that · `
gcast era erb : ()+(τc τa → τc τb). Assume by contradiction now that · 6` τa ≡ τb : ?.
Then we instantiate the abstraction theorem with e1

ra = e2
ra = era, e1

rb = e2
rb = erb,

ρa = (τa, τa, J· ` τa : ?K·), ρb = (τb, τb, J· ` τb : ?K·) and ρc = (λa:?.(), λa:?.(), fc)
where

fc (τ, σ, r) = if (· ` τ ≡ τa : ? ∧ · ` σ ≡ τa : ?)
then J· ` (λa: ? .()) τa : ?K· else ∅

One can confirm that ρc ∈ wfGRel?→? Moreover (era, era) ∈ C(R ρa) by the ab-
straction theorem, and similarly (erb, erb) ∈ C(R ρb). Then by the free theorem for
gcast above we know that, since ((), ()) ∈ C(fc ρa), we have (e (), e ()) ∈ C(fc ρb)
(e is equal to both e′1 and e′2 in the theorem for gcast). But, if · 6` τa ≡ τb then
C(fc ρb) = ∅, a contradiction.

We can now show our important result about gcast: if gcast succeeds and returns
a conversion function, then that function must behave as the identity. Note that
if the type representations agree, we cannot conclude that gcast will succeed—it
may well return (). An implementation of gcast may always fail for any pair of
arguments and still be well typed.

3.2 Lemma [Correctness of gcast]: If · ` era : R τa, · ` erb : R τb,
gcast era erb ⇓ inr e, and ea is such that · ` ea : τc τa, with ea ⇓ w, then
e ea ⇓ w.

Proof
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First, by Lemma 3.1 we get that · ` τa ≡ τb : ?. We may then instantiate the free
theorem for the type of gcast as in Lemma 3.1. and pick the same instantiation for
types and relations except for the instantiation of c. We choose c to be instantiated
with ρc = (τc, τc, fc) where fc is:

fc (τ, σ, r) = if (· ` τ ≡ τa : ? ∧ · ` σ ≡ τa : ?)
then {(v, w) | · ` v : τc τa} else ∅

and τc can be any type in ty(? → ?). It is easy to see that wfGRel?→?(τc, τc, fc).
Then, using the abstraction theorem we get that:

gcast era erb ⇓ inr e′1 (16)

gcast era erb ⇓ inr e′2 (17)

∀(e1, e2) ∈ C(fc ρa), (e′1 e1, e
′
2 e2) ∈ C(fc ρb) (18)

Because of the particular choice for fc we know that (ea, ea) ∈ C(fc ρa). From
determinacy of evaluation and equations (16) and (17) we get that e′1 = e′2 = e.
Then, from (18) we get that (e ea, e ea) ∈ C(fc ρb), hence e ea ⇓ w as required.

3.3 Remark: A similar theorem as the above would be true for any term of type
∀(a:?)(b:?)(c:? → ?).() + (c a → c b), if such a term could be constructed that
would return a right injection. What is important in Rω is that the extra R a and
R b arguments and typerec make the programming of such a function possible!
While the theorem is true in Fω, we cannot really use it because there are no terms
of that type that can return right injections.

The condition that the function fc has to operate uniformly for equivalence classes
of type α and β, which is imposed in the definition of wfGRel, is not to be taken
lightly. If this condition is violated, the coherence theorem breaks. The abstraction
theorem then can no longer be true. By contradiction, if the abstraction theorem
remained true if this condition was violated, we could derive a false statement about
gcast. Assume that we had picked a function f which does not satisfy this property:

f ((), (), ) = {(v, v) | · ` v : τc ()}
f ( , , ) = ∅

Let τc = λc: ? .c. We instantiate the type of gcast as follows: we instantiate c with
ρc = (τc, τc, f), a with ρa = ((), (), J()K), and b with ρb = ((λd: ? .d) (), (), J()K).
The important detail is that although f can take any relation r such that
wfGRel?(α1, α2, r) to a relation s that satisfies wfGRel?(τc α1, τc α2, s), it can return
different results for equivalent but syntactically different type arguments. In partic-
ular, the instantiation of b involves a type not syntactically equal to (). Then, if
gcast R() R() returns inr e, it has to be the case that (e (), e ()) ∈ ∅, a contradiction!
Hence the abstraction theorem must break when generalized morphisms at higher
kinds do not respect type equivalence classes of their type arguments.
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4 Discussion

4.1 Relational interpretation and contextual equivalence.

How does the relational interpretation of types given here compare to contextual
equivalence? We write e1 ≡ctx e2 : τ , and read e1 is contextually equivalent to e2

at type τ , for e1, e2 closed expressions of type τ whenever the following condition
holds: For any program context that returns int and has a hole of type τ , plugging
e1 and e2 in that context returns the same integer value. It can be shown that the
relational interpretation of Rω is sound with respect to contextual equivalence (i.e.
a subset of contextual equivalence), and hence can be used as a proof method for
establishing contextual equivalence between expressions.

On the other hand it is known that in the presence of sums and polymorphism the
interpretation of types is not complete with respect to contextual equivalence (i.e.
contains contextual equivalence). A potential solution to this problem would start
by modifying the clauses of the definition that correspond to sums (such as the J+K
and R operations) by >>-closing them as Pitts suggests (?; ?). The >>-closure
of a value relation can be defined by taking the set of pairs of program contexts
under which related elements are indistinguishable, and taking again the set of
pairs of values that are indistinguishable under related program contexts. In the
presence of polymorphism, >>-closure is additionally required in the interpretation
of type variables of kind ?, or as an extra condition on the definition of wfGRel at
kind ? (but this is the only part of wfGRel that needs to be modified). Although
we conjecture that this approach achieves completeness with respect to contextual
equivalence, adding >>-closures is typically a heavy technical undertaking (but
probably not hiding surprises, if one follows Pitt’s roadmap) and we have not yet
carried out the experiment.

4.2 Parametricity, representations, and non-termination.

Rω does not include representations of all types for a good reason. Some type
representations complicate the relational interpretation of types and even change
the fundamental properties of the language.

To demonstrate these complications, consider what would happen if we added
the representation Rid of type R Rid to Rω, and extended typerec and gcast

accordingly, where Rid abbreviates the type (∀(a:?).R a → a → a). Then we could
encode an infinite loop in Rω, based on an example by Harper and Mitchell (1999)
which in turn uses Girard’s J operator. This example begins by using gcast to
enable a self-application term with a concise type.

delta :: ∀a: ? .R a → a → a

delta ra = case (gcast Rid ra) of { inr y.y (λx.x Rid x);
inl z.(λx.x) }

Above, if the cast succeeds, then y has type ∀c:? → ?.c Rid → c a, and we can
instantiate y to (Rid → Rid) → (a → a). We can now add another self-application
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to get an infinite loop:

delta Rid delta ≈ (λx.x Rid x) delta ≈ delta Rid delta

This example demonstrates that we cannot extend the relational interpretation to
Rid and the proof of the abstraction theorem in a straightforward manner as our
proof implies termination. That does not mean that we cannot give any relational
interpretation to Rid, only that our proof would have to change significantly. Recent
work by Neic et al. (?) gives a way to reconcile Girard’s J operator and parametric-
ity.

Our current proof breaks in the definition of the morphism R in Figure 10. The
application R (τ, σ, r) depends on whether r can be constructed as an application
of morphisms JintK, J()K, J×K, and J+K. If we are to add a new representation
constructor Rid, we must restrict r in a similar way. To do so, it is tempting to add:

R = . . . as before . . .

∪ {(Rid, Rid) | · ` τ ≡ Rid : ? ∧ · ` σ ≡ Rid : ?∧
r ≡? J· ` Rid : ?K·}

However, this definition is not well-founded. In particular, R recursively calls the
main interpretation function on the type Rid which includes the type R.

A different question is what class of polymorphic types can we represent with
our current methodology (i.e. without breaking strong normalization)? The answer
is that we can represent polymorphic types as long as those types contain only
representations of closed types. For example, the problematic behavior above was
caused because the type ∀a.R a → a → a includes R a, the representation of a
quantified type. Such behavior cannot happen when we only include representations
of types such as R(R int), ∀a.a → a, ∀a.a → R int → a, or even ∀a.a. We can
still give a definition of R that calls recursively the main interpretation function,
but the definition must be shown well-founded using a more elaborate metric on
types.

4.3 Encoding Rω

Did we really need to go to Rω to get this result? Weirich (2001) previously showed
how to encode a simplified version of representation type in Fω. In fact, the result
of this current paper does not even rely on the the free theorem for representation
types at all. However, extending the Fω proof to Rω only requires local changes.
Furthermore, this proof is more general than the encoding. Weirich’s encoding of
representation types is limited: it permits only iteration as the elimination operation
instead of primitive recursion (Sp lawski & Urzyczyn, 1999) and does not extend
to the inclusion of self-representation (i.e. a representation R_R of type ∀(a : ?) .

Ra → R(Ra).) As the discussion above demonstrates, our definitions here separate
the issues of encoding representations from their interpretations.
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4.4 Injectivity of type equalities

Higher-order types may encode type equalities – the type ∀c.c τ1 → c τ2 is inhabited
iff τ1 ≡ τ2. However, not all properties of type equalities seem to be expressible as
Rω or Fω terms. For instance the term inj below could witness the injectivity of
products:

inj : ∀ab.(∀c.c (a× Int) → c (b× Int)) → (∀c.c a → c b)

However, it it not easy to construct such a term in Fω or Rω. On the other hand,
proving that such a type is uninhabited (using the relational semantics in this
paper) is not straightforward either. The typical way one would prove this would
be by assuming the existence of a term inj and deriving that (inj, inj) ∈ ∅ by using
the fundamental theorem for inj. This approach however can’t work since we would
have to apply inj to arguments that are in the interpretation of ∀c.c (a× Int) →
c (b×Int)) – and such arguments exist only if a and b are instantiated to the same
type and use the same relations. In this case we can show that the term is inhabited.
But in the case where a and b are instantiated to different types, the fundamental
theorem is of no use. It seems that, although the types ∀c.c (τ1×Int) → c (τ2×Int)
where τ1 is not equivalent to τ2, and ∀c.c τ1 → c τ2 are both interpreted as the
empty set, it is not the case that we can construct coercions from the first to
the second. We conjecture that this is in contrast to System F, where any two
uninhabited types can be coerced to each other inside System F. We leave it as
future work to address the aforementioned issues.

5 Related work.

Although the interpretation of higher-kinded types as morphisms in the meta-logic
between syntactic term relations seems to be folklore in the programming languages
theory (Meijer & Hutton, 1995), it can be found in few sources in the literature.

Kǔcan (1997) interprets the higher-order polymorphic λ-calculus within a second-
order logic in a way similar to ours. However, the type arguments (which are im-
portant for our examples) are missing from the higher-order interpretations, and it
is not clear that the particular second-order logic that Kučan employs is expressive
enough to host the large type of generalized relations. On the other hand, Kučan’s
motivation is different: he shows the correspondence between free theorems ob-
tained directly from algebraic datatype signatures and those derived from Church
encodings.

Gallier gives a detailed formalization (Gallier, 1990) closer to ours, although his
motivation is a strong normalization proof for Fω, based on Girard’s reducibility
candidates method, and not free-theorem reasoning about Fω programs. Our work
was developed in CIC instead of untyped set theory, but there are similarities. In
particular, our inductive definition of GRelκ, corresponds to his definition of (gener-
alized) candidate sets. The important requirement that the generalized morphisms
respect equivalence classes of types (wfGRelκ) is also present in his formalization
(Definition 16.2, Condition (4)). However, because Gallier is working in set the-
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ory, he includes no explicit account of what equality means, and omits the extra
complication that it must be given simultaneously with the definition of wfGRelκ.

A logic for reasoning about parametricity, that extends the Abadi-Plotkin
logic (Plotkin & Abadi, 1993) to the λ-cube has been proposed in a manuscript
by Takeuti (Takeuti, 2001). Crole presents in his book (Crole, 1994) a categori-
cal interpretation of higher-order polymorphic types, which could presumably be
instantiated to the concrete syntactic relations used here.

Concerning the interpretation of representation types, this paper extends the
ideas developed in previous work by the authors (Vytiniotis & Weirich, 2007) to a
calculus with higher-order polymorphism.

A similar (but more general) approach of performing recursion over the type
structure of the arguments for generic programming has been employed in Generic
Haskell. Free theorems about generic functions written in Generic Haskell have
been explored by Hinze (2002). Hinze derives equations about generic functions by
generalizing the usual equations for base kinds using an appropriate logical relation
at the type level, assuming a cpo model, assuming the main property for the logical
relation, and assuming a polytypic fixpoint induction scheme. Our approach relies
on no extra assumptions, and our goal is slightly different: While Hinze aims to
generalize behavior of Generic Haskell functions from base kind to higher kinds,
we are more interested in investigating the abstraction properties that higher-order
types carry. Representation types simply make programming interesting generic
functions possible.

Finally, Washburn and Weirich give a relational interpretation for a language with
non-trivial type equivalence (Washburn & Weirich, 2005), but without quantifica-
tion over higher-kinded types. To deal with the complications of type equivalence
that we explain in this paper, Washburn and Weirich use canonical forms of types
(β-normal η-long forms of types (Harper & Pfenning, 2005)) as canonical repre-
sentatives of equivalence classes. Though perhaps more complicated, our analysis
(especially outlining the necessary wfGRel conditions) provides better insight on
the role of type equivalence in the interpretation of higher-order polymorphism.

6 Future work and conclusions

In order for the technique in this paper to evolve to a reasoning technique for
Haskell, several limitations need to be addressed. If we wished to use these results
to reason about Haskell implementations of gcast, we must extend our model
to include more—in particular, general recursion and recursive types (Melliès &
Vouillon, 2005; Johann & Voigtländer, 2004; Appel & McAllester, 2001; Ahmed,
2006; Crary & Harper, 2007). We believe that the techniques developed here are
independent of those for advanced language features.

Another Haskell feature lacking from Rω is support for generative types. In
Haskell, these are newtypes and datatype definitions where each declaration creates
a new type that is structurally isomorphic to existing types, but not equal. Deal-
ing with these datatypes in generic programming is tricky—the desired behavior is
that generic functions should automatically extend to new type definitions based
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on its isomorphic structure, optionally allowing “after-the-fact” specialization for
specific types (Lämmel & Peyton Jones, 2005; Holdermans etal., 2006; Weirich,
2006a). However, techniques that allow this behavior cannot define gcast. As a
result, generic programming libraries that depend on gcast (Lämmel & Peyton
Jones, 2003) implement it as a language extension, not directly in Haskell.

Conclusions. We have given a rigorous roadmap through the proof of the abstrac-
tion theorem for a language with higher-order polymorphism and representation
types, by interpreting types of higher kind directly into the meta-logic. We have
shown how parametricity can be used to derive the correctness of generic cast from
its type. In conclusion, this paper demonstrates that parametric reasoning is pos-
sible in the representation-based approach to generic programming.

Acknowledgments. Thanks to Aaron Bohannon, Jeff Vaughan, Steve Zdancewic,
and anonymous reviewers for their comments. Janis Voigtländer brought Kučan’s
dissertation to our attention.
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A Generalized relations, in Coq

A Coq definition of GRel, wfGRel, and eqGRel (≡κ), follows.4 First, we assume
datatypes that encode Rω syntax, such as kind, term, type, and env. Moreover
we assume constants such as ty_app (for type applications) and empty (for empty
environments).

(* R-omega kinds (Fig. 3) *)

Inductive kind : Set :=

| KStar : kind

| KFun : kind -> kind -> kind.

(* R-omega types and a constant for type applications *)

Parameter type : Set.

Parameter term : Set.

(* R-omega environments and constant for empty envs *)

Parameter env : Set.

Parameter empty : env.

(* R-omega judgments *)

Parameter kinding : env -> type -> kind -> Prop.

Parameter typing : env -> term -> type -> Prop.

Parameter teq : env -> type -> type -> kind -> Prop.

Parameter value : term -> Prop.

(* Definition and operations on closed types *)

Definition ty (k: kind) : Set := { t : type & kinding empty t k }.

Parameter ty_app : forall k1 k2, ty (KFun k1 k2) -> ty k1 -> ty k2.

Parameter ty_eq : forall k, ty k -> ty k -> Prop.

(* closed terms *)

Parameter tm : (ty KStar) -> term -> Prop.

Parameter typing_eq : forall (t1 t2 : ty KStar) e, ty_eq t1 t2 -> tm t1 e -> tm t2 e.

Term relations are represented with the datatype rel, for which we give an
equality predicate eq_rel. The definition rel contains functions that return objects
of type Prop. Prop is Coq’s universe for propositions, therefore rel itself lives in
Coq’s Type universe. Then the definitions of wfGRel and eqGRel follow the paper
definitions. Importantly, since rel lives in Type, the whole definition of GRel is a
well-typed inhabitant of Type.

(* Relations over terms *)

Definition rel : Type := term -> term -> Prop.

Definition eq_rel (r1 : rel) (r2 : rel) :=

4 These definitions are valid in Coq 8.1 with implicit arguments set.
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forall e1 e2, r1 e1 e2 <-> r2 e1 e2.

(* Value relations as a predicate on relations *)

Definition vrel : (ty KStar * ty KStar * rel) -> Prop :=

fun x =>

match x with

| ((t1, t2), r) =>

forall e1 e2,

r e1 e2 ->

value e1 /\ value e2 /\ tm t1 e1 /\ tm t2 e2

end.

(* (Typed-)Generalized relations: Definition 2.2 *)

Fixpoint GRel (k : kind) : Type :=

match k with

| KStar => rel

| KFun k1 k2 => (ty k1 * ty k1 * GRel k1) -> GRel k2

end.

Notation "’TyGRel’ k" := (ty k * ty k * GRel k)%type (at level 67).

Notation "x ^1" := (fst (fst x)) (at level 2).

Notation "x ^2" := (snd (fst x)) (at level 2).

Notation "x ^3 " := (snd x) (at level 2).

(** Well-formed gen. relations and equality (Fig. 9) *)

Fixpoint wfGRel (k:kind) : TyGRel k -> Prop :=

match k as k’ return TyGRel k’ -> Prop with

| KStar => vrel

| KFun k1 k2 => fun (c : TyGRel (KFun k1 k2)) =>

(forall (a : TyGRel k1),

wfGRel a ->

(wfGRel (ty_app c^1 a^1, ty_app c^2 a^2, c^3 a)) /\

(forall b, wfGRel b ->

ty_eq a^1 b^1 ->

ty_eq a^2 b^2 -> eqGRel k1 a^3 b^3 ->

eqGRel k2 (c^3 a) (c^3 b)))

end

with eqGRel (k:kind) : GRel k -> GRel k -> Prop :=

match k as k’ return GRel k’ -> GRel k’ -> Prop with

| KStar => eq_rel

| KFun k1 k2 => fun r1 r2 =>

(forall a, wfGRel a -> eqGRel k2 (r1 a) (r2 a))

end.
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(* Equivalence between typed generalized relations *)

Definition eqTyGRel k (rho : TyGRel k) (pi : TyGRel k) :=

ty_eq rho^1 pi^1 /\

ty_eq rho^2 pi^2 /\

eqGRel k rho^3 pi^3


