
Wobbly types: type inference for generalised algebraic data types

Simon Peyton Jones
Microsoft Research, Cambridge

Geoffrey Washburn
University of Pennsylvania

Stephanie Weirich
University of Pennsylvania

Abstract

Generalised algebraic data types (GADTs), sometimes
known as “guarded recursive data types” or “first-class phan-
tom types”, are a simple but powerful generalisation of the
data types of Haskell and ML. Recent works have given com-
pelling examples of the utility of GADTs, although type in-
ference is known to be difficult.

It is time to pluck the fruit. Can GADTs be added to Haskell,
without losing type inference, or requiring unacceptably
heavy type annotations? Can this be done without com-
pletely rewriting the already-complex Haskell type-inference
engine, and without complex interactions with (say) type
classes? We answer these questions in the affirmative, giving
a type system that explains just what type annotations are re-
quired, and a prototype implementation that implements it.
Our main technical innovation is wobbly types, which ex-
press in a declarative way the uncertainty caused by the in-
cremental nature of typical type-inference algorithms.

1 Introduction

Generalised algebraic data types (GADTs) are a simple but
potent generalisation of the recursive data types that play a
central role in ML and Haskell. In recent years they have
appeared in the literature with a variety of names (guarded
recursive data types, first-class phantom types, equality-
qualified types, and so on), although they have a much longer
history in the dependent types community (see Section 6).
Any feature with so many names must be useful — and in-
deed these papers and others give many compelling exam-
ples, as we recall in Section 2.

Submitted to POPL’05: July 19, 2004

We seek to turn GADTs from a specialised hobby into a
mainstream programming technique. To do so, we have in-
corporated them as a conservative extension of Haskell (a
similar design would work for ML). The main challenge is
the question of type inference, a dominant feature of Haskell
and ML. It is well known that GADTs are too expressive
to admit type inference in the absence of any programmer-
supplied type annotations; on the other hand, when enough
type annotations are supplied, type inference is relatively
straightforward.

One approach, then, is to implement a compiler that takes ad-
vantage of type annotations. If the algorithm succeeds, well
and good; if not, the programmer adds more annotations un-
til it does succeed. The difficulty with this approach is that
there is no guarantee that another compiler for the same lan-
guage will also accept the annotated program, nor does the
programmer have a precise specification of what programs
are acceptable and what are not. With this in mind, our
central focus is this: we give a declarative type system for
a language that includes GADTs and programmer-supplied
type annotations, which has the property that type inference
is straightforward for any well-typed program. More specif-
ically, we make the following contributions:

• We describe an explicitly-typed target language, in the
style of System F, that supports GADTs (Section 3).
This language differs in only minor respects from that
of Xi [XCC03], but our presentation of the type system
is rather different and, we believe, more accessible to
programmers. In addition, some design alternatives dif-
fer and, most important, it allows us to introduce much
of the vocabulary and mental scaffolding to support the
main payload. We prove that the type system is sound.

• We describe an implicitly-typed source language, that
supports GADTs and programmer-supplied type anno-
tations (Section 4), and explore some design variations,
including lexically-scoped type variables (Section 4.7).
The key innovation in the type system is the notion of
a wobbly type, which models the places where an infer-
ence algorithm would make a “guess”. The idea is that
the type refinement induced by GADTs never “looks in-

1

side” a wobbly type, and hence is insensitive to the or-
der in which the inference algorithm traverses the tree.
We prove various properties of this system, including
soundness.

• We have built a prototype implementation of the system
as an extension to the type inference engine described
by Peyton Jones and Shields’s tutorial [PS04]. We dis-
cuss the interesting aspects of the implementation in
Section 5.

Our focus is on type inference rather than checking, unlike
most previous work on GADTs. The exception is an ex-
cellent paper by Simonet and Pottier, written at much the
same time as this one, and which complements our work
very nicely [SP03]. Their treatment is more general (they
use HM(X) as the type framework), but we solve two prob-
lems they identify as particularly tricky. First, we support
lexically-scoped type variables and open type annotations;
and second we use a single set of type rules for all data types,
rather than one set for “ordinary” data types and another for
GADTs. We discuss this and other important related work in
Section 6.

Our goal is to design a system that is predictable enough
to be used by ordinary programmers; and simple enough to
be implemented without heroic efforts. In particular, we
are in the midst of extending the Glasgow Haskell Com-
piler (GHC) to accommodate GADTs. GHC’s type checker
is already very large; not only does it support Haskell’s
type classes, but also numerous extensions, such as multi-
parameter type classes, functional dependencies, scoped type
variables, arbitrary-rank types, and more besides. An ex-
tension that required all this to be re-engineered would be
a non-starter but, by designing our type system to be type-
inference-friendly, we believe that GADTs can be added as
a more or less orthogonal feature, without disturbing the ex-
isting architecture.

More broadly, we believe that the goal of annotation-free
type inference is a mirage; and that expressive languages
will shift increasingly towards type systems that exploit pro-
grammer annotations. Polymorphic recursion and higher-
rank types are two established examples, and GADTs is an-
other. We need tools to describe such systems, and the wob-
bly types we introduce here seem to meet that need.

2 Background

We begin with a brief review of the power of GADTs —
nothing in this section is new. Consider the following data
type for terms in a simple language of arithmetic expres-
sions:

data Term = Lit Int | Inc Term
| IsZ Term | If Term Term Term
| Fst Term | Snd Term | Pair Term Term

We might write an evaluator for this language as follows:

data Val = VInt Int | VBool Bool | VPr Val Val

eval :: Term -> Val
eval (Lit i) = VInt i
eval (Inc t) = case eval t of

VInt i -> VInt (i+1)
eval (IsZ t) = case eval t of

VInt i -> VBool (i==0)
eval (If b t e) = case eval b of

VBool True -> eval t
VBool False -> eval e

..etc..

There are obvious infelicities in both the data type and the
evaluator. The data type allows the construction of nonsense
terms, such as (Inc (IfZ (Lit 0))); and the evaluator
does a good deal of fruitless tagging and un-tagging.

Now suppose that we could instead write the data type dec-
laration like this:

data Term a where
Lit :: Int -> Term Int
Inc :: Term Int -> Term Int
IsZ :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a
Pair :: Term a -> Term b -> Term (a,b)
Fst :: Term (a,b) -> Term a
Snd :: Term (a,b) -> Term b

Here we have added a type parameter to Term, which indi-
cates the type of the term it represents, and we have enumer-
ated the constructors, giving each an explicit type signature.
These type signatures already rule out the nonsense terms;
in the example above, (IfZ (Lit 0)) has type Term Bool
and that is incompatible with the argument type of Inc.

Furthermore, the evaluator becomes stunningly direct:

eval :: Term a -> a
eval (Lit i) = i
eval (Inc t) = eval t + 1
eval (IsZ t) = eval t == 0
eval (If b t e) = if eval b then eval t else eval e
eval (Pair a b) = (eval a, eval b)
eval (Fst t) = fst (eval t)
eval (Snd t) = snd (eval t)

It is worth studying this remarkable definition. Note that
right hand side of the first equation patently has type Int,
not a. But, if the argument to eval is a Lit, then the type
parameter a must be Int (for there is no way to construct a
Lit term other than to use the typed Lit constructor), and so
the right hand side has type a also. Similarly, the right hand
side of the third equation has type Bool, but in a context in
which a must be Bool. And so on. Under the dictum “well
typed programs do not go wrong”, this program is definitely
well-typed.

The key ideas are these:

2

• A generalised data type is declared by enumerating its
constructors, giving an explicit type signature for each.
In conventional data types in Haskell or ML, a construc-
tor has a type of the form ∀α . τ → T α, where the
result type is the type constructor T applied to all the
type parameters α. In a generalised data type, the result
type must still be an application of T , but the argument
types are arbitrary. For example Lit mentions no type
variables, Pair has a result type with structure (a,b),
and Fst mentions some, but not all, of its universally-
quantified type variables.

• The data constructors are functions with ordinary poly-
morphic types. There is nothing special about how they
are used to construct terms, apart from their unusual
types.

• All the excitement lies in pattern matching. Pattern-
matching against a constructor may allow a type refine-
ment in the case alternative. For example, in the Lit
branch of eval, we can refine a to Int.

• Type inference is only practicable when guided by type
annotations. For example, in the absence of the type
signature for eval, a type inference engine would have
to miraculously anti-refine the Int result type for the
first two equations, and the Bool result type of the third
(etc), to guess that the overall result should be of type
a. Such a system would certainly lack principal types.

• The dynamic semantics is unchanged. Pattern-
matching is done on data constructors only, and there
is no run-time type passing.

This simple presentation describes GADTs as a modest gen-
eralisation of conventional data types. One can generalise
still further, by regarding the constructors as having guarded,
or qualified types [XCC03, SP03]. For example:

Lit ::∀α . (α = Int) ⇒ Term α

This use of explicit constraints has the advantage that it can
be generalised to more elaborate constraints, such as subtype
constraints. But it has the disadvantage that it exposes pro-
grammers to a much richer and more complicated world. In
keeping with our practical focus, our idea is to see how far
we can get without mentioning constraints to the program-
mer at all – indeed, they barely show up in the presentation
of the type system. Our approach is less general, but it has
an excellent power-to-weight ratio.

The eval function is a somewhat specialised example, but
earlier papers have given many other applications of GADTs,
including generic programming, modelling programming
languages, maintaining invariants in data structures (e.g. red-
black trees), expressing constraints in domain-specific em-
bedded languages (e.g security constraints), and modelling

Variables x,y,z

Type variables α,β

Type constructors T

Data constructors C

Programs prog ::= d t

Data types d ::= data Tα where C::∀α . σ → T ξ

Atoms v ::= x | C

Terms t,u ::= v | λp . t | Λα . t | t u | t σ

| let xσ = u in t

| case(σ) t of p->t
Patterns p,q ::= xσ | C α p

Types σ,φ,ξ ::= ∀α.σ | σ → φ | T σ | α

Type contexts Γ,∆ ::= ε | Γ,α | Γ,v : σ

Constraint lists Π ::= π

Constraint π ::= σ1
.
= σ2

Substitutions θ ::= /0 | ⊥ | θ,α 7→ σ

ftv(σ) :: α Free type variables of σ

ftv(σ) = ...standard...
ftv(Γ) :: α Type variables in domain of Γ

ftv(Γ) =
⋃

{ftv(σ) | (x : σ) ∈ Γ }

Figure 1: Syntax of the core language

objects [Hin03, XCC03, CH03, SP04, She04]. The inter-
ested reader should consult these works; meanwhile, for this
paper we simply take it for granted that GADTs are useful.

3 The core language

Our first step is to describe an explicitly-typed language,
in the style of System F, that supports GADTs. This lan-
guage allows us to introduce much of our terminology and
mental scaffolding, in a context that is relatively simple and
constrained. This so-called core language is more than a
pedagogical device, however. GHC uses a System-F-style
language as its intermediate language, and the language we
describe here is very close to that used by GHC (extended
to support GADTs). Furthermore, the source-language type
system that we describe in Section 4 gives a type-directed
translation into the core language, and that is the route by
which we prove soundness for the source language.

3.1 Syntax of the core language

Figure 1 gives the syntax of the core language and its types.
As in System F, each binder is annotated with its type,
and type abstraction (Λα . t) and application (t σ) is ex-
plicit. The let binding form is recursive. In this paper,
every type variable has kind “*”; the extension to higher
kinds is straightforward, but increases clutter. The system
is impredicative, however; for example, the type application
(f (∀α . α → α)) is legitimate.

3

We use overbar notation extensively. The notation αn means
the sequence α1 · · ·αn; the “n” may be omitted when it is
unimportant. The notation a # b means that the two se-
quences have no common elements. Although we give the
syntax of function types in the conventional curried way, we
also sometimes use an equivalent overbar notation, thus:

σn → φ ≡ σ1 → · · · → σn → φ

We will sometimes decompose sequences one element at a
time, using the following grammar.

a ::= ε | a,a

This notation is used in the declaration of data types (Fig-
ure 1), which are given by explicitly enumerating the con-
structors, giving an explicit type signature for each. The dec-
laration of Term in Section 2 was an example.

Pattern-matching over these data types is done by case ex-
pressions. Each such expression (case(σ) t of p->t) is dec-
orated with its result type σ, and patterns p may be nested.
(GHC’s intermediate language does not have nested patterns,
but the source language certainly does, and nested patterns
turn out to have interesting interactions with GADTs, so it is
worth exploring them here.)

Notice that a constructor pattern (C α xσ) binds type vari-
ables α as well as term variables xσ. For example, here is
part of the definition of eval, expressed in the core language:

eval :: forall a. Term a -> a
= /\a. \(x:Term a).
case(a) x of
Lit (i:Int) -> i
Pair b c (s::Term b) (t::Term c)
-> (eval b s, eval c t)

Fst b c (t:Term (b,c))
-> fst (b,c) (eval (b,c) t)

...etc...

Each constructor pattern binds a (fresh) type variable for
each universally-quantified type variable in the constructor’s
type. Then, as we shall see, the same type refinement that
refines a to Int in the Lit case will refine a to b (or vice
versa) in the If case, and will refine a to (b,c) in the Fst
case. Notice, too, the essential use of polymorphic recursion:
the recursive calls to eval are at different types than a. To
be useful, a language that offers GADTs must also support
polymorphic recursion.

3.2 Type system of the core language

Figure 2 gives the type system of the core language. We omit
rules for data type declarations d, because they simply pop-
ulate the environment Γ with the types of the constructors.
The main typing judgement Γ ` t : σ is absolutely standard.
The auxiliary judgement Γ `

k
σ checks that σ is well-kinded;

since all type variables have kind *, the judgement checks

U(α ;Π) :: θ

U(α ;ε) = /0
U(α ;σ

.
= σ,Π) = U(α ;Π)

U(α ;β
.
= σ∈,Π) = U(α ;Π[σ∈/β])◦ [β 7→ σ∈]

β 6∈ α,β 6∈ σ2

U(α ;σ∞
.
= β,Π) = U(α ;Π[σ∞/β])◦ [β 7→ σ∞]

β 6∈ α,β 6∈ σ1

U(α ;σ∞ → σ ′
∞

.
= σ∈ → σ ′

∈,Π)

= U(α ;σ∞
.
= σ∈,σ ′

∞
.
= σ ′

∈,Π)

U(α ;T σ∞
.
= T σ∈,Π) = U(α ;σ∞

.
= σ∈,Π)

U(α ;∀β . σ∞
.
= ∀β . σ∈,Π) = U(β,α ;σ∞

.
= σ∈,Π)

U(a ;τ∞
.
= τ∈,Π) = ⊥

Figure 3: Core-language most general unification

only that the type variables of σ are in scope, and that ap-
plications of type constructors T are saturated. We omit the
details.

Pattern-matching is where all the interest lies. The judge-
ment

Γ `
a

p → u : σ1 → σ2

checks each alternative of a case expression. Intuitively,
both σ1 and σ2 should be considered as inputs to this judge-
ment; the former is the type of the scrutinee, while the latter
annotates the case (see rule CASE). The first thing that `a

does is to typecheck the (possibly nested) pattern, using a
judgement of form

Γ ;∆ ;θ `
p

p : σ ;∆ ′ ;θ ′

Here, Γ is the type environment giving the types of the con-
structors, p is the pattern, and σ is the type of the pattern.
The judgement also takes a mini-environment ∆ describing
the type and term variables bound to the left of the pattern
p in the current pattern-match, and extends it with the bind-
ings in p to give ∆ ′. The bindings ∆ are “threaded” top-down
and left-to-right through the patterns, starting off empty, ε,
in rule ALT. The threading work is done by the auxiliary
judgement `ps, which simply invokes `

p successively on a
sequence of patterns. This threading makes it easy to check
for repeated variables — the test x#dom(∆) in rule PVAR —
but our real motivation for threading ∆ will not be apparent
until Section 4.7.

The least conventional feature of the pattern judgement is a
substitution, or type refinement, θ, to which we have already
referred informally; again, the judgement takes a type refine-
ment θ and extends it with type refinements from p to give
θ ′. The type refinement is threaded in exactly the same way
as ∆, for reasons we discuss in Section 3.4.

Let us focus on rule PCON, which deals with a constructor
pattern Cα p. First, we look up the type of C in Γ ; it has
argument types σc (where c is the arity of the constructor)

4

Terms Γ ` t : σ

(v : σ) ∈ Γ

Γ ` v : σ
ATOM

Γ ` t : σ ′ → σ Γ ` u : σ ′

Γ ` t u : σ
TERM-APP

Γ `
k

σ Γ ` t : ∀α . σ ′

Γ ` t σ : σ ′[σ/α]
TYPE-APP

Γ `
a

p->t : σ → σ ′

Γ ` (λp . t) : σ → σ ′ TERM-LAM
Γ,α ` t : σ α # dom(Γ)

Γ ` (Λα . t) : ∀α . σ
TYPE-LAM

Γ,x : σ ` u : σ Γ,x : σ ` t : σ ′

Γ ` (let xσ=u in t) : σ ′ LET

Γ `
k

σ2 Γ ` t : σ1 Γ `
a

p -> u : σ1 → σ2

Γ ` (case(σ2) t of p -> u) : σ2

CASE

Case alternatives Γ `
a

p → u : σ1 → σ2

Γ ;ε ; /0 `
p

p : σ1 ;∆ ;θ θ(Γ,∆) ` θ(u) : θ(σ2)

Γ `
a

p → u : σ1 → σ2

ALT
Γ ;ε ; /0 `

p
p : φ ;∆ ;⊥

Γ `
a

p → u : φ → σ
ALT-FAIL

Patterns Γ ;∆ ;θ `
p

p : σ ;∆ ′ ;θ ′

Γ ;∆ ;⊥ `
p

p : σ ;ε ;⊥
PFAIL

x # dom(∆) θ(σ) = θ(φ)

Γ ;∆ ;θ `
p

xσ : φ ;∆,(x : σ) ;θ
PVAR

(C : ∀α . σc → T ξ
t
) ∈ Γ α # dom(Γ,∆)

θ(φ) = T ξ ′t θ ′ = U(T ξ
t .

= T ξ ′t)

Γ ; (∆,α) ;θ ′ ◦θ `
ps

p : σc ;∆ ′′ ;θ ′′

Γ ;∆ ;θ `
p

C α pc : φ ; ∆ ′′ ;θ ′′
PCON

Pattern sequences Γ ;∆ ;θ `
ps

p : σ ;∆ ′ ;θ ′

Γ ;∆ ;θ `
ps

ε ;∆ ;θ
PEMPTY

Γ ;∆ ;θ `
p

p : σ ;∆ ′ ;θ ′ Γ ;∆ ′ ;θ ′ `
ps

p : σ ;∆ ′′ ;θ ′′

Γ ;∆ ;θ `
ps

p : σ,p : σ ;∆ ′′ ;θ ′′
PCONS

Figure 2: Core language typing rules

and result type T ξ
t

(where t is the arity of T). We require
that the binding type variables α are not already in scope, and
we quietly alpha-rename the constructor’s type to use these
variables. Now comes the interesting bit: we must match up
the constructor’s result type T ξ with the pattern’s type in the
conclusion of the rule, φ. We do this in two steps. First, the
test θ(φ) = T ξ ′ checks that the result type in the conclusion,
φ, when refined by the type refinements induced by “earlier”
patterns, is an application of T to some types ξ ′. Second, we
unify the constructor’s result type T ξ with the pattern type
T ξ ′, using the function U that computes the most-general
unifier, and use the resulting substitution to extend the type
refinement. The definition of U is given in Figure 3, and
is standard, apart from a straightforward extension to handle

polymorphic types.

Returning to rule ALT, once `p has type-checked the pattern,
we typecheck the right-hand side of the alternative, u, under
the type refinement θ. To achieve this effect, we simply apply
θ to Γ , ∆, u, and the result type σ2, before checking the type
of u.

A subtlety of rule PCON is the separation of the third and
fourth preconditions. It is possible to combine them, to ob-
tain the single condition θ ′ = U(θ(φ)

.
= T ξ

t
) However,

doing so makes too many programs typeable. For example:

/\a. \x:a. case x of { (a,b) -> (b,a) }

This program would be regarded as ill-typed by ML or
Haskell, because a variable of polymorphic type a is treated

5

as a pair type, and it is indeed rejected by the third pre-
condition of rule PCON. Under the above modification,
though, it would be regarded as acceptable, because a is
refined to a pair type by θ; and indeed, such a modifica-
tion is perfectly sound provided the dynamic semantics can
distinguish between constructors of different types (False
and Nil, say). Precisely this design choice is made by Jay
[Jay03]. Nevertheless, we adopt the Haskell/ML view here,
for reasons both of principle (more errors are discovered at
compile time) and practice (implementation of the new dy-
namic semantics would be difficult).

3.3 An example

It is instructive to see how the rules work in an example.
Here is the first part of the body of eval:

/\a. \(x:Term a). case(a) x of
Lit (i:Int) -> i

Since Lit has type Int -> Term Int, the pattern binds no
type variables. Rule CASE invokes the judgement

Γ `
a
Lit (i:Int) -> i : Term a → a

In rule PCON we unify Term Int (the result type of Lit)
with Term a, to obtain the type refinement [a 7→ Int]. Then
rule ALT applies that substitution to the right-hand side i and
result type a, and type-checks the right-hand side, which suc-
ceeds.

The next alternative is more interesting:

Pair b c (t1::Term b) (t2::Term c)
-> (eval b t1, eval c t2)

The pattern binds two new type variables b and c, and gen-
erates the type refinement [a 7→ (b,c)]; again, the right hand
side type-checks once this substitution is applied to the result
type a. We discuss just one other constructor, Fst, which has
the interesting property that it has an existential type variable
(because one of the quantified type variables does not appear
in the result type of the constructor):

Fst b c (t:Term (b,c))
-> fst (b,c) (eval (b,c) t)

As with Pair, the pattern binds two fresh type variables b
and c. The result type of the constructor is just Term b –
it does not mention a – so rule PCON forms U(Term b

.
=

Term a), yielding either the substitution [a 7→ b] or [b 7→ a].
The reader may want to confirm that in either case the right
hand side is well typed.

3.4 Nested patterns

Consider these two functions (we omit big lambdas and some
type annotations):

f1 (x::Term a) (y::a)
= case(a) x of

Pair p q -> case(a) y of
(r,s) -> (p,s)

f2 (x::Term a) (y::a)
= case(a) (x,y) of

(Pair p q, (r,s)) -> (p,s)

It should be clear that f1 is well-typed, because the type re-
finement induced by the pattern match on x is “seen” by the
inner case; in that context, y has a pair type so the case
makes sense. If the two cases were reversed, the function
would be ill-typed. But what about f2? Here, the two cases
are merged into one; but is the left-hand match “seen” by the
right-hand one?

This is an open design choice, and other things being equal
the more refinement the better, so we provide for left-to-right
refinement. This is the reason that we “thread” the substi-
tution in our pattern judgement. A consequence is that the
compiler must generate code that matches patterns left-to-
right. In a lazy language like Haskell, termination consider-
ations force this order anyhow, so no new compilation con-
straints are added by our decision. In a strict language, how-
ever, one might argue for greater freedom for the compiler,
and hence less type refinement, as indeed Simonet and Pot-
tier do [SP03]

3.5 Meta-theory

We have proved that the type system of Figure 2 is sound
with respect to the obvious small-step dynamic semantics
(omitted here for lack of space).

THEOREM 3.1 (TYPE SOUNDNESS FOR CORE LANGUAGE).
If ε ` t : σ then e either evaluates to a value or diverges.

Our dynamic semantics does not depend on type information
at run time – one may erase all types without affecting exe-
cution. Our definition of values is also standard. We prove
type soundness using the standard progress and preservation
lemmas.

We have also proved that type checking is decidable. That
is, given a well-formed context Γ and an expression t, it is
decidable whether there exists a σ such that Γ ` t : σ. Be-
cause our rules are syntax-directed, showing that type check-
ing is decidable is straightforward, given that U is decid-
able [Rob65]. The type checking algorithm may be read
from the inference rules.

We are more used to seeing unification in type inference al-
gorithms, and it is unusual to see it in declarative type check-
ing rules. The best way to think about it is this. A successful
pattern match implies the truth of certain equality constraints
among types, all of form T ξ

.
= T ξ ′, and the case alternative

should be checked under these constraints. However, rather
than add a set of constraints to the environment, and reason
about type equality modulo those constraints, we solve the
constraints to get their most general unifier, and apply the

6

resulting substitution. We find that it is much easier to ex-
plain the type system to programmers in terms of an eagerly-
applied substitution than by speaking of constraint sets – and
the usual question of whether or not one can abstract over
constraints simply does not arise. In effect, we are exploit-
ing the special case of equality constraints to simplify the
technology.

This use of U is not new – it was used in essentially the
same way by Coquand [Coq92] and by Jay [Jay03] (from
whom we learned the trick). It is essential for soundness that
the U function indeed delivers the most general unifier. (In
contrast, in the conventional use of unification for type infer-
ence, any unifier is sound.) Why? Because the constraints
gathered in the patterns are treated as facts in the case alter-
native, and we cannot soundly invent new facts – for exam-
ple, we cannot suddenly assume that α is Int.

Technically, the fact that U must be a most general unifier
shows up in the type substitution lemma of the type sound-
ness proof. In this case, we must show that even though
a type substitution θ may produce a different refinement
for branches of a case alternative, those branches are still
well typed after substitution with θ and this new refinement.
However, the new refinement composed with θ is a unifier
for the original types, and the original refinement was the
most general unifier. Therefore, we know that the new refine-
ment and θ is some substitution θ ′ composed with the origi-
nal refinement. We know the branch was well-typed with the
original refinement, so by induction, it must be well-typed
after substitution by θ ′.

Since the most-general unifier contains exactly the same in-
formation as the original constraints, the choice of whether to
pass constraints around or apply a unifier is a matter of taste.
Both choices lead to languages that type check the same
terms. However, the two choices require different meta-
theory – the proofs of type soundness and the decidability
of type checking are a bit different for the two alternatives,
although the proofs for both alternatives seem to be of equiv-
alent complexity.

Most other authors have chosen the alternative path, of
dealing with constraint sets explicitly. For example, Xi
et al. [XCC03] and Cheney and Hinze [CH03] design
explicitly-typed versions of System F that include equality
constraints in the typing environment. These equality con-
straints admit a straightforward type soundness proof. How-
ever, showing that type checking is decidable (done by Ch-
eney and Hinze, but not by Xi et al.) is more difficult. Be-
cause the typing rules are not syntax directed (one rule allows
any expression to be typed with any equivalent type), decid-
able type checking requires putting these typing derivations
into a normal form, which requires computing their most
general unifier.

4 The source language

We now move on to consider the source language. The lan-
guage is implicitly typed in the style of Haskell, but the type
system is far too rich to permit type inference in the absence
of any help from the programmer, so type inference is guided
by programmer-supplied type annotations. The type system
specifies precisely what annotations are required to make a
program well-typed.

If the type system accepts too many programs, it may be
effectively un-implementable, either in theory (by being un-
decidable) or in practice (by being too complicated). Since
we want to implement it, we must be careful to write typ-
ing rules that reject hard-to-infer programs. A good example
of this principle is the treatment of polymorphic recursion
in Haskell 98. A program that uses polymorphic recursion
might in principle have a valid typing derivation, but it is
hard to find it. So we reject the program unless the offend-
ing function has a type signature. It follows, of course, that
programmer-supplied type annotations play a key role in the
typing judgements.

Since our goal is tractable inference, we must speak, at least
informally, about inference algorithms. A potent source of
confusion is that, as in Section 3, unification forms part of
the specification of the type system (when pattern-matching
on GADTs), and also forms part of the implementation of the
type inference algorithm. We keep the two rigorously sepa-
rate. Where confusion may arise we call the former match-
unification and the latter inference-unification. We also de-
scribe the substitution arising from match-unification as a
type refinement.

4.1 Syntax

The syntax of the source language is in Figure 4. Unlike the
core language, binders have no compulsory type annotation,
nor are type abstractions or applications present. Instead, the
programmer may optionally supply a type annotation on a
term, thus (t::ty). For example, here is part of eval again,
in our source language:

eval :: forall a. Term a -> a
= \x. case x of

Lit i -> i
Pair s t -> (eval s, eval t)
Fst t -> fst (eval t)
...etc...

Compared to the core-language version of the same function
in Section 3, the source language has implicit type abstrac-
tion and application, and variables are not annotated with
their types (except in letrec).

4.2 Source types and internal types

We distinguish between source types, ty, and internal types,
σ, and similarly between source type variables a and internal

7

Variables x,y,z

Type constructors T

Data constructors C

Source type variables a,b,c

Target type variables α,β

Atoms v ::= x | C

Terms t,u ::= v | λp.t | t u | t::ty
| let x = u in t

| letrec x::ty = u in t

| case t of p -> t

Patterns p,q ::= x | C p

Source types ty ::= a | ty1->ty2 | T ty

| forall a . ty

Polytypes σ,φ ::= ∀α . τ

Monotypes τ,υ ::= Tτ | τ1 → τ2 | α | τ

Type contexts Γ ::= ε | Γ,α | Γ,(v : σ) | Γ,a = τ

Note: a = τ form unused until Section 4.7
Constraint lists Π ::= π

Constraint π ::= τ1
.
= τ2

Substitutions θ ::= /0 | θ,α 7→ τ | ⊥

Figure 4: Syntax of source types and terms

type variables α. The former constitute part of a source pro-
gram, while the latter are used in typing judgements about
the program. The syntax of both is given in Figure 4. An
auxiliary judgement Γ `

t
ty σ checks that ty is well-

kinded, and gives the internal type τ corresponding to ty.
We omit the details of this judgement which is standard. For
the present, we assume that ty is a closed type, a restriction
we lift in Section 4.7.

The syntax of internal types is mostly conventional. It is
stratified into polytypes (σ,φ), and monotypes (τ,υ); and it
is predicative: type variables range over monotypes (types
with no ∀’s within them), and the argument(s) of a type con-
structor are always monotypes. Predicativity makes type in-
ference considerably easier. In our implementation in GHC,
types can also have higher kinds, exactly as in Haskell 98,
and can be of higher rank [PS04]. These two features turn
out to be largely orthogonal to generalised data types, so we
omit them here to keep the base system as simple as possible.

There is one brand-new feature, unique to this system: the
“wobbly” monotypes, τ . The intuition is this: the un-wobbly
parts of a type can all be traced to programmer-supplied
type annotations, whereas the wobbly parts cannot. Wobbly
types address the following challenge. When we want to type
a case expression that scrutinises a GADT, we must apply
a different type refinement to each alternative, just as in the
explicitly-typed language of Section 3. The most straightfor-
ward way to do this is to follow the type rules rather literally:

ftv(σ) :: α Free type vars of σ

ftv(τ) :: α Free type vars of τ

ftv(Γ) :: α Free type vars of Γ

ftv(Γ) =
⋃

{ftv(σ) | (x : σ) ∈ Γ }

S(τ) :: τ Strip boxes from τ

S(α) = α

S(T τ) = T S(τ)

S(τ1 → τ2) = S(τ1) → S(τ2)

S(τ) = S(τ)

S(Γ) :: Γ Strip boxes from Γ

S(ε) = ε

S(Γ,α) = S(Γ),α

S(Γ,(v : σ)) = S(Γ),(v : S(σ))

S(Γ,(a = τ)) = S(Γ)

push(τ) :: τ Push boxes down one level
push(T τ) = T τ

push(τ1 → τ2) = τ1 → τ2

push(τ) = push(τ)

θ(τ) :: τ Apply a type refinement
θ(α) = α if α 6∈ dom(θ)

= τ if [α 7→ τ] ∈ θ

θ(T τ) = T θ(τ)

θ(τ1 → τ2) = θ(τ1) → θ(τ2)

θ(τ) = τ

θ(Γ) :: Γ Apply a type refinement to Γ

θ(ε) = ε

θ(Γ,α) = θ(Γ) if α ∈ dom(θ)

= θ(Γ),α otherwise
θ(Γ,(v : σ)) = θ(Γ),(v : θ(σ))

θ(Γ,(a = τ)) = θ(Γ),(a = θ(τ))

θ⇑(τ) = τ

θ⇓(τ) = θ(τ)

Figure 5: Functions over types

type-check the pattern, perform the match-unification, apply
the substitution to the environment and the result type, and
then type-check the right hand side. There are two poten-
tial difficulties for inference: (a) the types to be unified may
not be fully known; and (b) the types to which the substi-
tution is applied may not be fully known. Type inference
typically proceeds by using meta-variables to represent as-
yet-unknown monotypes, relying on inference-unification to
fill them out as type inference proceeds. At some interme-
diate point, this filling-out process may not be complete; in-
deed, just how it proceeds depends on the order in which the
inference algorithm traverses the syntax tree.

As a concrete example, consider this:

8

f x y = (case x of { ... }, x==[y])

Initially, x and y will be assigned distinct meta variables, α

and β, say. If the algorithm processes the syntax tree right-
to-left, the term x==[y] will force α to be unified to [β],
and that information might influence how match-unification
takes place in the case expression (if it involved a GADT).
On the other hand, if the algorithm works left-to-right, this
information might not be available when examining the case
expression.

Our goal is that the specification of the type system should
not constrain the inference algorithm to a particular traver-
sal order. Wobbly types are our mechanism for achieving
this goal. The intuition is this:

• In the places where an inference algorithm would have
to “guess” a type, we use a wobbly type to indicate that
fact. For example, if lambda abstractions bound only a
simple variable, the rule for abstraction would look like
this:

Γ,(x : τ1) ` t : τ2

Γ ` (\x.t) : (τ1 → τ2)

The argument type τ1 is “presciently guessed” by the
rule; an inference algorithm would use a meta type vari-
able. So in the typing rule we use a wobbly τ1 to reflect
the fact that x’s type may be developed gradually by the
inference algorithm.

• When performing match-unification in the alternatives
of case expression scrutinising a GADT, we make no
use of information inside wobbly types. We will see
how this is achieved in Section 4.5.

• When applying the substitution from that match-
unification, to refine the type environment and return
type, we do not apply the substitution to a wobbly type:
θ(τ) = τ (Figure 5).

Wobbly types ensure the type refinements arising from
GADTs are derived only from, and applied only to, types that
are directly attributable to programmer-supplied type anno-
tations. We describe a type with no wobbly types inside it as
rigid.

4.3 Directionality

Wobbly types allow us to record where the type system
“guesses” a type but, to complete the picture, we also need a
way to explain when the type system must guess, and when
a programmer-supplied type annotation specifies the neces-
sary type. Our intuition is this: when the programmer can
point to a simple “audit trail” that links the type of a variable
to a programmer-supplied annotation, then the system should
give the variable a rigid type, so that it will participate in type
refinement. For example, if the programmer writes:

foo :: a -> T a -> T a
foo x xs = ...

then he might reasonably expect the system to understand
that the the type of x is a, and the type of xs is T a. To make
this intuitive idea precise, we annotate our typing judgements
with a directionality flag, δ. For example, the judgement
Γ `⇑ t : τ means “in environment Γ the term t has type τ,
regardless of context”, whereas Γ `⇓ t : τ means “in envi-
ronment Γ , the term t in context τ is well-typed”. The up-
arrow ⇑ suggests pulling a type up out of a term (“guessing
mode”), whereas the down-arrow ⇓ suggests pushing a type
down into a term (“checking mode”). We use checking mode
when we know the expected type for a term, because it is
given by a programmer-supplied type annotation.

To see how the directionality works, here is how we split the
rule for abstraction given in Section 4.2 into two, one for
each direction:

Γ,(x : τ1) `⇑ t : τ2

Γ `⇑ (\x.t) : (τ1 → τ2)

Γ,(x : τ1) `⇓ t : τ2

Γ `⇓ (\x.t) : (τ1 → τ2)

The first rule, used when we do not know the way in which
the term is to be used, is just as given in Section 4.2. On
the other hand, if the type is supplied by the context, the
second rule does not make τ1 wobbly – if there is any uncer-
tainty about it, that uncertainty should already be expressed
by wobbly types inside τ1.

The idea of adding a directionality flag to typing judgements
was first published by Pierce & Turner, who called it local
type inference. We used directionality flags to support type
inference for higher-rank types in [PS04], and it is a bonus
that exactly the same technology is useful here.

4.4 The typing rules

The type rules for the source language are given in Figure 6.
They give a type-directed translation into the core language
of Section 3. For example, the judgement Γ `δ t t ′ : τ

says that term t translates into the core term t ′, with type τ.

We begin with rule ATOM, which deals with a variable or
constructor by instantiating its type, σ, using `

inst

δ . The
latter chooses arbitrary, well-kinded wobbly types υ to in-
stantiate σ, the wobbliness indicating that the system must
“guess” the types υ. Their well-kindedness is checked by
`
k, whose details we omit as usual. In guessing mode we are

now done, but in checking mode the wobbliness may get in
the way. For example, it is perfectly acceptable for a func-
tion with type Int → Bool to be given an argument of type
Int, and vice versa. Hence, the auxiliary judgement ` τ ∼ τ ′

checks for equality modulo wobbliness. The function S(τ),
defined in Figure 5, removes wobbliness from an internal
type.

Rule ANNOT invokes `gen

⇓ to “push” the known type signa-
ture into the term, as discussed in Section 4.3. Rule LET is
quite conventional, and uses `

gen

⇑ in guessing mode, while

9

Terms Γ `δ t t ′ : τ

(v : σ) ∈ Γ Γ `
inst
δ σ ≤ τ υ

Γ `δ v v υ : τ
ATOM

Γ `
t

ty σ Γ `
gen
⇓ t t ′ : σ Γ `

inst
δ σ ≤ τ υ

Γ `δ (t::ty) t ′ υ : τ
ANNOT

Γ `
gen
⇑ u u ′ : σ (Γ,x : σ) `δ t t ′ : τ

Γ `δ (let x=u in t) (let xS(σ)=u
′ in t ′) : τ

LET
Γ `

t
ty σ Γ,x : σ `

gen
⇓ u u ′ : σ Γ,x : σ `δ t t ′ : τ

Γ `δ (letrec x::ty=u in t) (let xS(σ)=u
′ in t ′) : τ

REC

Γ `
k

τ1 Γ `
a
⇑ p->t p ′->t ′ : τ1 → τ2

Γ `⇑ λp.t λp ′.t ′ : τ1 → τ2

ABS⇑
Γ `

a
⇓ p->t p ′->t ′ : τ1 → τ2

Γ `⇓ λp.t λp ′.t ′ : τ1 → τ2

ABS⇓

Γ `⇑ u u ′ : τ1 Γ `
a
δ p->t p ′->t ′ : τ1 → τ2

Γ `δ (case u of p->t) (case(τ2) u ′ of p ′->t ′) : τ2

CASE

Γ `⇑ t t ′ : τ push(τ) = τ1 → τ2

Γ `⇓ u u ′ : τ1 `δ τ2 ∼ τ ′
2

Γ `δ t u t ′ u ′ : τ ′
2

APP

Γ `
gen
δ t t ′ : σ

Γ,α `δ t t ′ : τ α # dom(Γ)

Γ `
gen
δ t Λα . t ′ : ∀α.τ

GEN

Γ `
inst
δ σ ≤ τ υ

Γ `
k

υ `δ [α 7→ υ]τ1 ∼ τ2

Γ `
inst
δ ∀α.τ1 ≤ τ2 S(υ)

INST

`δ τ1 ∼ τ2

`⇑ τ ∼ τ
INST⇑

S(τ1) = S(τ2)

`⇓ τ1 ∼ τ2

INST⇓

Case alternatives Γ `
a
δ p->u p ′->u ′ : τ1 → τ2

Γ ;ε ; /0 `
p

p p ′ : τ1 ; ∆ ; θ dom(∆) # (ftv(τ2)) θ(Γ,∆) `δ u u ′ : θδ(τ2)

Γ `
a
δ p->u p ′->u ′ : τ1 → τ2

ALT

Patterns Γ ;∆ ;θ `
p

p p ′ : τ ;∆ ′ ;θ ′

x # dom(∆)

Γ ;∆ ;θ `
p

x xS(τ) : τ ; ∆,(x : τ) ; θ
PVAR

(C : ∀α . τc → T υt) ∈ Γ α # dom(Γ,∆)

push(θ(υ ′)) = T υ ′′t `
u

(T υt .
= T υ ′′t) θ ′

Γ ;∆,α ; (θ ′ ◦θ) `
ps

p : τc
 p ′c ;∆ ′′ ;θ ′′

Γ ;∆ ;θ `
p

C pc
 C α p ′c : υ ′ ;∆ ′′ ;θ ′′

PCON

Unification `
u

Π θ

θ(Π ′) = Π dom(θ) # ftv(Π)

Π ′ is rigid θ ′ is a most general unifier of Π′

`
u

Π (θ◦θ ′) |ftv(Π)

UNIF

Pattern sequences Γ ;∆ ;θ `
ps

p : τ p ′ ;∆ ′ ;θ ′

Γ ;∆ ;θ `
ps

ε ε ;∆ ;θ
PEMPTY

Γ ;∆ ;θ `
p

p1 : τ1 p ′
1 ; ∆ ′ ; θ ′ Γ ;∆ ′ ;θ ′ `

ps
p : τ p ′ ; ∆ ′′ ; θ ′′

Γ ;∆ ;θ `
ps

p1 : τ1,p : τ p ′
1,p ′ ; ∆ ′′ ; θ ′′

PCONS

Figure 6: Typing rules for the source language

10

rule REC uses checking mode to support polymorphic recur-
sion.. The rule for application (APP), is a little unusual, how-
ever. What one normally sees is something like this:

Γ ` t : τ1 → τ2 Γ ` u : τ1

Γ ` t u : τ2

However, in our system, it is possible that the function t will
turn out to have a wobbly type, or perhaps a doubly-wobbly
type, or more. What we need is that it can be cajoled into
the form τ1 → τ2, for some types τ1 and τ2, a predicate we
capture in the partial function push(τ) (see Figure 5). This
function takes a possibly-wobbly type, and guarantees to re-
turn a type with a type constructor (such as a function arrow)
at the outermost level. The function push is partial; for ex-
ample, push(α) gives no result, and the APP rule fails. Now
we can check that u has the desired type, with `⇓. Finally,
we must check that the function’s result type τ2 matches the
expected result τ ′

2, just as we did in rule ATOM.

Rule CASE handles case expressions. First it derives the
type τ1 of the scrutinee u, and then it uses the auxiliary
judgement `a to type-check the alternatives. Since a lambda
abstraction binds a pattern, it behaves very like a single case
alternative, so rules ABS⇑ and ABS⇓ simply invoke the same
auxiliary judgement as for case expressions, the former with
a wobbly type as discussed in Section 4.3.

The judgements `a, for alternatives, and its auxiliary judge-
ment `p for patterns, take a very similar form to those of
the explicitly-typed language (Section 3). One significant
difference is the use of push in rule PCON, which appears
for exactly the same reason as in rule APP. Another impor-
tant difference, also in PCON, is that we invoke an auxiliary
judgement `u Π θ to unify Π; we discuss this judgement
in Section 4.5. The third major difference is that in rule ALT

we apply θδ to τ2, rather than θ (Figure 4 defines θδ). The
idea is that in guessing mode, we cannot expect to guess a
single type that can be refined for each alternative by that
alternative’s substitution.

4.5 Type refinement with wobbly types

Rule PCON uses an auxiliary judgement `u Π θ to unify
the constraints Π. The key idea is that this judgement per-
forms a kind of partial unification of Π, based only on infor-
mation in Π outside wobbly types. This simple intuition is
surprisingly tricky to formalise.

Rule UNIF in Figure 6 gives the details. It splits Π into two
parts: a rigid Π ′, in which arbitrary types within Π have been
replaced with fresh type variables γ; and a substitution θ that
maps the γ onto the excised types. These two parts fit to-
gether, so that θ(Π ′) is the original Π. Now we find a most
general unifier of Π ′, namely θ ′. Finally, we re-insert the
excised types into θ ′, by composing it with θ, and restrict-
ing the domain of the resulting substitution to the free type

variables of Π — or, equivalently, discarding any substitu-
tions for the intermediate γ. (The notation θ |α means the
substitution θ with domain restricted to α.)

The judgement leaves a lot of freedom about how to split
Π into pieces, but a complete type inference algorithm must
find a solution if one exists. The way to do this is to split
Π by replacing the outermost wobbly types with fresh type
variables, so that as much rigid information as possible is ex-
posed in Π ′. This algorithm is quite discerning. For example,
the reader is invited to verify that, using this algorithm,

`
u

(α
.
= (Int ,Bool),α

.
= (Int, Bool))

 [α 7→ (Int,Bool)]

where the result has gathered together the least-wobbly result
that is justified by the evidence.

Notice that the substitution returned by `
u is not necessar-

ily a unifier of the constraints. For example, here is a valid
judgement:

`
u

((α,β)
.
= (Int,Bool)) /0

where the empty substitution /0 plainly is not a unifier of
the input constraints. This amounts to saying that the algo-
rithm may do less type refinement than would be justified in
an explicitly-typed program. Furthermore, `u may succeed
even when there is no unifier of the stripped constraints. For
example,

`
u

((α,Int)
.
= (Int, Bool)) [α 7→ Int]

This means that the algorithm may not detect all inacces-
sible branches of a case; which is perfectly sound, be-
cause such branches are admitted in the core language and
need not be well-typed. Another variant of the same sort is
`
u

(α
.
= α → Int) [α

.
= α → Int]. Again, the stripped

version would be rejected (by the occurs check), but the
source-language type system may not detect the inaccessi-
ble branch.

A delicate point of rule UNIF is that we are careful to say that
“θ ′ is a most general unifier of Π ′” rather than “θ ′ = U(Π ′)”,
because it sometimes makes a difference which way around
the unifier chooses to solve trivial constraints of form α

.
= β.

For example, consider this simple Haskell 98 program:

f = \x. case x of { Just y -> y }

One valid typing derivation gives x the wobbly type
Maybe α . Now we apply rule PCON to the case pattern: the
Maybe constructor will bind a fresh type variable, say β, and
we try to find θ ′′ such that ` (Maybe β

.
= Maybe α) θ ′′.

To do this we split the constraints into Π ′ = (Maybe β
.
=

Maybe γ), and θ = [γ 7→ α]. Now here is the subtlety:
there are two possible most general unifiers θ ′, namely

11

[β 7→ γ] and [γ 7→ β]. The former produces the desired re-
sult θ ′′ = (θ ◦ θ ′) |α,β = [β 7→ α]. But the latter produces
θ ′′ = [γ 7→ β] |α,β= /0 which fails to type the program.

Although this is tricky stuff, an inference algorithm can eas-
ily find a “best” most general unifier: whenever there is a
choice, the unification algorithm should substitute for the
type variables bound by the pattern. Specifically, when solv-
ing a trivial constraint α

.
= β, where β is bound by the pattern

and α is not, the unifier should substitute [β 7→ α]; and vice
versa. The intuition is that these pattern-bound type variables
only scope over a single case branch, so we should do all we
can to refine them into more globally-valid types.

A minor difference from Section 3 is that we treat unification
failure as a type error, because rule UNIF simply fails if Π ′

has no unifier. This saves two rules, and makes more sense
from a programming point of view, but loses subject reduc-
tion. We do not mind the latter, because we treat soundness
by giving a type-directed translation into our core language,
rather than by giving a dynamic semantics for the source lan-
guage directly.

4.6 Smart function application

The rules we have presented will type many programs, but
there are still some unexpected failures. Here is an example
(c.f. [BS02]):

data Equal a b where
Eq :: Equal a a

data Rep a where
RI :: Rep Int
RP :: Rep a -> Rep b -> Rep (a,b)

test :: Rep a -> Rep b -> Maybe (Equal a b)
test RI RI = Just Eq
test (RP a1 b1) (RP a2 b2)
= case test a1 a2 of

Nothing -> Nothing
Just Eq -> case test b1 b2 of

Nothing -> Nothing
Just Eq -> Eq

A non-bottom value Eq of type Equal t1 t2 is a witness
that the types t1 and t2 are the same; that is why the con-
structor has type ∀α . Equal α α. The difficulty with typing
this comes from the guessing involved in function instantia-
tion (rule INST). Even if we know that x : Int, say, the term
(id x), where id is the identity function, will have type Int .
In test, therefore, no useful information is exposed to type
refinement in the case expressions, because both scrutinise
the result of a call to a polymorphic function (test itself),
which will be instantiated with wobbly types.

This is readily fixed by treating a function application as a

whole, thus:

(f : ∀α . τ → υ) ∈ Γ Γ `⇑ t : τ ′

Γ `
m

α ; (τ
.
= τ ′) θ `δ θ(υ) ∼ υ ′

Γ `δ f t : υ ′ APPN

The idea is that we guess (rather than check) the arguments,
obtaining types τ ′ that express our certainty (or otherwise)
about these types. Then we use a new judgement `m to
match the function’s expected argument types τ against the
actual types. Finally, we check that the result types match
up.

The judgement Γ `
m

α ; Π θ finds an instantiation of the
type variables α that satisfies Π. To maximise information,
we would like it to find the least-wobbly instantiation that
can, something that our existing unification judgement `u

also does:

`
u

Π θ Γ `
k

υ θ ′ = [α 7→ υ]◦θ |α
∀τ

.
= τ ′ ∈ Π, S(θ ′(τ)) = S(τ ′)

Γ `
m

α ; Π θ ′
MATCH

We use `
u to solve Π, then restrict the domain of the result,

θ, because we want a one-way match only: the function type
must not influence the environment. So θ |α is a substitution
that binds some, but perhaps not all, of the α. We expand
this substitution to instantiate the remaining α with guessed
types υ , yielding θ ′. Then we check that θ ′ does indeed
satisfy the constraints, modulo wobbliness.

There is a strong duality between rules PCON and APPN: in
patterns, the type refinement is derived from the result type,
and is applied to the arguments; in function applications, the
type refinement is derived from the argument types, and is
applied to the result.

4.7 Lexically-scoped type variables

Thus far, all our type annotations have been closed. But
in practice, as programs scale up, it is essential to be able
to write open type annotations; that is, ones that mention
type variables that are already in scope. In the olden days,
when type annotations were optional documentation, open
type signatures were desirable but not essential, but now that
type annotations are sometimes mandatory, it must be possi-
ble to write them.

We therefore add lexically scoped type variables as an or-
thogonal addition to the language we have presented so far.
The extensions are these. First, in a type-annotated term
(t::ty), the source type ty may be open. Second, the en-
vironment Γ is extended with a binding form, a = τ, which
binds a source type variable a to a type τ. These bindings are
used in the obvious way when kind-checking an open source
type ty. Third, patterns are extended with a new form

p ::= . . . | (p::a . ty)

12

This type-annotated pattern brings into scope the source type
variables a, with the same scope as the term variables bound
by p, and ensures that p has type ty. Here is the extra rule
for the pattern judgement:

Γ,∆ `
t
forall a . ty ∀α . τ

Γ `
m

α ;θ(τ)
.
= θ(τ ′) θ ′

∆ ′ = ∆,a = θ ′(α)

Γ ;∆ ′ ;θ `
p

p p ′ : θ ′(θ(τ)) ;∆ ′′ ;θ ′′

Γ ;∆ ;θ `
p

(p::a . ty) p ′ : τ ′ ;∆ ′′ ;θ ′′
PANNOT

We begin by kind-checking the source type, ty, temporarily
building a forall’d source type so that `t will generate a
polymorphic type ∀α . τ. Then we use the same judgement
`
m that we introduced in Section 4.6 to instantiate this type

to match the incoming type τ ′, being careful to first apply the
current type refinement. Finally we check the nested pattern
p, in the extended type environment. A lexically-scoped type
variable scopes over all patterns to the right, so that the pat-
tern (x::a.Term a, y::a) makes sense. That is why we
“thread” the environment ∆ through the pattern judgements
(c.f. Section 3.2).

Notice that a lexically-scoped type variable is simply a name
for an (internal) type, not necessarily a type variable. For
example, the term (\(x::a.a). x && x) is perfectly ac-
ceptable: the source type variable a is bound to the type
Bool. More precisely, it is bound to the type Bool , because
a scoped type variable maybe be bound to a wobbly type,
and the type system indeed says that x’s type will be wobbly
in this case.

This means that pattern type signatures cannot be used to
specify a completely rigid polymorphic type, which is a
slight pity. For example, if we write

eval = \(x::a.Term a). (...body... :: a)

the type of x will be Term α , to reflect the uncertainty about
what type a will ultimately be bound to, and hence no type
refinement will take place, and the definition will be rejected
(at least if ..body.. requires type refinement). The only
way to give a completely rigid polymorphic type is using a
type signature on a term, or on a letrec binding:

eval :: forall a. Term a -> a = \x. ...body...

4.8 Scope and implicit quantification

A notationally awkward feature of the design we describe is
the “a .” prefix on a pattern type signature, which brings the
type variables a into scope. In our real source language, we
use an implicit-quantification rule that allows us to write, for
example

eval = \(x::Term a). ...etc...

with no “a.” prefix. The rule we use is this: any type vari-
able that is mentioned in the pattern type annotation, and is

not already in scope, is brought into scope by the pattern.
This is the same rule that we use for adding implicit forall
quantifiers to type signatures on terms. One could imagine
other choices, but it is an orthogonal concern to this paper.

Haskell allows separate, declaration type signatures, thus:

eval :: Term a -> a
eval = ...

It is (arguably) attractive to allow the universally-quantified
type variables of such a signature to scope, lexically, over the
body of eval [MC97, SSW04]. Again this is an orthogonal
concern, but one that readily works with our main design.

4.9 Properties of the type system

Our system is sound, in the sense that any well-typed pro-
gram translates to a well-typed core-language program:

THEOREM 4.1. If Γ `δ t t ′ : τ then S(Γ) ` t ′ : S(τ)

We have proved this theorem for the system of Figure 6, aug-
mented with the smart function-application rule (Section 4.6)
and lexically-scoped type variables (Section 4.7). The main
tricky point in the proof is to show that the partial refinement
generated by `

u, if it succeeds, yields a well-typed core pro-
gram. The key property is this:

LEMMA 4.2. If `u Π θ then either S(Π) has no unifier,
or S(Π) has a most general unifier θ ′ such that
θ ′ = θ ′ ◦S(θ).

We say that S(θ) is a pre-unifier of S(Π): it is not necessarily
a unifier, but it is “on the way” to one (if one exists at all).

Furthermore, our system is a conservative extension of
vanilla Haskell/ML data types. The latter have types of form
∀α . τ → T α, where the α are distinct. Hence rule UNIF is
guaranteed to succeed, and one possible solution is always of
form [α 7→ τ], where the pattern has type T τ. This substi-
tution binds only the pattern-bound type variables (i.e. does
not refine the rest of the environment) and ensures that the
sub-patterns have exactly the expected types. It would be
straightforward, albeit tedious, to formalise this argument.

5 Implementation

We have built a prototype type inference engine for the
source-language type system, starting from the executable
prototype described by [PS04]. This baseline algorithm is
quite conventional; most of the work is done by a unifier that
implements an ever-growing substitution using side effects.
“Guessed” types are implemented by “flexible” meta vari-
ables, which are fleshed out by in-place updates performed
by the unifier. There is no constraint gathering; in effect,
the equality constraints are solved incrementally, as they are
encountered.

By design, it is quite easy to support our new type system.
Some straightforward extensions are required to parse the

13

new data type declarations, and to extend Γ with the con-
structors they define. Wobbly types are simple to implement:
they simply are the flexible meta variables that the inference
engine already uses, and introduction of a wobbly type in the
rules (e.g. in `

inst) corresponds to the allocation of a fresh
flexible meta variable. Invocations of push in the rules cor-
respond to places where the inference algorithm must force
a type to have a certain outermost shape (e.g. be of form
τ1 → τ2), which sometimes requires the allocation of fur-
ther flexible meta variables. One also has to take care that
the commonly-implemented path-compression optimisation,
which elminates chains of flexible meta variables, does not
thereby elide the wobbliness altogether.

Match-unification implements the wobbly-type-aware algo-
rithm of Section 4.5, and is implemented entirely separately
from inference-unification. Different type refinements ap-
ply in different case branches, so in-place update is inappro-
priate, and the match-unification algorithm instead generates
a data structure representing the type refinement explicitly.
Rather than applying the type refinement eagerly to the envi-
ronment, as the rules do, we perform this substitution lazily,
by carrying down a pair of the type environemt and the cur-
rent refinement. The inference-unifier consults (but does not
extend) the type refinement during unification. One wrinkle
that we missed at first is that the unifier must also consult the
type refinement when performing the occurs check. There
are also some occasions where we must eagerly apply the
type refinement to an entire type, such as when finding the
free variables of a type at a generalisation point.

On the basis of this experiment, the changes to the infer-
ence algorithm do indeed appear to be extremely localised
and non-invasive, as we hoped. The only apparently-global
change is the requirement to pair up the type refinement with
the environment, but the monadic framework we use makes
this change local as well.

6 Related work

In the dependent types community, GADTs have played a
central role for over a decade, under the name inductive
families of data types [Dyb91]. Coquand in his work on
dependently typed pattern matching [Coq92] also uses a
unification based mechanism for implementing the refine-
ment of knowledge gained through pattern matching. These
ideas were incoporated in the ALF proof editor [Mag94],
and have evolved into dependently-typed programming lan-
guages such as Cayenne [Aug98] and Epigram [MM04]. In
the form presented here, GADTs can be regarded as a special
case of dependent typing, in which the separation of types
from values is maintained, with all the advantages and dis-
advantages that this phase separation brings.

Xi, et al.’s work on guarded recursive data types closely cor-
responds to our work. They present a language very simi-

lar to our core language [XCC03], though with a bug that
prevents them from checking some fairly useful classes of
nested patterns [SP03, Remark 4.27]. Instead of using unifi-
cation in the specification of their type system, type-equality
constraints are propagated around the typing rules and solved
as needed. Their type inference algorithm, like ours, is based
upon Pierce and Turner’s local type inference [PT98]. Also
closely related is Zenger’s system of indexed types [Zen97],
and Xi’s language Dependent ML [XP99]; in both cases, in-
stead of constraints over type equalities, the constraint lan-
guage is enriched to include, for example, Presburger arith-
metic . Finally, Xi generalises both these languages with
what he calls an applied type system [Xi04].

Cheney and Hinze examine numerous uses of what they call
first class phantom types [CH03, Hin03]. Their language is
essentially equivalent to ours in terms of expressiveness, but
they achieve type refinement via equality constraint clauses.
Sheard and Pasalic use a similar design they call equality-
qualified types in the language Ωmega [SP04].

Most of this work concerns type checking for GADTs, but
Simonet and Pottier explicitly tackle type inference [SP03].
Their work is much more general than ours: they start from
the HM(X) constraint framework, and generalise it to a lan-
guage in which arbitrary constraints can be used to guard
quantification. Our language corresponds to instantiating
theirs with type equality constraints, and exploiting this spe-
cial case seems to make the system considerably simpler. In
their search for tractable inference, they are forced to im-
pose two undesirable restrictions: type annotations must be
closed, and their system embodies two independent rule sets,
one dealing with GADTs and the other with ordinary data
types. Our system manages to avoid both these shortcom-
ings; it would be interesting to get a more detailed insight
into these trade-offs, perhaps by expressing our solution in
their framework.

Our wobbly types correspond very closely to meta-variables
in an implementation of type inference. Nanevski, Pientka,
and Pfenning have developed an explicit account of meta-
variables in terms of a modal type system [NPP03]. It would
be worthwhile to examine whether their language can sub-
sume our wobbly types. Our wobbly types also propagate
uncertainty in a fashion that has the flavour of coloured
types in Odersky and Zenger’s coloured local type infer-
ence [OZZ01].

7 Conclusion and further work

We have much left to do. In this paper we have not formally
presented an inference algorithm and proved it complete with
respect to our specification. Our claim that wobbly types ac-
curately reflect the uncertainty of real algorithms is, there-
fore, not formally established. We have built a prototype
implementation, however, and we are confident that a for-

14

mal proof is within reach. Similarly, our claim that wobbly
types can co-exist smoothly with the other complexities of
Haskell’s type system is rooted in the authors’ (rather de-
tailed) experience of implementing the latter. We are en-
gaged in a full-scale implementation in GHC, which will
provide concrete evidence.

Nevertheless, we believe that this paper takes a significant
step forward. The literature on technical aspects of GADTs
is not easy going, and the system of Section 3 is the sim-
plest we have seen. There is very little literature on type
inference for GADTs, and ours is uniquely powerful. More
generally, we believe that type systems will increasingly em-
body a blend of type inference and programmer-supplied
type annotations: polymorphic recursion, higher-rank types,
and GADTs, are all examples of this trend, and there are
plenty of others (e.g. sub-typing). Giving a precise, pre-
dictable, and implementable specification of these blended
type systems is a new challenge. Bidirectional type infer-
ence is one powerful tool, and we believe that wobbly types,
our main contribution, are another.

Acknowlegements. We gratefully acknowledge generous
feedback from James Cheney, Matthew Fluet, Ralf Hinze,
Barry Jay, Simon Marlow, Conor McBride, Greg Morrisett,
Tim Sheard, Martin Sulzmann, and Don Syme. We are par-
ticularly grateful to François Pottier for his detailed insights.

8 References
[Aug98] Lennart Augustsson. Cayenne — a language with depen-

dent types. In ACM SIGPLAN International Conference
on Functional Programming (ICFP’98), volume 34(1)
of ACM SIGPLAN Notices, pages 239–250, Baltimore,
1998. ACM.

[BS02] AL Baars and SD Swierstra. Typing dynamic typing.
In ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’02), pages 157–166, Pitts-
burgh, September 2002. ACM.

[CH03] James Cheney and Ralf Hinze. First-class phantom
types. CUCIS TR2003-1901, Cornell University, 2003.

[Coq92] T Coquand. Pattern matching with dependent types. In
Proc workshop on Logical Frameworks, Bastaad, pages
66–79, 1992.

[Dyb91] Peter Dybjer. Inductive Sets and Families in Martin-
Löf’s Type Theory. In Gérard Huet and Gordon Plotkin,
editors, Logical Frameworks. CUP, 1991.

[Hin03] Ralf Hinze. Fun with phantom types. In Jeremey Gib-
bons and Oege de Moor, editors, The fun of program-
ming, pages 245–262. Palgrave, 2003.

[Jay03] Barry Jay. The pattern calculus. ACM Transactions on
Programming Languages and Systems, To appear, 2003.

[Mag94] L Magnusson. The implementation of ALF - a proof edi-
tor based on Martin-Löf’s monomorhic type theory with
explicit substitution. PhD thesis, Chalmers University,
1994.

[MC97] E Meijer and K Claessen. The design and implementa-
tion of Mondrian. In J Launchbury, editor, Haskell work-
shop, Amsterdam, 1997.

[MM04] C McBride and J McKinna. The view from the left. Jour-
nal of Functional Programming, 14(1):69–111, 2004.

[NPP03] Aleksandar Nanevski, Brigitte Pientka, and Frank Pfen-
ning. A modal foundation for meta-variables. In Pro-
ceedings of MERLIN’03, Uppsala, Sweden, pages 159–
170, 2003.

[OZZ01] Martin Odersky, Matthias Zenger, and Christoph Zenger.
Colored local type inference. In 28th ACM Symposium
on Principles of Programming Languages (POPL’01),
London, January 2001. ACM.

[PS04] Simon Peyton Jones and Mark Shields. Practical type in-
ference for higher-rank types. Unpublished manuscript,
2004.

[PT98] Benjamin C. Pierce and David N. Turner. Local type in-
ference. In 25th ACM Symposium on Principles of Pro-
gramming Languages (POPL’98), pages 252–265, San
Diego, January 1998. ACM.

[Rob65] JA Robinson. A machine-oriented logic based on the
resolution principle. JACM, 12(1):23–41, January 1965.

[She04] Tim Sheard. Languages of the future. In ACM Confer-
ence on Object Orientated Programming Systems, Lan-
guages and Applicatioons (OOPSLA’04), 2004.

[SP03] Vincent Simonet and François Pottier. Constraint-based
type inference with guarded algebraic data types. Tech-
nical report, Inria, July 2003.

[SP04] Tim Sheard and Emir Pasalic. Meta-programming
with built-in type equality. In Proc 4th international
workshop on logical frameworks and meta-languaegs
(LFM’04), Cork, July 2004.

[SSW04] Peter Stuckey, Martin Sulzmann, and Jeremy Wazny.
Type annotations in Haskell. Technical report, National
University of Singapore, 204.

[XCC03] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded re-
cursive datatype constructors. In Proceedings of the 30th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 224–235. ACM Press,
2003.

[Xi04] Hongwei Xi. Applied type system. In Proceedings of
TYPES 2003, volume 3085 of Lecture Notes in Com-
puter Science, pages 394–408. Springer Verlag, 2004.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types
in practical programming. In 26th ACM Symposium
on Principles of Programming Languages (POPL’99),
pages 214–227, San Antonio, January 1999. ACM.

[Zen97] C Zenger. Indexed types. Theoretical Computer Science,
pages 147–165, 1997.

15

