
Type-Safe Cast

Stephanie Weirich
∗

Department of Computer Science
Cornell University
Ithaca, NY 14853

sweirich@cs.cornell.edu

ABSTRACT
In a language with non-parametric or ad-hoc polymorphism,
it is possible to determine the identity of a type variable at
run time. With this facility, we can write a function to con-
vert a term from one abstract type to another, if the two
hidden types are identical. However, the naive implementa-
tion of this function requires that the term be destructed and
rebuilt. In this paper, we show how to eliminate this over-
head using higher-order type abstraction. We demonstrate
this solution in two frameworks for ad-hoc polymorphism:
intensional type analysis and type classes.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—abstract data types, polymorphism, control
structures; F.3.3 [Logics and Meanings of Programs]:
Software—type structure, control primitives, functional con-
structs

General Terms
Languages

Keywords
Ad-hoc polymorphism, dynamic typing, intensional type anal-
ysis, type classes

1. THE SETUP
Suppose you wanted to implement a heterogeneous symbol
table — a finite map from strings to values of any type.
You could imagine that the interface to this module would
declare an abstract type for the table, a value for the empty
table, and two polymorphic functions for inserting items into

∗This paper is based on work supported in part by the Na-
tional Science Foundation under Grant No. CCR-9875536.
Any opinions, findings and conclusions or recommendations
expressed in this publication are those of the author and do
not reflect the views of this agency.

ICFP ’00 Montreal, Quebec Canada

and retrieving items from the table. In a syntax resembling
Standard ML [10], this interface is

sig

type table

val empty : table

val insert : ∀α. table → (string × α) → table

val find : ∀α. table → string → α
end

However, looking at the type of find reveals something odd:
If this polymorphic function behaves parametrically with re-
spect to α, that is it executes the same code regardless of
the identity of α, there cannot possibly be any correct im-
plementation of find [15]. All implementations must either
diverge or raise an exception. Let us examine several possi-
ble implementations to see where they go wrong.

We will assume that the data structure used to implement
the symbol table is not the issue, so for simplicity we will
use an association list.

val empty = []

Given a string and a list, the following version of find iter-
ates over the list looking for the matching string:

let rec find =

Λα. fn table => fn symbol =>

case table of

[] => raise NotFound

| ((name, value) :: rest) =>

if symbol = name then value

else find[α] rest symbol

Note that, unlike in SML, we make type application explicit
in a manner similar to the polymorphic lambda calculus or
System F [4, 14]. The notation Λα abstracts the type α
and find[α] instantiates this type for the recursive call.
Unfortunately, this function is of type

∀α. (string × α) list → string → α.

If we were looking up an int, the list passed to find could
only contain pairs of strings and ints. We would not be

able to store values of any other type than int in our symbol
table.

The problem is that, in a statically typed language, all el-
ements of a list need to have the same type: It would be
incorrect to form an association list [("x", 1) ; ("y",

(2,3))]. As we do not want to constrain the symbol table
to contain only one type, we need to hide the type of the
value for each entry in the list. One possibility is to use an
existential type [12]. The instruction

pack v as ∃β.τ hiding τ ′

coerces a value of type τ with τ ′ substituted for β into one
of type ∃β.τ . Conversely, the instruction

unpack (β,x) = e in e’

destructs an existential package e of type ∃β.τ , binding a
new type variable β and a new term variable x of type τ
within the expression e’.

Therefore, we can create a symbol table of type (string ×
∃β.β) list with the expression

[("x", pack 1 as ∃β.β hiding int) ;

("y", pack (2,3) as ∃β.β hiding int × int]

So the code for insert should just package up its argument
and cons it to the rest of the table.

val insert =

Λα. fn table => fn (symbol, obj) =>

(symbol, pack obj as ∃β.β hiding α) :: table

However, the existential type has not really solved the prob-
lem. We can create the list, but what do we do when we look
up a symbol? It will have type ∃β.β, but find must return
a value of type α. If we use the symbol table correctly, then
α and β will abstract the same type, but we need to verify
this property before we can convert something of type β to
type α. We can not compare α and β and still remain para-
metric in α and β. Therefore, it seems as though we need
a language that supports some sort of non-parametric poly-
morphism (also called run-time type analysis, overloading,
or “ad hoc” polymorphism). Formulations of this feature
include Haskell type classes [16], type Dynamic [1, 7, 9], ex-
tensional polymorphism [3], and intensional polymorphism
[6].

For now, we will consider the last, in Harper and Morrisett’s
language λML

i . This language contains the core of SML plus
an additional typerec operator to recursively examine un-
known types at run time. For simplicity, we will separate
recursion from type analysis and use the operator typecase
to discriminate between types, and rec to compute the least
fixed point of a recursive equation.

This language is interpreted by a type-passing semantics.
In other words, at run time a type argument is passed to
a type abstraction of type ∀α.τ , and can be analyzed by
typecase. Dually, when we create an object of an existen-
tial type, ∃α.τ , the hidden type is included in the package,
and when the package is opened, α may also be examined.
In λML

i , universal and existential types have different prop-
erties from a system with a type-erasure semantics, such as
the polymorphic lambda calculus. In a type-erasure system,
types may have no effect on run-time execution and there-
fore may be erased after type checking. There, ∀α.α is an
empty type (such as void), and ∃β.β is equivalent to the
singleton type unit. However, in λML

i , ∀α.α is not empty, as
we can use typecase to define an appropriate value for each
type, and ∃β.β is the implementation of type Dynamic, as
we can use typecase to recover the hidden type.

In λML
i , a simple function, sametype, to compare two types

and return true if they match, can be implemented with
nested typecases. The outer typecase discovers the head
normal form of the first type, and then the inner typecase

compares it to the head normal form of the second.1 For
product and function types, sametype calls itself recursively
on the subcomponents of the type. Each of these branches
binds type variables (such as α1 and α2) to the subcompo-
nents of the types so that they may be used in the recursive
call.

let rec sametype =

Λα. Λβ.
typecase (α) of

int =>

typecase (β) of

int => true

| => false

| (α1 × α2)=>

typecase (β) of

(β1 × β2) =>

sametype[α1][β1]

andalso sametype[α2][β2]

| => false

| (α1 → α2) =>

typecase (β) of

(β1 → β2) =>

sametype[α1][β1]

andalso sametype[α2][β2]

| => false

As these nested typecases are tedious to write, we borrow
from the pattern matching syntax of Standard ML, and ab-
breviate this function as:

1For brevity, we only include int, product types, and func-
tion types in the examples.

let rec sametype =

Λα. Λβ.
typecase (α, β) of

(int,int) => true

| (α1 × α2,β1 × β2) =>

sametype[α1][β1]

andalso sametype[α2][β2]

| (α1 → α2,β1 → β2) =>

sametype[α1][β1]

andalso sametype[α2][β2]

| (,) => false

However, though this function does allow us to determine
if two types are equal, it does not solve our problem. In
fact, it is just about useless. If we try to use it in our
implementation of find

let rec find =

Λα. fn table => fn symbol =>

case table of

[] => raise NotFound

| ((name, package) :: rest) =>

unpack (β,value) = package in

if symbol = name

andalso sametype[α][β]
then value

else find[α] rest symbol

we discover that this use does not type check. The return
type for find is the existentially bound β which escapes its
scope. Even though we have added a dynamic check that
α is equivalent to β, the check does not change the type of
value from β to α.

Our problem is that we did not use the full power of the
type system. In a standard case expression (as opposed to a
typecase), each branch must be of the same type. However,
in λML

i the type of each branch of a typecase can depend
on the analyzed type.

typecase τ of

int => fn (x:int) => x + 3

| α → β =>

fn(x:α → β) => x

| α× β =>

fn(x:α× β) => x

For example, although the first branch above is of type
int → int, the second of type (β → γ) → (β → γ), and
the third of type (β × γ) → (β × γ), all three branches are
instances of the type schema γ → γ, when γ is replaced
with the identity of τ for that branch. Therefore, this entire
typecase expression can be safely assigned the type τ → τ .

With this facility, in order to make typechecking a typecase

term syntax-directed, it is annotated with a type variable
and a type schema where that variable may occur free. For
example we annotate the previous example as

cast : ∀α. ∀β. α → β
let rec cast =

Λα. Λβ.
typecase [δ1, δ2. δ1 → δ2](α, β) of

(int, int) =>

fn (x:int) => x

| (α1 × α2, β1 × β2) =>

let val f = cast [α1][β1]

val g = cast [α2][β2]

in

fn (x:α1 × α2) =>

(f (fst x), g (snd x))

end

| (α1 → α2, β1 → β2) =>

let val f = cast [β1][α1]

val g = cast [α2][β2]

in

fn (x:α1 → α2) =>

g ◦ x ◦ f

end

| (,) => raise CantCast

Figure 1: First Solution

typecase [γ.γ → γ] τ of

int => fn (x:int) => x + 3

| ...

In later examples, when we use the pattern matching syntax
for two nested typecases, we will need the schema to have
two free type variables.

We now have everything we need to write a version of
sametype that changes the type of a term and allows us
to write find. In the rest of this paper we will develop this
function, suggestively called cast, of type ∀α.∀β.α → β.
This function will just return its argument (at the new type)
if the type arguments match, and raise an exception other-
wise.2

An initial implementation appears in Section 2. Though cor-
rect, its operation requires undesirable overhead for what is
essentially an identity function. We improve it, in Section 3,
through the aid of an additional type constructor argument
to cast. To demonstrate the applicability of this solution to
other non-parametric frameworks, in Section 4, we develop
the analogous two solutions in Haskell using type classes.
In Section 5, we compare these solutions with several im-
plementations of type Dynamic. Finally, in Section 6, we
conclude by eliminating the type classes from the Haskell
solution to produce a symbol table implementation using
only parametric polymorphism. As such, the types of the
functions insert and find must be modified.

2. FIRST SOLUTION
An initial implementation of cast using the facilities of λML

i

appears in Figure 1. In the first branch of the typecase, α

2It would also be reasonable to produce a function of type
α → (β option), but checking the return values of recursive
calls for NONE only lengthens the example.

and β have been determined to both be to int. Casting an
int to an int is easy; just an identity function.

In the second branch of the typecase, both α and β are
product types (α1×α2 and β1×β2 respectively). Through
recursion, we can cast the subcomponents of the type (α1

to β1 and α2 to β2). Therefore, to cast a product, we break
it apart, cast each component separately, and then create a
new pair.

The code is a little different for the next branch, when α
and β are both function types, due to contravariance. Here,
given x, a function from α1 to α2, we want to return a
function from β1 to β2. We can apply cast to α2 and β2 to
get a function, g, that casts the result type, and compose g

with the argument x to get a function from α1 to β2. Then
we can compose that resulting function with a reverse cast
from β1 to α1 to get a function from β1 to β2.

Finally if the types do not match we raise the exception
CantCast.

However, there is a problem with this solution. Intuitively,
all a cast function should do at run time is recursively com-
pare the two types. But unless the types τ1 and τ2 are both
int, the result of cast[τ1][τ2] does much more. Every
pair in the argument is broken apart and remade, and ev-
ery function is wrapped between two instantiations of cast.
This operation resembles a virus, infecting every function it
comes in contact with and causing needless work for every
product.

The reason we had to break apart the pair in forming the co-
ercion function for product types is that all we had available
was a function (from α1 → β1) to coerce the first component
of the pair. If we could somehow create a function that co-
erces this component while it was still a part of the pair, we
could have applied it to the pair as a whole. In other words,
we want two functions, one from (α1×α2) → (β1×α2) and
one from (β1 × α2) → (β1 × β2).

3. SECOND SOLUTION
Motivated by the last example, we want to write a function
that can coerce the type of part of its argument. This will
allow us to pass the same value as the x argument for each
recursive call and only refine part of its type. We can not
eliminate x completely, as we are changing its type. Since
we want to cast many parts of the type of x, we need to
abstract the relationship between the type argument to be
analyzed and the type of x.

The solution in Figure 2 defines a helper function cast’

that abstracts not just the types α and β for analysis, but an
additional type constructor3 argument γ. When γ is applied
to the type α we get the type of x, when it is applied to
β we get the return type of the cast. For example, if γ is
λδ: ∗ .δ × α2, we get a function from type α× α2 to β × α2.

3We create type constructors with λ-notation, and annotate
the bound variable with its kind. Kinds classify types and
type constructors: ∗ is the kind of types, and if κ1 and κ2

are kinds, κ1 → κ2 is the the kind of type constructors from
κ1 to κ2.

cast’ : ∀α, β: ∗ .∀γ:∗ → ∗. (γ α) → (γ β)
let rec cast’ =

Λα: ∗ . Λβ: ∗ . Λγ:∗ → ∗.
typecase [δ1, δ2. (γ δ1) → (γ δ2)](α, β) of

(int, int) =>

fn (x:γ int) => x

| (α1 × α2, β1 × β2) =>

let val f = cast’[α1][β1][λδ: ∗ . γ(δ × α2)]
val g = cast’[α2][β2][λδ: ∗ . γ(β1 × δ)]

in

fn (x:γ(α1 × α2)) =>

g (f x)

end

| (α1 → α2, β1 → β2) =>

let val f = cast’[α1][β1][λδ: ∗ . γ(δ → α2)]
val g = cast’[α2][β2][λδ: ∗ . γ(β1 → δ)]

in

fn (x:γ(α1 → α2)) =>

g (f x)

end

| (,) => raise CantCast

Figure 2: Second Solution

Since we abstract both types and type constructors, in the
definition of cast we annotate α, β, and γ with their kinds.
As α and β are types, they are annotated with kind ∗, but
γ is a function from types to types, and so has kind ∗ → ∗.
We initially call cast’ with the identity function.

let cast =

Λα: ∗ . Λβ: ∗ . cast’[α][β][λδ: ∗ .δ]

With the recursive call to cast’, in the branch for product
types we create a function to cast the first component of the
tuple (converting α1 to β1) by supplying the type construc-
tor λδ: ∗ .γ(δ × α2) for γ. As x is of type γ(α1 × α2), this
application results in something of type γ(β1 × α2). In the
next recursive call, for the second component of the pair, the
first component is already of type β2, so the type constructor
argument reflects that fact.

Surprisingly, the branch for comparing function types is
analogous to that of products. We coerce the argument
type of the function in the same manner as we coerced the
first component of the tuple; calling cast’ recursively to
produce a function to cast from type γ(α1 → α2) to type
γ(β1 → α2). A second recursive call handles the result type
of the function.

4. HASKELL
The language Haskell [13] provides a different form of ad
hoc polymorphism, through the use of type classes. Instead
of defining one function that behaves differently for different
types, Haskell allows you to define several functions with the
same name that differ in their types.

For example, the Haskell standard prelude defines the class
of types that support a conversion to a string representation.

This class is declared by

class Show α where

show :: α → string

This declaration states that the type α is in the class Show

if there is some function named show defined for type α
→ string. We can define show for integers with a built-in
primitive by

instance Show int where

show x = primIntToString x

We can also define show for type constructors like product.
In order to convert a product to a string we need to be able
to show each component of the product. Haskell allows you
to express these conditions in the instantiation of a type
constructor:

instance (Show α, Show β) => Show (α, β) where

show (a,b) = "(" ++ show a ++ "," ++ show b ")".

This code declares that as long as α and β are members of
the class Show, then their product (Haskell uses , instead of
× for product) is a member of class Show. Consequently,
the function show for products is defined in terms of the
show functions for its subcomponents.

4.1 First Solution in Haskell
Coding the cast example in Haskell is a little tricky because
of the two nested typecase terms (hidden by the pattern-
matching syntax). For this reason we will define two type
classes — one called CF (for Cast From) that corresponds
to the outer typecase, and the other called CT (for Cast
To) that will implement all of the inner typecases. The
first class just defines the cast function, but the second class
needs to include three functions, describing how to complete
the cast using the knowledge that the first type was an in-
teger, product, or function. Note the contravariance in the
type of doFn below: Because we will have to cast from β1

to α1, we need α1 to be in the class CT instead of CF.

class CF α where

cast :: CT β => α → β
class CT β where

doInt :: Int → β
doProd :: (CF α1, CF α2) => (α1, α2) → β
doFn :: (CT α1, CF α2) => (α1 → α2) → β

Just as in λML
i , where the outer typecase led to an inner

typecase in each branch, the separate instances of the first
class just dispatch to the second, marking the head construc-
tor of the first type by the function called:

instance CF Int where

cast = doInt

instance (CF α, CF β) => CF (α, β) where

cast = doProd

instance (CT α, CF β) => CF (α→β) where

cast = doFn

The instances of the second type class either implement the
branch (if the types match) or signal an error. In the Int

instance of CT, the doInt function is an identity function as
before, while the others produce the error "CantCast".

instance CT Int where

doInt x = x

doProd x = error "CantCast"

doFn x = error "CantCast"

The doProd function of the product instance should be of
type (CF α1, CF α2) => (α1, α2) → (β1, β2). This
function calls cast recursively on x and y, the subcompo-
nents of the product (taken apart via pattern matching).
As the types of x and y are α1 and α2, and we are allowed
to assume they are in the class CF , we can call cast. The
declaration of cast requires that its result type be in the
class CT, so we require that β1 and β2 be in the class CT for
this instantiation.

instance (CT β1, CT β2) => CT (β1, β2) where

doInt x = error "CantCast"

doProd (x,y) = (cast x, cast y)

doFn x = error "CantCast"

Finally, in the instance for the function type constructor,
doFn needs to wrap its argument in recursive calls to cast, as
in the first λML

i solution. As the type of this function should
be (CT α1, CF α2) => (α1 → α2) → (β1 → β2), the
type of the argument x is of a function of type α1 → α2.
To cast the result of this function, we need the α2 instance
of CF, that requires that β2 be in the class CT. However, we
would also like to cast the argument of the function in the
opposite direction, from β1 to α1. Therefore we need β1 to
be in the class CF, and α1 to be in the class CT. The instance
for function types is then (Haskell uses f . g for function
composition)

instance (CF β1, CT β2) => CT (β1→β2) where

doInt x = error "CantCast"

doProd x = error "CantCast"

doFn x = cast . x . cast

Now with these definitions we can define the symbol table
using an existential type to hide the type of the element
in the table. Though not in the current language definition,
several implementations of Haskell support existential types.
Existential types in Haskell are denoted with the forall

keyword as the data constructors that carry them may be
instantiated with any type.

data EntryT = forall α . CF α => Entry String α
type table = [EntryT]

The find function is very similar to before, except that
Haskell infers that the existential type should be unpacked.

find :: CT α => table → String → α
find ((Entry s2 val) : rest) s1 =

if s1 == s2 then

cast val

else find rest s1

find [] s = error "Not in List"

4.2 Second Solution in Haskell
To implement the second version in Haskell, we need to
change the type of cast to abstract the type constructor γ as
well as α and β. This addition leads to the new definitions
of CT and CF. Note that in the type of doFn, α1 should be in
the class CF instead of the class CT, reflecting that we are go-
ing to avoid the contravariant cast of the function argument
that we needed in the previous solution.

class CF α where

cast’ :: CT β => γ α → γ β
class CT β where

doInt :: γ Int → γ β
doProd :: (CF α1, CF α2) =>

γ (α1, α2) → γ β
doFn :: (CF α1, CF α2) =>

γ (α1→α2) → γ β

The instances for CF remain the same as before, dispatching
to the appropriate functions. Also the instance CT Int is
still the identity function. But recall the branch for prod-
ucts:

typecase (α, β) of

...

| (α1 × α2, β1 × β2) =>

let val f = cast’[α1][β1][λδ: ∗ . γ(δ × α2)]
val g = cast’[α2][β2][λδ: ∗ . γ(β1 × δ)]

in

fn (x:γ(α1 × α2)) =>

g (f x)

end

The strategy was to cast the left side of the product first and
then to cast the right side, using the type-constructor argu-
ment to relate the type of the term argument to the types
being examineded. In Haskell we cannot explicitly instanti-
ate the type constructor argument as we did in λML

i , but we
can give Haskell enough hints to infer the correct one.4 To
represent the two type constructor arguments above we use
the data constructors LP and RP, defined below.

newtype LProd α γ δ = LP (γ (δ, α))
newtype RProd α γ δ = RP (γ (α, δ))
instance (CT β1, CT β2) => CT (β1, β2) where

doInt x = error "CantCast"

doProd z = x

where LP y = cast’ (LP z)

RP x = cast’ (RP y)

doFn x = error "CantCast"

4Jones [8] describes this sort of implicit higher-order poly-
morphism in Haskell.

How does this code typecheck? In this instance, doProd

should be of type

(CF α1, CF α2) => γ (α1,α2) → γ (β1,β2).

Therefore z is of type γ (α1, α2) so LP z is of type LProd

α2 γ α1. At first glance, it seems like we cannot call cast’
on this argument because we have not declared an instance
of CF for the type constructor LProd. However, the instances
of cast’ are all of type ∀γ′.(CT β) => γ′α → γ′β, so to
typecheck the call cast’ (LP z), we only need to find an α
in the class CT and a γ′ such that γ′α is equal to the type of
LP z. As Haskell does not permit the creation of type-level
type abstractions [8], the type of LP z must explicitly be
a type constructor applied to a type in order to typecheck.
Therefore determining γ′ and α is a simple match – γ′ is
the partial application LProd α2 γ and α is α1. Thus, the
result of cast’ is of type (LProd α2 γ) β, for some β in
CT, and y is of type γ (β, α2).

Now RP y is of type RProd β γ α2, so we need the α2 in-
stance of cast’ for the second call. This instance is of type
∀γ′′. CT β′ => γ′′ α2 → γ′′ β′. This γ′′ unifies with the
partial application (RProd β γ) so the return type of this
cast is RProd β γ β′, the type of RP x. That makes x of
type γ (β, β′). Comparing this type to the return type of
doProd, we unify β with β1 and β′ with β2. This unification
satisfies our constraints for the two calls to cast’, as we
assumed that both β1 and β2 are in the class CT.

Just as in the second λML
i solution, function types work in

exactly the same way as product types, using similar decla-
rations of LArrow and RArrow.

newtype LArrow α γ δ = LA (γ (δ → α))
newtype RArrow α γ δ = RA (γ (α → δ))

To encapsulate cast’, we provide the identity type construc-
tor:

newtype Id α = I α
cast :: (CF α, CT β) => α → β
cast x = y where (I y) = cast’ (I x)

The complete Haskell code for this solution appears in Ap-
pendix A.

5. IMPLEMENTING TYPE DYNAMIC
Just as ∃α.α implements a dynamic type in λML

i , ∃α. CF α
=> α is a dynamic type in Haskell. Adding type Dynamic to
a statically typed language is nothing new, so it is interesting
to compare this implementation to previous work.

One way to implement type Dynamic (explored by Henglein
[7]) is to use a universal datatype.

data Dynamic = Base Int

| Pair (Dynamic, Dynamic)

| Fn (Dynamic → Dynamic)

Here, in creating a value of type Dynamic, a term is tagged
with only the head constructor of its type. However, before
a term may be injected into this type, if it is a pair, its
subcomponents must be coerced, and if it is a function, it
must be converted to a function from Dynamic → Dynamic.
We could implement this injection (and its associated pro-
jection) with Haskell type classes as follows:

class UD α where

toD :: α → Dynamic

fromD :: Dynamic → α

instance UD Int where

toD x = Base x

fromD (Base x) = x

instance (UD α, UD β) => UD (α,β) where

toD (x1,x2) = Pair (toD x1, toD x2)

fromD (Pair (d1, d2)) = (fromD d1, fromD d2)

instance (UD α, UD β) => UD (α→β) where

toD f = Fn (toD . f . fromD)

fromD (Fn f) = fromD . f . toD

This implementation resembles our first cast solutions, in
that it must destruct the argument to recover its type. Also,
projecting a function from type Dynamic results in a wrapped
version. Henglein, in order to make this strategy efficient,
designs an algorithm to produce well-typed code with as few
coercions to and from the dynamic type as possible.

Another way to implement type Dynamic is to pair an ex-
pression with the full description of its type [1, 9]. The
implementations GHC and Hugs use this strategy to pro-
vide a library supporting type Dynamic in Haskell. This
library uses type classes to define term representations for
each type. Injecting a value into type Dynamic involves tag-
ging it with its representation, and projecting it compares
the representation with a given representation to check that
the types match. At first glance this scheme is surprisingly
similar to an implementation of cast using typecase in λR

[2], a version of λML
i in which types are explicitly repre-

sented by dependently typed terms. However there is an
important distinction: Though type classes can create ap-
propriate term representations for each type, there is no
support for dependency, so the last step of the projection
requires an unsafe type coercion.

Although the cast solution is more efficient than the univer-
sal datatype and more type-safe than the GHC/Hugs library
implementation, it suffers in terms of extensibility. The ex-
ample implementations of cast only consider three type con-
structors, for integers, products and functions. Others may
be added, both primitive (such as Char, IO, or []) and user
defined (such as from datatype and newtype declarations),
but only through modification of the CT type class. Further-
more, all current instantiations of CT need to be extended
with error functions for each additional type constructor.
In contrast, the library implementation can be extended to
support new type constructors without modifying previous
code.

A third implementation of type Dynamic that is type safe,
efficient and easily extensible uses references (see Weeks [17]

for the original SML version). Though the use of mutable
references is not typically encouraged (or even possible) in
a purely functional language, GHC and Hugs support their
use by encapsulation in the IO monad. While the previous
implementations of type Dynamic defined the description
of a type at compile time, references allow the creation of
a description for any type at run time, and so are easily
extendable to new types. Because each reference created
by newIORef is unique, a unit reference can be used to
implement a unique tag for a given type. A member of type
Dynamic is then a pair of a tag and a computation that
hides the stored value in its closure.5

data Dyn = Dyn { tag :: IORef () , get :: IO () }

To recover the value hidden in the closure, the get compu-
tation writes that value to a reference stored in the closure
of the projection from the dynamic type. The computation
make below creates injection and projection functions for any
type.

make :: IO (α -> Dyn, Dyn -> IO α)
make = do { newtag <- newIORef ()

; r <- newIORef Nothing

; return

(\a -> Dyn { tag = newtag,

get = writeIORef r (Just a) },
\d -> if (newtag == tag d)

then

do { get d

; Just x <- readIORef r

; return x

}
else error "Ill typed")

}

This implementation of type dynamic is more difficult to use,
as it must be threaded through the IO monad. Furthermore,
because the tag is created dynamically, it cannot be used in
an implementation for marshalling and unmarshalling. Also,
the user must be careful to call make only once for each type,
lest she confuse them. (Conversely, the user is free to create
more distinctions between types, in much the same manner
as the newtype mechanism). Unlike the previous versions
that could not handle types with binding structure (such as
forall a. a -> a), this solution can hide any type. Ad-
ditionally, the complexity of projection from a dynamic type
does not depend on the type itself. However, the above so-
lution has a redundant comparison – if the tags match then
the pattern match Just x will never fail, but the imple-
mentation must still check that that the reference does not
contain Nothing.

If we wander outside of the language Haskell, we find lan-
guage support for a more natural implementation of tagging,
thereby eliminating this redundant check. For example, if
the language supports an extensible sum type (such as the
exception type in SML) then that type can be viewed as

5Which can be viewed as hiding the value within an exis-
tential type [11].

type Dynamic [17]. The declaration of a new exception con-
structor, E, carrying some type τ provides an injection from
τ into the exception type. Coercing a value from the dy-
namic type to τ is matching the exception constructor with
E.

Alternatively, if the language supports subtyping and down-
casting, then a maximal supertype serves as a dynamic type.
Ignoring the primitive types (such as int), Java [5] is an ex-
ample of such a language. Any reference type may be co-
erced to type Object, without any run time overhead. Coerc-
ing from type Object requires checking whether the value’s
class (tagged with the value) is a subtype of the given class.

6. PARAMETRIC POLYMORPHISM
The purpose of this paper is not to find the best imple-
mentation of dynamic typing, but instead to explore what
language support is necessary to implement it and at what
cost. With the addition of first-class polymorphism (such as
supported by GHC or Hugs), Haskell type classes may be
completely compiled away [16]. Therefore, the final Haskell
typeclass solution can be converted to a framework for im-
plementing heterogeneous symbol tables in a system of para-
metric polymorphism. Appendix B shows the result of a
standard translation to dictionary-passing style, plus a sam-
ple run.

The original problem we had with the function find was
with its type; though α was universally quantified, it did not
appear negatively. The translation of the Haskell solution
shows us exactly what additional argument we need to pass
to find (the CT dictionary for the result type), and exactly
what additional information we need to store with each entry
in the symbol table (the CF dictionary for the entry’s type)
in order to recover the type.

7. ACKNOWLEDGEMENTS
Thanks to Karl Crary, Fergus Henderson, Chris Okasaki,
Greg Morrisett, Dave Walker, Steve Zdancewic, and the
ICFP reviewers for their many comments on earlier drafts
of this paper.

8. REFERENCES
[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin.

Dynamic typing in a statically-typed language. ACM
Transactions on Programming Languages and
Systems, 13(2):237–268, April 1991.

[2] K. Crary, S. Weirich, and G. Morrisett. Intensional
polymorphism in type-erasure semantics. In 1998
ACM International Conference on Functional
Programming, pages 301–312, Baltimore, Sept. 1998.
Extended version published as Cornell University
technical report TR98-1721.

[3] C. Dubois, F. Rouaix, and P. Weis. Extensional
polymorphism. In Twenty-Second ACM Symposium
on Principles of Programming Languages, pages
118–129, San Francisco, Jan. 1995.

[4] J.-Y. Girard. Interprétation fonctionelle et élimination
des coupures de l’arithmétique d’ordre supérieur. PhD
thesis, Université Paris VII, 1972.

[5] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[6] R. Harper and G. Morrisett. Compiling polymorphism
using intensional type analysis. In Twenty-Second
ACM Symposium on Principles of Programming
Languages, pages 130–141, San Francisco, Jan. 1995.

[7] F. Henglein. Dynamic typing. In B. Krieg-Brückner,
editor, Fourth European Symposium on Programming,
number 582 in Lecture Notes in Computer Science,
pages 233–253. Springer-Verlag, Feb. 1992.

[8] M. P. Jones. A system of constructor classes:
overloading and implicit higher-order polymorphism.
Journal of Functional Programming, 5(1), Jan. 1995.

[9] X. Leroy and M. Mauny. Dynamics in ML. In
J. Hughes, editor, Functional Programming Languages
and Computer Architecture, number 523 in Lecture
Notes in Computer Science, pages 406–426.
Springer-Verlag, Aug. 1991.

[10] R. Milner, M. Tofte, R. Harper, and D. MacQueen.
The Definition of Standard ML (Revised). The MIT
Press, Cambridge, Massachusetts, 1997.

[11] Y. Minamide, G. Morrisett, and R. Harper. Typed
closure conversion. In Twenty-Third ACM Symposium
on Principles of Programming Languages, pages
271–283, St. Petersburg, Florida, Jan. 1996.

[12] J. C. Mitchell and G. D. Plotkin. Abstract types have
existential type. ACM Transactions on Programming
Languages and Systems, 10(3):470–502, July 1988.

[13] S. Peyton Jones and J. Hughes (editors). Report on
the programming language Haskell 98, a non-strict
purely functional language. Technical Report
YALEU/DCS/RR-1106, Yale University, Department
of Computer Science, Feb. 1999. Available from
http://www.haskell.org/definition/.

[14] J. C. Reynolds. Towards a theory of type structure. In
Programming Symposium, volume 19 of Lecture Notes
in Computer Science, pages 408–425, 1974.

[15] P. Wadler. Theorems for free! In Fourth Conference
on Functional Programming Languages and Computer
Architecture, London, Sept. 1989.

[16] P. Wadler and S. Blott. How to make ad-hoc
polymorphism less ad-hoc. In Sixteenth ACM
Symposium on Principles of Programming Languages,
pages 60–76. ACM, 1989.

[17] S. Weeks. NJ PearLS – dynamically extensible data
structures in Standard ML. Talk presented at New
Jersey Programming Languages and Systems Seminar,
Sept. 1998. Transparencies available at
http://www.star-lab.com/sweeks/talks.html.

APPENDIX
A. HASKELL LISTING FOR SOLUTION 2
newtype LProd a g d = LP (g (d, a))

newtype RProd a g d = RP (g (a, d))

newtype LArrow a g d = LA (g (d -> a))

newtype RArrow a g d = RA (g (a -> d))

newtype Id a = I a

class CF a where

cast’ :: CT b => g a -> g b

instance CF Int where

cast’ = doInt

instance (CF a, CF b) => CF (a, b) where

cast’ = doProd

instance (CF a, CF b) => CF (a->b) where

cast’ = doFn

class CT b where

doInt :: g Int -> g b

doProd :: (CF a1, CF a2) =>

g (a1, a2) -> g b

doFn :: (CF a1, CF a2) =>

g (a1->a2) -> g b

instance CT Int where

doInt x = x

doProd x = error "CantCF"

doFn x = error "CantCast"

instance (CT b1, CT b2) => CT (b1, b2) where

doInt x = error "CantCast"

doProd z = x

where LP y = cast’ (LP z)

where RP x = cast’ (RP y)

doFn x = error "CantCast"

instance (CT b1, CT b2) => CT (b1->b2) where

doInt x = error "CantCast"

doProd x = error "CantCast"

doFn z = x

where LA y = cast’ (LA z)

where RA x = cast’ (RA y)

cast :: (CF a, CT b) => a -> b

cast x = y where I y = cast’ (I x)

B. PARAMETRIC SYMBOL TABLE
B.1 Dictionary-passing Implementation
newtype LProd a g d = LP (g (d, a))

newtype RProd a g d = RP (g (a, d))

newtype LArrow a g d = LA (g (d -> a))

newtype RArrow a g d = RA (g (a -> d))

newtype Id a = I a

data CF a = CastFromDict

{ cast’ :: forall b g. CT b -> g a -> g b }

data CT b =

CastToDict

{ doInt :: (forall g. g Int -> g b),

doProd :: (forall a1 a2 g.

CF a1 -> CF a2 -> g (a1,a2) -> g b),

doFn :: (forall a1 a2 g. CF a1 ->

CF a2 -> g (a1->a2)-> g b) }

-- CF dictionary constructors

cfInt :: CF Int

cfInt = CastFromDict { cast’ = doInt }

cfProd :: CF a -> CF b -> CF (a,b)

cfProd = \x -> \y -> CastFromDict

{ cast’ = (\ct -> (doProd ct x y)) }

cfFn :: CF a -> CF b -> CF (a->b)

cfFn = \x -> \y -> CastFromDict

{ cast’ = (\ct -> (doFn ct x y)) }

-- CT dictionary constructors

ctInt :: CT Int

ctInt = CastToDict

{ doInt = (\x -> x),

doProd = (\x -> error "CantCast"),

doFn = (\x -> error "CantCast") }

ctProd :: CT b1 -> CT b2 -> CT (b1, b2)

ctProd = \ctb1 -> \ctb2 -> CastToDict

{ doInt = (\x -> error "CantCast"),

doProd = (\cfa1 -> \cfa2 -> \z ->

let LP y = cast’ cfa1 ctb1 (LP z)

RP x = cast’ cfa2 ctb2 (RP y)

in x),

doFn = (\x -> error "CantCast") }

ctFn :: CT b1 -> CT b2 -> CT (b1 -> b2)

ctFn = \ctb1 -> \ctb2 -> CastToDict

{ doInt = (\x -> error "CantCast"),

doProd = (\x -> error "CantCast"),

doFn = (\cfa1 -> \cfa2 -> \z ->

let LA y = cast’ cfa1 ctb1 (LA z)

RA x = cast’ cfa2 ctb2 (RA y)

in x) }

-- Wrapping up cast’

cast :: CF a -> CT b -> a -> b

cast cfa ctb x = y

where (I y) = cast’ cfa ctb (I x)

B.2 Symbol Table Implementation
data EntryT = forall b . Entry String b (CF b)

type Table = [EntryT]

empty :: Table

empty = []

-- Insertion requires the correct CF dictionary

insert :: CF a -> Table -> (String, a) -> Table

insert cf t (s,a) = (Entry s a cf) : t

-- The first argument to find is a Cast To

-- dictionary

find :: CT a -> Table -> String -> a

find ct [] s = error "Not in List"

find ct ((Entry s2 val cf) : rest) s1 =

if s1 == s2 then cast cf ct val

else find ct rest s1

-- Create a symbol table by providing the

-- CF dictionary for each entry

table :: Table

t1 = insert ctInt empty (‘‘foo’’, 6)

t2 = insert (cfProd cfInt cfInt) t1 ("bar", (6,6))

table = insert (cfFn cfInt cfInt) t2

("add1" (\x->x+1)

B.3 Sample Run

Main> (find (ctFn int int) table "add1") 7

8

Main> find (ctProd int int) table "bar"

(6,6)

Main> find (ctProd int (ctProd int int)) table "bar"

Program error: CantCast

