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What is type inference ?

What is the type of this OCaml function ?

let f verbose msg = if verbose then msg else ""

OCaml infers it :

# let f verbose msg = if verbose then msg else "";;
val f : bool -> string -> string = <fun>

Type inference is mostly a matter of finding out the obvious.
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Where is type inference ?

Everywhere.

Every typed programming language has some type inference.

I Pascal, C, etc. have a tiny amount
I the type of every expression is “inferred” bottom-up

I C++ and Java have a bit more
I C++ has auto, decltype, inference of template parameters...
I Java infers type parameters to method calls and new (slowly... see next)

I Scala has a lot
I a form of “local type inference”
I “bidirectional” (bottom-up in places, top-down in others)

I SML, OCaml, Haskell have a lot, too
I “non-local” (based on unification / constraint solving)

I Haskell, Scala, Coq, Agda infer not just types, but also terms (that is, code) !
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An anecdote

Anyone who has ever used the “diamond” in Java 7...

List<Integer> xs =
new Cons<> (1,
new Cons<> (1,
new Cons<> (2,
new Cons<> (3,
new Cons<> (3,
new Cons<> (5,
new Cons<> (6,
new Cons<> (6,
new Cons<> (8,
new Cons<> (9,
new Cons<> (9,
new Cons<> (9,
new Nil<> ()
)))))))))))); // Tested with javac 1.8.0_05

https://docs.oracle.com/javase/tutorial/java/generics/types.html#diamond


An anecdote

Anyone who has ever used the “diamond” in Java 7...

List<Integer> xs =
new Cons<> (1, // 0.5 seconds
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new Cons<> (2, // 0.5 seconds
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... may be interested to hear that this feature seems to have exponential cost.

https://docs.oracle.com/javase/tutorial/java/generics/types.html#diamond


What is type inference good for ?

How does it work ?

Should I do research in type inference ?



Benefits

What does type inference do for us, programmers ? Obviously,

I it reduces verbosity and redundancy,
I giving us static type checking at little syntactic cost.

Less obviously,

I it sometimes helps us figure out what we are doing...
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Example : sorting

What is the type of sort ?

let rec sort (xs : ’a list) =
if xs = [] then

[]
else

let pivot = List.hd xs in
let xs1, xs2 = List.partition (fun x -> x <= pivot) xs in
sort xs1 @ sort xs2

Oops... This is a lot more general than I thought ! ?

val sort : ’a list -> ’b list

This function never returns a non-empty list.
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Example : searching a binary search tree

type ’a tree = Empty | Node of ’a tree * ’a * ’a tree

What is the type of find ?

let rec find compare x = function
| Empty -> raise Not_found
| Node(l, v, r) ->

let c = compare x v in
if c = 0 then v
else find compare x (if c < 0 then l else r)

It may well be more general than you expected :

val find : (’a -> ’b -> int) -> ’a -> ’b tree -> ’b

Good – this allows us to implement lookup in a map using find.
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Example : groking delimited continuations

This 1989 paper by Danvy and Filinski...

http://www.cs.au.dk/~danvy/Papers/fatc.ps.gz
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Example : groking delimited continuations

This 1989 paper contains typing rules like this :

and this :

How does one make sense of these rules ? How does one guess them ?

http://www.cs.au.dk/~danvy/Papers/fatc.ps.gz


Example : groking delimited continuations

Well, the semantics of shift and reset is known...

let return x k = k x
let bind c f k = c (fun x -> f x k)
let reset c = return (c (fun x -> x))
let shift f k = f (fun v -> return (k v)) (fun x -> x)

...so their types can be inferred.



Example : groking delimited continuations

Let us introduce a little notation :

type (’alpha, ’tau, ’beta) komputation =
(’tau -> ’alpha) -> ’beta

type (’sigma, ’alpha, ’tau, ’beta) funktion =
’sigma -> (’alpha, ’tau, ’beta) komputation



Example : groking delimited continuations

What should be the typing rule for reset ? Ask OCaml :

# (reset : (_, _, _) komputation -> (_, _, _) komputation);;
- : (’a, ’a, ’b) komputation -> (’c, ’b, ’c) komputation

So Danvy and Filinski were right :

(’a is σ, ’b is τ, ’c is α.)
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(_, _, _) komputation);;

- : ((’a, ’b, ’c, ’b) funktion -> (’d, ’d, ’e) komputation) ->
(’c, ’a, ’e) komputation

So Danvy and Filinski were right :

(’a is τ, ’b is δ, ’c is α, ’d is σ, ’e is β.)



Bottom line

Sometimes, type inference helps us figure out what we are doing.



Drawbacks

In what ways could type inference be a bad thing ?

I Liberally quoting Reynolds (1985), type inference allows us to make code
succinct to the point of unintelligibility.

I Reduced redundancy makes it harder for the machine to locate and explain
type errors.

Both issues can be mitigated by adding well-chosen type annotations.

http://link.springer.com/chapter/10.1007%2F3-540-15198-2_7


What is type inference good for ?

How does it work ?

Should I do research in type inference ?



A look at simple type inference

Let us focus on a simply-typed programming language.

I base types (int, bool, ...), function types (int -> bool, ...), pair types, etc.
I no polymorphism, no subtyping, no nuthin’

Type inference in this setting is particularly simple and powerful.



Simple type inference, very informally

let f verbose msg = if verbose then msg else ""

Say f has unknown type α.
f is a function of two arguments. So α = α1 → α2 → β.
verbose has type α1.
msg has type α2.
The “if” expression must have type β. So α1 = bool.

And α2 = string = β.

Solving these equations reveals that f has type bool -> string -> string.
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A partial history of simple type inference

Let us see how it has been explained / formalized through history...



The 1970s

Milner (1978) invents type inference and ML polymorphism.

He re-discovers, extends, and popularizes an earlier result by Hindley (1969).

https://courses.engr.illinois.edu/cs421/sp2013/project/milner-polymorphism.pdf
http://www.ams.org/journals/tran/1969-146-00/S0002-9947-1969-0253905-6/S0002-9947-1969-0253905-6.pdf
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Milner’s description

Milner publishes a “declarative”
presentation, Algorithm W,

and an “imperative” one,
Algorithm J.

Algorithm J maintains a current
substitution in a global variable.

Both compose substitutions
produced by unification, and create
“new” variables as needed.

Milner does not describe UNIFY.

Naive unification (Robinson, 1965)
has exponential complexity due to
lack of sharing.

https://dx.doi.org/10.1145%2F321250.321253
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The 1980s

Cardelli (1987), Wand (1987) and others formulate type inference as a two-stage
process : generating and solving a conjunction of equations.

This leads to a higher-level, more modular presentation, which matches the
informal explanation.

http://research.microsoft.com/Users/luca/Papers/BasicTypechecking.pdf
http://web.cs.ucla.edu/~palsberg/course/cs239/reading/wand87.pdf
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The 1990s

Kirchner & Jouannaud (1990), Rémy (1992) and others push this approach further.

I They explain constraint solving as rewriting.
I They explain sharing by using variables as memory addresses.
I They explain “new” variables as existential quantification.

http://gallium.inria.fr/~remy/ftp/record-algebras.pdf
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Constraints

An intermediate language for describing type inference problems.

τ ::= α | τ→ τ | . . .
C ::= ⊥ | τ = τ | C ∧ C | ∃α.C

A constraint generator transforms the program into a constraint.

A constraint solver determines whether the constraint is satisfiable
(and computes a description of its solutions).



Constraint generation

A function of a type environment Γ, a term t , and a type τ to a constraint.

Defined by cases :

~Γ ` x : τ� = (Γ(x) = τ)

~Γ ` λx .u : τ� = ∃α1α2.

(
τ = α1 → α2 ∧

~Γ[x 7→ α1] ` u : α2�

)
~Γ ` t1 t2 : τ� = ∃α.(~Γ ` t1 : α→ τ� ∧ ~Γ ` t2 : α�)



Constraint solving as rewriting

Transform the constraint, step by step, obeying a set of rewriting rules.

If :

I every rewriting step preserves the meaning of the constraint,
I every sequence of rewriting steps terminates,
I a constraint that cannot be further rewritten either is ⊥ or is satisfiable,

then we have a solver, i.e., an algorithm for deciding satisfiability.



Variables as addresses

A new variable α can be introduced to stand for a sub-term τ :

Think of α as the address of τ in the machine.

Instead of duplicating a whole sub-term, one duplicates its address :

This accounts for sharing. Robinson’s exponential blowup is avoided.



Unification, the right way

Rémy works with multi-equations, equations with more than two members :

In the machine, one maintains equivalence classes of variables using a union-find
data structure.

The occurs-check (which detects cyclic equations) takes place once at the end.
(Doing it at every step, like Robinson, would cause a quadratic slowdown.)

This is Huet’s quasi-linear-time unification algorithm (1976).



What is type inference good for ?

How does it work ?

Should I do research in type inference ?



A takeaway message

Just as in a compiler, an intermediate language is a useful abstraction.

I think declarative, not imperative
I say what you want computed, not how to compute it
I build a constraint, then “optimize” it step by step until it is solved

The constraint-based approach scales up and handles

I Hindley-Milner polymorphism (Pottier and Rémy, 2005)
I elaboration (Pottier, 2014)
I type classes, OCaml objects, and more.

http://gallium.inria.fr/~fpottier/publis/emlti-final.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-elaboration.pdf


Is type inference a hot topic ?

Not really. Not at this moment.

At ICFP 2015, 4 out of 35 papers seem directly or indirectly concerned with it :
I 1ML – Core and Modules United (F-ing First-Class Modules) (Rossberg)
I Bounded Refinement Types (Vazou, Bakst, Jhala)
I A Unification Algorithm for Coq Featuring Universe Polymorphism and Overloading (Ziliani, Sozeau)
I Practical SMT-Based Type Error Localization (Pavlinovic, King, Wies)

Yet, people still get drawn into it by necessity.

I remember, every typed programming language needs some type inference !

http://dx.doi.org/10.1145/2784731.2784738
http://dx.doi.org/10.1145/2784731.2784745
http://dx.doi.org/10.1145/2784731.2784751
http://dx.doi.org/10.1145/2784731.2784765
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What are the open problems ?

Inference for powerful / complex type systems.

I universal and existential types
I dependent types (Ziliani and Sozeau) and refinement types (Vazou et al.)
I linear and affine types
I subtyping
I first-class modules (Rossberg)

Inference for tricky / ugly languages.

I e.g., JavaScript – which was not designed as a typed language, to begin with

Locating and explaining type errors.

I show all locations, or a most likely one ? (Pavlinovic et al.)

Identifying re-usable building blocks for type inference algorithms.

http://dx.doi.org/10.1145/2784731.2784751
http://dx.doi.org/10.1145/2784731.2784745
http://dx.doi.org/10.1145/2784731.2784738
http://dx.doi.org/10.1145/2784731.2784765


What’s the potential impact ?

Type inference makes the difference between an awful language and a great one.

I if you care about language design, you will care about type inference



What are the potential pitfalls ?

Type inference is (often) an undecidable problem.

Type error explanation is (often) an ill-specified problem.

Your algorithm may “work well in practice”,

I but it could be difficult to formally argue that it does,
I hence difficult to publish.



YOU TOO COULD BE SUCKED INTO IT.

GOOD LUCK and HAVE FUN !
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