
Text

Parallelism
Gabriele Keller

University of New South Wales

Programming Languages Mentoring Workshop 2015

undergrad
Karslruhe & Berlin,

Germany PhD
Berlin & Tsukuba, JapanUniversity of Technology

SydneyUniversity of New South
Wales
Sydney

Credit Suisse
New York

University of New South
Wales
Sydney

What is parallelism?

simultaneous execution of multiple instructions to
reduce overall running time

Control/Task
Parallelism

different cooperating
tasks are run
simultaneously

close to concurrency wrt
to expressiveness, but
different aim

load image

sharpen image

display image

apply filter

Data Parallelism

same set of instructions
applied simultaneously
to a collection of data

regular data parallelism

irregular/nested data
parallelism

Why care about parallel
programming?

http://en.wikipedia.org/wiki/File:GeForce_GT_545_DDR3.jpg

multicore

GPU

http://en.wikipedia.org/wiki/File:Intel_CPU_Core_i7_2600K_Sandy_Bridge_top.jpg

multicore

CPU

venerable

supercomputer

Parallel hardware is now the
rule, not the exception

but what about the
software?

research on parallelism is more relevant
than ever

but maybe more importantly

because there are lots of
interesting problems waiting to

be solved!

In an ideal world…

sequential program

efficient parallel executable

designing scalable parallel
algorithms is difficult!

impossible in general to derive an efficient parallel
algorithm automatically from a sequential

algorithm

implementation of parallel
algorithms is hard

race conditions
deadlocks
heisenbugs

We can make this task a lot
easier!

Parallelism and Functional
Programming are a great fit!

λ

no shared mutable state
&

only controlled side effects

eliminates the most common source of bugs for
parallel and concurrent programs

enables aggressive optimisations

treeSum :: Tree -> Int
treeSum Leaf
 = 0
treeSum (Node n t1 t2)
 = s1 + s2 + n
 where
 s1 = treeSum t1
 s2 = treeSum t2

evaluation order up to the
compiler

collection oriented operations
and higher-order functions can

expose parallel structures

sum = 0;
for (i = 0; i < n; i++) {
 sum += f (a[i]);
}
return sum;

foldl 0 (+) $ map f a

functional languages are
great host languages
for embedded DSLs

scheduling

Research Questions
load balancing language design

locality

different parallel architectures

debugging and profiling

domain specific languages

optimisations

applications
parallel algorithms

irregular data parallelism

Workshop on Functional
High-Performance
Computing 2015

(FHPC)

“Regularizing the irregular”
Keynote by Milind Kulkarni

GPGPU

General Purpose
computing on graphics
processors

GPUs are highly cost
and energy efficient for
parallel computing

notoriously difficult to
program

“Generating Performance Portable Code using
Rewrite Rules: From High-level Functional
Expressions to High-Performance OpenCL
Code” (ICFP)
Michel Steuwer, Christian Fensch, Sam Lindley, Christophe Dubach

array primitives (fold, map, etc) express parallel computations

 low-level functional OpenCL primitives represent the
OpenCL programming model

 a core dependently-typed calculus and denotational
semantics;

rewrite rules express algorithmic and optimization choices to
compile to OpenCL, proofs of soundness of these rules

“Meta-Programming and Auto-Tuning in
the Search for High Performance GPU
Code”
Michael Vollmer Bo Joel Svensson Eric Holk Ryan Newton

Obsidian, a Haskell EDSL to generate GPU (CUDA)
code

Framework for auto-tuning search in Haskell to
optimise CUDA kernels

Abstraction of auto-tuning searches as applicative
functors

“Functional Array Streams”
Frederik M Madsen, Robert Clifton-Everest, Manuel Chakravarty, Gabriele
Keller

Accelerate is a domain specific
language for fast array
computations embedded in
Haskell

Large data sets are a problem
for GPUs, as they only have
limited amount of main memory

Add concepts of streams to
Accelerate to express chunked
computations

dotp::
 Acc (Vector Float) ->
 Acc (Vector Float) ->
 Acc (Scalar Float)

dotP xs ys
 = fold (+) 0 $
 zipWith (*) xs ys

“Converting Data Parallelism to
Task Parallelism by rewrites”
Bo Joel Svensson, Michael Vollmer, Eric Holk, Trevor L. McDonell, Ryan R. Newton

GPU programming is hard - programming multi-GPU
architectures even harder

Idea: automatically fission Accelerate programs into task parallel
programs which can be scheduled to multiple processing units

transformation expressed as set of type-preserving rewriting
rules

multi-device scheduler automatically distributes operations
across multiple devices

“Skeletons for distributed
topological computations”
David J. Duke & Fouzhan Hosseini

Problem: visualisation of
huge data sets
representing
meteorological, geological,
physical models

Calculate topological
abstractions (minima,
maxima, and saddle
points)

Parallel Skeletons

Skeletons are basically
higher-order function

Paper investigates the
use of parallel skeletons
in Eden to implement
abstraction algorithm

distDC::
 Int ->
 (a-> Bool) ->
 (a -> b) ->
 (a-> [a]) ->
 ([b] -> b)->
 a ->
 b

“Generate and Offshore: Type-safe and
Modular Code Generation for Low-
Level Optimization ”
Bo Naoki Takashima Hiroki Sakamoto Yukiyoshi Kameyama

Asuna (MetaOCaml library) to implement code-generators for
a range of target languages

Generated code guaranteed to be well typed and well scoped

Supports parallel code generation via the use of modern CPU
features, like SIMD instructions

If you’re interested in
parallelism

Attend FHCP, parallelism tracks at ICFP & Haskell
Symposium, Simon Marlow’s talk at CUFP, Erlang
Workshop (concurrency)

Talk to us!

Thank you!

Image Sources

https://commons.wikimedia.org/wiki/File:Dortmund_-_Zeche_Zollern24_-_Zentralplatz_07_ies.jpg

https://commons.wikimedia.org/wiki/File:Programmer_writing_code_with_Unit_Tests.jpg

https://commons.wikimedia.org/wiki/File:GPU_NVIDIA_NV45_ES_GPU.jpg

clipboard art

https://commons.wikimedia.org/wiki/File:Dortmund_-_Zeche_Zollern24_-_Zentralplatz_07_ies.jpg
https://commons.wikimedia.org/wiki/File:Programmer_writing_code_with_Unit_Tests.jpg

