e@CU
Towards using Cached

Data Mining for Large Scale
Recommender Systems

Swapneel Sheth, Gail Kaiser
Department of Computer Science, Columbia University

New York, NY 10027
{swapneel, kaiser}@cs.columbia.edu



e@CU

Introduction

® Recommender systems have become
increasingly commonplace - Pandora, Amazon,
Facebook

® Most of the research has focused on aspects
such as algorithms [10, I 1] and social network
implications [12, |3]

® Very little research that has explored the use
of caches and cached data mining to improve
the performance of recommender systems



e@CU

Introduction (2)

® As recommender systems become popular,
its user base will grow

® Jwo important issues will need to be dealt
with
- How to generate recommendations
efficiently from a large set of data

- How to provide these recommendations
efficiently to a diverse set of users



e@CU

Introduction (3)

® Ve describe how we use cached data
mining to answer users’ queries and
provide recommendations in an efficient
way

® We describe an empirical study highlighting
their benefits and improvements to
response time and throughput for
recommendations



Related Work

There is very little in the published literature
discussing caches for recommendation systems

We found exactly one paper - Qasim et al. [21]

They propose a general solutions using Active
Caches

Active Caches can answer neighborhood
queries to a given query



e@CU

Related Work (2)

® However, this may not work well in general
with a diverse user base that requires different
kinds of recommendations

® Due to overheads of caching,Active Caches
might perform worse than having no cache

® Unlike Active Caches, genSpace uses a Prefetch
Cache so all recommendations (and not just
neighborhood ones) can be answered by the
cache



Background &
Motivation

We are exploring new ways for researchers in
computational biology and bioinformatics to
collaborate by sharing data and knowledge

Our approach is based on social networking
metaphors for collaborative work

Our implementation is a system called genSpace [14]

Plugin for geWorkbench [15], an open-source Java-
based system for integrated genomics targeted
toward biomedical researchers



Background &
Motivation (2)

geWorkbench includes more than 50 tools for
genomics data analysis and visualizations

Can be very daunting for users who don’t know
which tools to use, the order of using the tools,
etc.

genSpace provides recommendations such as
the most frequently occurring workflows
including a given tool or starting with the
sequence of tools the user has already executed



Background &
Motivation (3)

® We log users’ activities as they use
geWorkbench

® These logs are periodically sent to our
central server where data mining and
collaborative filtering techniques are used
to generate recommendations

® Currently we have about |50 distinct users
and 10000 rows of data



. . CS
Recommendations in
genSpace

® Static Recommendations
- Do not depend on the current activity of the user
- Typically follows a “pull” model
- Examples - Top Tools, Top Workflows
® Dynamic Recommendations
- Does depend on the current activity of the user

- Typically follows a “push” model

- Examples - Best Analysis Tool to run next based on the
what the user has done so far



CSe

@CU

genSpace Caching

Server-Side Cache that supports Static and
Dynamic Recommendations

Prefetch Cache that prefetches all types of
recommendations supported

Not a traditional cache - every recommendation
needed will be present in the cache

We do not need to worry about cache misses
as, by definition, hit rate and recall is 100%



CSe

@CU

genSpace Caching (2)

® Cache generated when the server starts up
using SQL queries and stored procedures

® Periodically re-generated as needed -
currently, every day

® |f we did not have the cache, we would
have to re-run the query every time on
demand as requests come in for
recommendations from users



CSe

@CU

genSpace Caching (3)

We use an exponential time-decay formula [19] to
address the problem of concept drift [ 18] to weigh
recent user data more heavily

First, static recommendations are computed and stored

For tool specific information, we build a hash-based index
to represent information such as: workflows including
this tool, number of times this tool has been used, etc.

Finally, a tree-based index of popular workflows is built

These three parts comprise the genSpace Caching
system and are used to provide recommendations



genSpace Cache
Limitations

® Due to structure of the cache, it can only
support the currently existing types of
recommendations in genSpace

® |f we want to support additional types of
recommendations, the cache would have to
be augmented with the appropriate
information



e@CU

Empirical Study

® VWe varied the size of the database - 3500,
10000, 100000, I million

® \We simulated 1000 concurrent users
requesting recommendations

® VWe compared these results to the results
obtained if we did not have a cache and

used SQL queries every time for generating
recommendations



e@CU

® We used Apache JMeter [20] for load testing
our server and measuring performance

Empirical Study (2)

® genSpace server and cache is implemented
in Java

® Qur server and client machines are
common Windows XP machines (no non-

essential system processes running; >2GB of
surplus RAM)



7000

Average Response Time

eCU

Empirical Study (3)

==sql

—ir—=cache

. — .
= = LI 1.
3444 10332 99876 1598016

&

Database Size

“Get Most Popular Workflow Heads”

|7



@CU

Empirical Study (4)

20000
18000
16000
14000 ==sql
12000
10000 Lx =
8000

6000 o , —ir—=cache
4000 \
2000 —

= —

3444 10332 99876 1598016

Throughput
’

Database Size

“Get Most Popular Tools™

|18



e@CU

We have described how we use Prefetch Caching in
our genSpace recommender system

Conclusion

We have described the structure of our cache

Our empirical study shows the advantages of using
our cache, which results in improvements to
throughput and response time

We believe such caches will prove very beneficial to
recommender systems particularly as the system
needs to support a diverse and large user base



CSe

e@CU
Acknowledgments

® Aris Floratos, Kiran Keshav, Zhou Ji

® Cheng Niu, Joshua Nankin, Eric Schmidt,
Yuan Wang

® The authors are members of the

Programming Systems Lab, funded in part
by NSF CNS-0905246, CNS-0717544,

CNS-0627473 and CNS-0426623, and NIH
| U54 CAI21852-01Al

20



enable (vt ): fo make possible, practical, or easy
PROGRAMMING SYSTEMS LAB C
CoLumBiA UNIVERSITY @ l J
l".'.}‘, W

Towards using Cached
Data Mining for Large Scale
Recommender Systems

Swapneel Sheth, Gail Kaiser

Department of Computer Science, Columbia University
New York, NY 10027
{swapneel, kaiser}@cs.columbia.edu

21



