
Towards using Cached 
Data Mining for Large Scale 

Recommender Systems

Swapneel Sheth, Gail Kaiser
Department of Computer Science, Columbia University

New York, NY 10027
{swapneel, kaiser}@cs.columbia.edu

1



Introduction

• Recommender systems have become 
increasingly commonplace - Pandora, Amazon, 
Facebook

• Most of the research has focused on aspects 
such as algorithms [10, 11] and social network 
implications [12, 13]

• Very little research that has explored the use 
of caches and cached data mining to improve 
the performance of recommender systems

2



Introduction (2)

• As recommender systems become popular, 
its user base will grow

• Two important issues will need to be dealt 
with

- How to generate recommendations 
efficiently from a large set of data

- How to provide these recommendations 
efficiently to a diverse set of users

3



Introduction (3)

• We describe how we use cached data 
mining to answer users’ queries and 
provide recommendations in an efficient 
way

• We describe an empirical study highlighting 
their benefits and improvements to 
response time and throughput for 
recommendations

4



Related Work

• There is very little in the published literature 
discussing caches for recommendation systems

• We found exactly one paper - Qasim et al. [21]

• They propose a general solutions using Active 
Caches

• Active Caches can answer neighborhood 
queries to a given query

5



Related Work (2)

• However, this may not work well in general 
with a diverse user base that requires different 
kinds of recommendations

• Due to overheads of caching, Active Caches 
might perform worse than having no cache

• Unlike Active Caches, genSpace uses a Prefetch 
Cache so all recommendations (and not just 
neighborhood ones) can be answered by the 
cache

6



Background & 
Motivation

• We are exploring new ways for researchers in 
computational biology and bioinformatics to 
collaborate by sharing data and knowledge

• Our approach is based on social networking 
metaphors for collaborative work

• Our implementation is a system called genSpace [14]

• Plugin for geWorkbench [15], an open-source Java-
based system for integrated genomics targeted 
toward biomedical researchers

7



Background & 
Motivation (2)

• geWorkbench includes more than 50 tools for 
genomics data analysis and visualizations

• Can be very daunting for users who don’t know 
which tools to use, the order of using the tools, 
etc.

• genSpace provides recommendations such as 
the most frequently occurring workflows 
including a given tool or starting with the 
sequence of tools the user has already executed 

8



Background & 
Motivation (3)

• We log users’ activities as they use 
geWorkbench

• These logs are periodically sent to our 
central server where data mining and 
collaborative filtering techniques are used 
to generate recommendations

• Currently we have about 150 distinct users 
and 10000 rows of data

9



Recommendations in 
genSpace

• Static Recommendations

- Do not depend on the current activity of the user

- Typically follows a “pull” model

- Examples - Top Tools, Top Workflows

• Dynamic Recommendations

- Does depend on the current activity of the user

- Typically follows a “push” model

- Examples - Best Analysis Tool to run next based on the 
what the user has done so far

10



genSpace Caching

• Server-Side Cache that supports Static and 
Dynamic Recommendations

• Prefetch Cache that prefetches all types of 
recommendations supported

• Not a traditional cache - every recommendation 
needed will be present in the cache

• We do not need to worry about cache misses 
as, by definition, hit rate and recall is 100%

11



genSpace Caching (2)

• Cache generated when the server starts up 
using SQL queries and stored procedures

• Periodically re-generated as needed - 
currently, every day

• If we did not have the cache, we would 
have to re-run the query every time on 
demand as requests come in for 
recommendations from users

12



genSpace Caching (3)
• We use an exponential time-decay formula [19] to 

address the problem of concept drift [18] to weigh 
recent user data more heavily

• First, static recommendations are computed and stored

• For tool specific information, we build a hash-based index 
to represent information such as: workflows including 
this tool, number of times this tool has been used, etc.

• Finally, a tree-based index of popular workflows is built

• These three parts comprise the genSpace Caching 
system and are used to provide recommendations

13



genSpace Cache 
Limitations

• Due to structure of the cache, it can only 
support the currently existing types of 
recommendations in genSpace

• If we want to support additional types of 
recommendations, the cache would have to 
be augmented with the appropriate 
information

14



Empirical Study

• We varied the size of the database - 3500, 
10000, 100000, 1 million

• We simulated 1000 concurrent users 
requesting recommendations

• We compared these results to the results 
obtained if we did not have a cache and 
used SQL queries every time for generating 
recommendations

15



Empirical Study (2)

• We used Apache JMeter [20] for load testing 
our server and measuring performance

• genSpace server and cache is implemented 
in Java

• Our server and client machines are 
common Windows XP machines (no non-
essential system processes running; >2GB of 
surplus RAM)

16



Empirical Study (3)

17

“Get Most Popular Workflow Heads”



Empirical Study (4)

18

“Get Most Popular Tools”



Conclusion

• We have described how we use Prefetch Caching in 
our genSpace recommender system

• We have described the structure of our cache

• Our empirical study shows the advantages of using 
our cache, which results in improvements to 
throughput and response time

• We believe such caches will prove very beneficial to 
recommender systems particularly as the system 
needs to support a diverse and large user base

19



Acknowledgments

• Aris Floratos, Kiran Keshav, Zhou Ji

• Cheng Niu, Joshua Nankin, Eric Schmidt, 
Yuan Wang

• The authors are members of the 
Programming Systems Lab, funded in part 
by NSF CNS-0905246, CNS-0717544, 
CNS-0627473 and CNS-0426623, and NIH 
1 U54 CA121852-01A1

20



Towards using Cached 
Data Mining for Large Scale 

Recommender Systems

Swapneel Sheth, Gail Kaiser
Department of Computer Science, Columbia University

New York, NY 10027
{swapneel, kaiser}@cs.columbia.edu

21


