
© 2017 A. Alawini, S. Davidson

XML	and	XQuery	

Susan	B.	Davidson	
CIS	700:	Advanced	Topics	in	Databases	

MW	1:30-3	

Towne	309	

	

	
http://www.cis.upenn.edu/~susan/cis700/homepage.html

2	

XML Anatomy

<?xml version="1.0" encoding="ISO-8859-1" ?>
<dblp>
 <mastersthesis mdate="2002-01-03" key="ms/Brown92">
 <author>Kurt P. Brown</author>
 <title>PRPL: A Database Workload Specification Language</title>
 <year>1992</year>
 <school>Univ. of Wisconsin-Madison</school>
 </mastersthesis>
 <article mdate="2002-01-03" key="tr/dec/SRC1997-018">
 <editor>Paul R. McJones</editor>
 <title>The 1995 SQL Reunion</title>
 <journal>Digital System Research Center Report</journal>
 <volume>SRC1997-018</volume>
 <year>1997</year>
 <ee>db/labs/dec/SRC1997-018.html</ee>
 <ee>http://www.mcjones.org/System_R/SQL_Reunion_95/</ee>
 </article>

Processing Instr.

Element

Attribute

Close-tag

Open-tag

3	

XML Data Model Visualized
(and simplified!)

Root

?xml dblp

mastersthesis article

mdate key
author title year school editor title year journal volume ee ee

mdate
key

2002…

ms/Brown92

Kurt P….

PRPL…

1992

Univ….

2002…

tr/dec/…

Paul R.

The…

Digital…

SRC…

1997

db/labs/dec

http://www.

attribute root

p-i element

text

4	

Structural Constraints:
Document Type Definitions (DTDs)

The	DTD	is	an	EBNF	grammar	defining	XML	structure	
• XML	document	specifies	an	associated	DTD,	plus	the	root	
element	

• DTD	specifies	children	of	the	root	(and	so	on)	

DTD	defines	special	significance	for	attributes:	
• IDs	–	special	attributes	that	are	analogous	to	keys	for	
elements	

• IDREFs	–	references	to	IDs	

• IDREFS	–	a	nasty	hack	that	represents	a	list	of	IDREFs	

5	

An Example DTD

Example	DTD:	
<!ELEMENT dblp((mastersthesis | article)*)>
<!ELEMENT mastersthesis(author,title,year,school,committeemember*)>
<!ATTLIST mastersthesis(mdate CDATA #REQUIRED

 key ID #REQUIRED
 advisor CDATA #IMPLIED>

<!ELEMENT author(#PCDATA)>

 …
Example	use	of	DTD	in	XML	file:	

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE	dblp	SYSTEM	“my.dtd">		
<dblp>…

6	

Representing Graphs and Links in XML:
Basically Using Foreign Keys

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE graph SYSTEM “special.dtd">
<graph>

 <author id=“author1”>
 <name>John Smith</name>
 </author>
 <article>
 <author ref=“author1” /> <title>Paper1</title>
 </article>
 <article>
 <author ref=“author1” /> <title>Paper2</title>
 </article>

…

7	

Graph Data Model

Root

!DOCTYPE
graph

author
article

name
title

ref
ref

John Smith

author1
author1

Paper2

?xml
article

id

author1

author author title

Paper1

8	

Graph Data Model

Root

!DOCTYPE
graph

author
article

name
title

ref
ref

John Smith

Paper2

?xml
article

id

author1

author author title

Paper1

9	

Querying XML

How	do	you	query	a	directed	graph?		a	tree?	

The	standard	approach	used	by	many	XML,	
semistructured-data,	and	object	query	languages:	
• Define	some	sort	of	a	template	describing	traversals	from	the	
root	of	the	directed	graph	

• In	XML,	the	basis	of	this	template	is	called	an	XPath	

10	

XPaths

In	its	simplest	form,	an	XPath	is	like	a	path	in	a	file	
system:	
/mypath/subpath/*/morepath	

• The	XPath	returns	a	node	set	representing	the	XML	nodes	
(and	their	subtrees)	at	the	end	of	the	path	

• XPaths	can	have	node	tests	at	the	end,	returning	only	
particular	node	types,	e.g.,	text(),	processing-instruction(),	
comment(),	element(),	attribute()	

• XPath	is	fundamentally	an	ordered	language:		it	can	query	in	
order-aware	fashion,	and	it	returns	nodes	in	order	

11	

Some Example XPath Queries

• /dblp/mastersthesis/title	
• /dblp/*/editor	
• //title	
• //title/text()	

12	

Context Nodes and Relative Paths

XPath	has	a	notion	of	a	context	node:		it’s	analogous	to	
a	current	directory	
• “.”	represents	this	context	node	
• “..”	represents	the	parent	node	
• We	can	express	relative	paths:	

subpath/sub-subpath/../..	gets	us	back	to	the	context	node	

	

Ø By	default,	the	document	root	is	the	context	node	

13	

Predicates – Selection Operations

A	predicate	allows	us	to	filter	the	node	set	based	on	
selection-like	conditions	over	sub-XPaths:	

	/dblp/article[title	=	“Paper1”]	
	

	which	is	equivalent	to:	
	
	/dblp/article[./title/text()	=	“Paper1”]	

14	

Axes: More Complex Traversals

Thus	far,	we’ve	seen	XPath	expressions	that	go	down	the	tree	(and	
up	one	step)	
• But	we	might	want	to	go	up,	left,	right,	etc.	

• These	are	expressed	with	so-called	axes:	
•  self::path-step	
•  child::path-step 	 	 	parent::path-step	

• descendant::path-step 	 	ancestor::path-step	

• descendant-or-self::path-step 	ancestor-or-self::path-step	

•  preceding-sibling::path-step 	following-sibling::path-step	

•  preceding::path-step	 	following::path-step	

• The	previous	XPaths	we	saw	were	in	“abbreviated	form”	

15	

Querying Order

• We	saw	in	the	previous	slide	that	we	could	query	for	
preceding	or	following	siblings	or	nodes	

• We	can	also	query	a	node	for	its	position	according	to	
some	index:	
• fn::first() 	,	fn::last()	return	index	of	0th	&	last	element	
matching	the	last	step:	

• fn::position() 	gives	the	relative	count	of	the	current	node	

child::article[fn::position()	=	fn::last()]	

16	

Beyond XPath: XQuery

A	strongly-typed,	Turing-complete	XML	manipulation	
language	
• Attempts	to	do	static	typechecking	against	XML	Schema	
• Based	on	an	object	model	derived	from	Schema	

Unlike	SQL,	fully	compositional,	highly	orthogonal:	
• Inputs	&	outputs	collections	(sequences	or	bags)	of	XML	
nodes	

• Anywhere	a	particular	type	of	object	may	be	used,	may	use	
the	results	of	a	query	of	the	same	type	

• Designed	mostly	by	DB	and	functional	language	people	

17	

XQuery’s Basic Form

• Has	an	analogous	form	to	SQL’s	
SELECT..FROM..WHERE..GROUP	BY..ORDER	BY	

• The	model:		bind	nodes	(or	node	sets)	to	variables;	operate	
over	each	legal	combination	of	bindings;	produce	a	set	of	
nodes	

• “FLWOR”	statement	[note	case	sensitivity!]:	
for	{iterators	that	bind	variables}	
let	{collections}	
where	{conditions}	
order	by	{order-paths}	
return	{output	constructor}	

• Mixes	XML	+	XQuery	syntax;	use	{}	as	“escapes”	

18	

XML Data Model Visualized

Root

?xml dblp

mastersthesis article

mdate key
author title year school editor title year journal volume ee ee

mdate
key

2002…

ms/Brown92

Kurt P….

PRPL…

1992

Univ….

2002…

tr/dec/…

Paul R.

The…

Digital…

SRC…

1997

db/labs/dec

http://www.

attribute root

p-i element

text

19	

“Iterations” in XQuery
A	series	of	(possibly	nested)	FOR	statements	assigning	the	results	
of	XPaths	to	variables	

	for	$root	in	doc	(“http://my.org/my.xml”)	
	 	for	$sub	in	$root/rootElement,	
	 	 	$sub2	in	$sub/subElement,	…	
	
• Something	like	a	template	that	pattern-matches,	produces	a	
“binding	tuple”	

• For	each	of	these,	we	evaluate	the	WHERE	and	possibly	output	
the	RETURN	template	

• document()	or	doc()	function	specifies	an	input	file	as	a	URI	

20	

Two XQuery Examples
<root-tag>	{	
	for	$p	in	doc	(“dblp.xml”)/dblp/proceedings,	
							$yr	in	$p/yr	
	where	$yr	=	“1999”	
	return	<proc>	{$p}	</proc>	

}	</root-tag>	
	
	
for	$i	in	doc	(“dblp.xml”)/dblp/inproceedings[author/text()	=	“John	
Smith”]	

return	<smith-paper>	
	 	 	<title>{	$i/title/text()	}</title>	
	 	 	<key>{	$i/@key	}</key>	
	 	 	{	$i/crossref	}	
	 	</smith-paper>	

21	

Nesting in XQuery

Nesting	XML	trees	is	perhaps	the	most	common	operation	
In	XQuery,	it’s	easy	–	put	a	subquery	in	the	return	clause	where	you	
want	things	to	repeat!	

for	$u	in	doc(“dblp.xml”)/dblp/university	
where	$u/country	=	“USA”	
return	<ms-theses-99>	
	 	 	{	$u/name	}		{	
	 	 		for	$mt	in	$u/../mastersthesis	
	 	 		where	$mt/year/text()	=	“1999”	and	____________	
	 	 		return	$mt/title	}	
	 				</ms-theses-99>	

22	

Collections & Aggregation in XQuery
In	XQuery,	many	operations	return	collections	

• XPaths,	sub-XQueries,	functions	over	these,	…	
• The	let	clause	assigns	the	results	to	a	variable	

Aggregation	applies	a	function	over	a	collection	(elegant!)	

let	$allpapers	:=	doc	(“dblp.xml”)/dblp/article	
return	<article-authors>		
	<count>	{	fn:count(fn:distinct-values($allpapers/authors))	}	</count>	

{ 	for	$paper	in	doc(“dblp.xml”)/dblp/article	
	let	$pauth	:=	$paper/author	
	return	<paper>	{$paper/title}	
	 	 	<count>	{	fn:count($pauth)	}	</count>	
	 				</paper>	

}		</article-authors>	

23	

Collections, Ctd.

Unlike	SQL,	we	can	compose	aggregations	and	create	
new	collections	from	old:	

<result>	{	
let	$avgItemsSold	:=	fn:avg(
for	$order	in	doc(“my.xml”)/orders/order	
let	$totalSold	=	fn:sum($order/item/quantity)	
return	$totalSold)	
return	$avgItemsSold	

}	</result>	

24	

Distinct-ness

In	XQuery,	DISTINCT-ness	happens	as	a	function	over	
a	collection	
• But	since	we	have	nodes,	we	can	do	duplicate	removal	
according	to	value	or	node	

• Can	do	fn:distinct-values(collection)	to	remove	duplicate	
values,	or	fn:distinct-nodes(collection)	to	remove	duplicate	
nodes	

for	$years	in	fn:distinct-values(doc(“dblp.xml”)//year/text()	

return	$years	

25	

Sorting in XQuery

• SQL	actually	allows	you	to	sort	its	output,	with	a	
special	ORDER	BY	clause		

• In	XQuery,	what	we	order	is	the	sequence	of	“result	
tuples”	output	by	the	return	clause:	

for	$x	in	doc	(“dblp.xml”)/proceedings	
order	by	$x/title/text()	
return	$x	

26	

What If Order Doesn’t Matter?

By	default:	
• SQL	is	unordered	

• XQuery	is	ordered	everywhere!	

• But	unordered	queries	are	much	faster	to	answer	

XQuery	has	a	way	of	telling	the	query	engine	to	avoid	
preserving	order:	
• unordered	{	
	for	$x	in	(mypath)	…	
}	

27	

Querying & Defining Metadata –
Can’t Do This in SQL

Can	get	a	node’s	name	by	querying	name():	
	for	$x	in	doc	(“dblp.xml”)/dblp/*	

	return	name($x)	

Can	construct	elements	and	attributes	using	computed	
names:	

	for	$x	in	doc	(“dblp.xml”)/dblp/*,	

	 	$year	in	$x/year,	

	 	$title	in	$x/title/text()	
return		

	element	{	name($x)	}	{	

	 	attribute	{	“year-”	+	$year	}	{	$title	}	

	}	

28	

XQuery Summary

Very	flexible	and	powerful	language	for	XML	
• Clean	and	orthogonal:		can	always	replace	a	collection	with	an	
expression	that	creates	collections	

• DB	and	document-oriented	(with	keyword	search	extensions)	

• The	core	is	relatively	clean	and	easy	to	understand	
Turing	Complete	–	there	are	several	XQuery	functions	
that	enable	this	(not	discussed).	

