Streaming Data

Susan B. Davidson
CIS 700: Advanced Topics in Databases
MW 1:30-3
Towne 309

http://www.cis.upenn.edu/~susan/cis700/homepage.html
Streaming Data

• Many modern applications require long-running, *continuous* queries over unbounded streams of data
 • Network monitoring
 • Financial analysis
 • Manufacturing
 • Sensor networks

• Contrast this with the traditional database setting of *one-time* queries over finite stored data sets.
• Suppose we are collecting ocean surface temperature/surface height data using floating sensors
 • Millions of sensors each sending back a stream at the rate of 10 readings per second
 • This could easily become several terabytes of data per day, cannot be kept in working storage.

• Sample continuous (“standing”) queries
 • Output an alert whenever the temperature exceeds 25 degrees centigrade
 • Produce the average of the 24 most recent readings
 • Produce the highest temperature recorded, or average temperature over all recordings
Example: Web sites

- Web sites receives streams of various types
 - Google receives several hundred million search queries per day
 - Yahoo! accepts billions of “clicks” per day

- Many interesting things can be learned
 - An increase in queries like “sore throat” signals the spread of viruses.
 - A sudden increase in the click rate for a link could indicate some news connected to that page, or it could mean that the link is broken and needs to be repaired.

- One approach to handle ad-hoc queries is to store a sliding window of each stream
 - All inputs in last t time units
 - Last k inputs
Data-stream management system architecture

From "Mining of Massive Datasets"
By Leskovec, Rajaraman and Ullman.
Issues in stream processing

• Streams deliver elements rapidly, and elements must be processed in real time
 • Algorithms should be executed in main memory
• There may be many streams
 • Even if each stream can easily be executed in main memory, the combination may exceed available memory
 • Common techniques: approximation, hashing
• For complex, ad-hoc queries: store a sliding window of each stream in the working store.
 • Most recent n elements of a stream, for some n
 • All the elements that arrived within the last t time units
Several directions have been taken...

• Database management systems perspective
 • Stanford STREAM project
 • NiagaraCQ (Wisconsin and OGI)
• Algorithmic perspective
 • Approximation and hashing techniques are commonly explored.
• Data stream processing engines (e.g. Discretized stream, Drizzle, Flink)
STREAM: the Stanford project

• Two data types:
 • Stream: unbounded bag of pairs \((s, t)\) where \(s\) is a tuple and \(t\) is a timestamp
 • Relation: time-varying bag of tuples, \(R(t)\) denotes an instantaneous relation
Stream-to-relation operators are based on sliding windows:

- **Tuple-based**: R(t) contains the N tuples of stream S with the largest timestamps \(\leq t \)
- **Time-based**: R(t) contains all tuples of S with timestamps between \(t-w \) and \(t \).
- **Partitioned sliding window**: partitions S into different substreams based on equality of attributes \(A_1, \ldots, A_k \) and computes a tuple-based sliding window of size N independently on each substream, then take the union of the windows to produce the output relation
CQL: Relation-to-stream operators

- **Istream**: contains (s, t) whenever tuple s is inserted into R at time t
- **Dstream**: contains (s, t) whenever tuple s is deleted from R at time t
- **Rstream**: contains (s, t) whenever tuple s is in R(t), i.e. every current tuple of R is streamed at every time instant

```
Select Istream(*) From S [Rows unbounded] Where S.A>10
```

or more intuitively:

```
Select * From S Where S.A>10
```
CQL, more examples

Select * From S1 [Rows 1000], S2 [Range 2 minutes]

Select Istream(S1.A) From S1 [Rows 1000], S2 [Range 2 minutes]

Select Rstream(S.A, R.B) From S [Now], R
Where S.A=R.A
Query plans for continuous queries

- Query plans consist of
 - **Operators**, which perform the actual processing
 - **Queues**, which buffer tuples as they move between operators
 - **Synopses**, which store operator state
- Each operator reads from one or more input queues, processes the input, and writes output to an output queue.
- All queues enforce nondecreasing timestamps.
- Synopses store state that may be required for future evaluation of an operator, and are shared between operators whenever possible.
 - E.g. materialize the contents of a sliding relation or the result of a subquery
Operators in CQL query plans

<table>
<thead>
<tr>
<th>Name</th>
<th>Operator Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>select</td>
<td>relation-to-relation</td>
<td>Filters elements based on predicate(s)</td>
</tr>
<tr>
<td>project</td>
<td>relation-to-relation</td>
<td>Duplicate-preserving projection</td>
</tr>
<tr>
<td>binary-join</td>
<td>relation-to-relation</td>
<td>Joins two input relations</td>
</tr>
<tr>
<td>mjoin</td>
<td>relation-to-relation</td>
<td>Multiway join from [22]</td>
</tr>
<tr>
<td>union</td>
<td>relation-to-relation</td>
<td>Bag union</td>
</tr>
<tr>
<td>except</td>
<td>relation-to-relation</td>
<td>Bag difference</td>
</tr>
<tr>
<td>intersect</td>
<td>relation-to-relation</td>
<td>Bag intersection</td>
</tr>
<tr>
<td>antisemijoin</td>
<td>relation-to-relation</td>
<td>Antisemijoin of two input relations</td>
</tr>
<tr>
<td>aggregate</td>
<td>relation-to-relation</td>
<td>Performs grouping and aggregation</td>
</tr>
<tr>
<td>duplicate-eliminate</td>
<td>relation-to-relation</td>
<td>Performs duplicate elimination</td>
</tr>
<tr>
<td>seq-window</td>
<td>stream-to-relation</td>
<td>Implements time-based, tuple-based, and partitioned windows</td>
</tr>
<tr>
<td>i-stream</td>
<td>relation-to-stream</td>
<td>Implements Istream semantics</td>
</tr>
<tr>
<td>d-stream</td>
<td>relation-to-stream</td>
<td>Implements Dstream semantics</td>
</tr>
<tr>
<td>r-stream</td>
<td>relation-to-stream</td>
<td>Implements Rstream semantics</td>
</tr>
</tbody>
</table>
Example

Select * from S1 [Rows 1000], S2 [Range 2 minutes]

Tuple-based windows do not commute with filter conditions.
Performance in a time-varying landscape

- Novel optimizations
 - Synopsis sharing
 - Constraints on streams
 - Operator scheduling
- Monitoring and adaptive query processing
 - Profiler collects and maintains statistics about stream and plan characteristics, e.g. constraints
 - Reoptimizer ensures that plans and memory structures are efficient for current characteristics, e.g. join orders, adding/deleting subresult caches
- Approximation
Use “stubs” to index into shared synopses

- Within a query, e.g. Synopsis 1 and Synopsis 3
- Across queries, e.g.

Select * from S1 [Rows 1000], S2 [Range 2 minutes]

Select A, Max(B) From S1 [Rows 200] Group By A
Optimizations: constraints

• *Referential integrity* k on a many-one join: bound k on the delay between the arrival of a tuple on the “many” stream and the arrival of its joining “one” tuple on the other stream.

• *Ordered-arrival* k-*constraint* on a stream attribute A: bound k on the amount of reordering in values of A.
 * For any tuple s in stream S, for all tuples s' that arrive at least $k + 1$ elements after s, it must be true that $s':A >= s:A$.

• *Clustered-arrival* k-*constraint* on a stream attribute A: bound k on the distance between any two elements that have the same value of A.
Approximation

• Data streams may be bursty with peaks during which system resources are exhausted.
 • \textit{CPU-limited}: data arrival rate is so high that there is insufficient CPU time to process each stream element
 • \textit{Memory-limited}: total state required for all queries may exceed available memory

• \textbf{Solution}: degrade accuracy by providing approximate answers during load spikes
 • \textit{CPU-limited}: drop elements before they are processed
 • \textit{Memory-limited}: selectively retain some state and discard the rest
CPU-limited computation

• Introduce sampling operators that probabilistically drop stream elements as they are input to the query plan.
• For example, suppose there is set of sliding window aggregation queries
 • **Goal**: sample the inputs to minimize the maximum relative error across all queries, i.e. keep the relative error the same for all queries
 • **Assume**: for each Qi, know the mean and standard deviation of input stream values as well as the window size (can be collected by the profiler)
 • Then can use the Hoeffding inequality to derive a bound on the probability that the relative error exceeds a given threshold for a given sampling rate.

Select avg(temp) From SensorReadings [Range 5 minutes]
Memory-limited computation

• Several optimizations are aimed at minimizing memory devoted to queues and synopsis sizes (e.g. synopsis sharing, operator scheduling, using constraints), but memory may still be a limitation
 • Spilling to disk may not be feasible as it is too slow

• Focus on reducing synopsis
 • Introducing a new window or shrinking an existing window
 • Maintaining a sample of the intended synopsis content
 • Using histograms or wavelets when the synopsis is used for aggregation
 • Using Bloom filters for duplicate elimination, set difference or set intersection
 • Lowering k-values for known k-constraints
Conclusions

• Many modern applications require continuous queries over streaming data
• Cannot directly apply relational semantics, need to introduce stream \(\Rightarrow\) relation and relation \(\Rightarrow\) stream operators
• Optimizing continuous queries requires a new set of tricks
 • Sharing state and computation within and across query plans
 • Using inferred constraints on data streams
 • Adaptive query processing
 • Load-shedding and approximations