
Streaming Data

Susan	B.	Davidson	
CIS	700:	Advanced	Topics	in	Databases	

MW	1:30-3	

Towne	309	

	

http://www.cis.upenn.edu/~susan/cis700/homepage.html

• Many	modern	applications	require	long-running,	
continuous		queries	over	unbounded	streams	of	data	
• Network	monitoring	

• Financial	analysis	
• Manufacturing	

• Sensor	networks	

• Contrast	this	with	the	traditional	database	setting	of	
one-time	queries	over	finite	stored	data	sets.	

Streaming Data

2	

• Suppose	we	are	collecting	ocean	surface	temperature/
surface	height	data	using	floating	sensors	
• Millions	of	sensors	each	sending	back	a	stream	at	the	rate	of	
10	readings	per	second	

• This	could	easily	become	several	terabtyes	of	data	per	day,	
cannot	be	kept	in	working	storage.	

• Sample	continuous	(“standing”)	queries	
• Output	an	alert	whenever	the	temperature	exceeds	25	degrees	
centigrade	

• Produce	the	average	of	the	24	most	recent	readings	
• Produce	the	highest	temperature	recorded,	or	average	
temperature	over	all	recordings	

Example: oceanography

3	

• Web	sites	receives	streams	of	various	types	
• Google	receives	several	hundred	million	search	queries	per	day	

• Yahoo!	accepts	billions	of	“clicks”	per	day	
• Many	interesting	things	can	be	learned		

• An	increase	in	queries	like	“sore	throat”	signals	the	spread	of	
viruses.	

• A	sudden	increase	in	the	click	rate	for	a	link	could	indicate	
some	news	connected	to	that	page,	or	it	could	mean	that	the	
link	is	broken	and	needs	to	be	repaired.	

• One	approach	to	handle	ad-hoc	queries	is	to	store	a	
sliding	window	of	each	stream	
• All	inputs	in	last	t	time	units	

• Last	k	inputs	

Example: Web sites

4	

Data-stream management system
architecture

5	

From “Mining of Massive Datasets”
By Leskovec, Rajaraman and Ullman.

• Streams	deliver	elements	rapidly,	and	elements	must	be	
processed	in	real	time	

• Algorithms	should	be	executed	in	main	memory	

• There	may	be	many	streams	

• Even	if	each	stream	can	easily	be	executed	in	main	memory,	
the	combination	may	exceed	available	memory	

• Common	techniques:		approximation,	hashing	

• For	complex,	ad-hoc	queries:		store	a	sliding	window	of	each	
stream	in	the	working	store.		

• Most	recent	n	elements	of	a	stream,	for	some	n	

• All	the	elements	that	arrived	within	the	last	t	time	units	

Issues in stream processing

6	

• Database	management	systems	perspective	
• Stanford	STREAM	project	

• NiagaraCQ	(Wisconsin	and	OGI)	

• Algorithmic	perspective	
• Approximation	and	hashing	techniques	are	commonly	
explored.	

• Data	stream	processing	engines	(e.g.	Discretized	
stream,	Drizzle,	Flink)	

Several directions have been taken…

7	

• Two	data	types:	
• Stream:		unbounded	bag	of	pairs	(s,t)	where	s	is	a	tuple	and	t	is	a	
timestamp	

• Relation:	time-varying	bag	of	tuples,	R(t)	denotes	an	instantaneous	
relation	

STREAM: the Stanford project

8	

• Stream-to-relation	operators	are	based	on	sliding	
windows:	
• Tuple-based:	R(t)	contains	the	N	tuples	of	stream	S	with	the	
largest	timestamps	<=t	

• Time-based:	R(t)	contains	all	tuples	of	S	with	timestamps	
between	t-w	and	t.	

• Partitioned	sliding	window:		partitions	S	into	different	
substreams	based	on	equality	of	attributes	A1,…,	Ak	and	
computes	a	tuple-based	sliding	window	of	size	N	
independently	on	each	substream,	then	take	the	union	of	the	
windows	to	produce	the	output	relation	

CQL: Stream-to-relation operators

9	

• Istream:	contains	(s,	t)	whenever	tuple	s	is	inserted	into	R	
at	time	t	

• Dstream:	contains	(s,	t)	whenever	tuple	s	is	deleted	from	R	
at	time	t	

• Rstream:	contains	(s,	t)	whenever	tuple	s	is	in	R(t),	i.e.	
every	current	tuple	of	R	is	streamed	at	every	time	instant	

CQL: Relation-to-stream operators

10	

Select	Istream(*)	From	S	[Rows	unbounded]	Where	S.A>10	
	
or	more	intuitively:	
	
Select	*	From	S	Where	S.A>10	

CQL, more examples

11	

Select * From S1 [Rows 1000], S2 [Range 2 minutes]
Where S1.A=S2.A and S1.A>10

Select Istream(S1.A) From S1 [Rows 1000], S2 [Range 2 minutes]
Where S1.A=S2.A and S1.A>10

Select Rstream(S.A, R.B) From S [Now], R
Where S.A=R.A

• Query	plans	consist	of	
• Operators,	which	perform	the	actual	processing	
• Queues,	which	buffer	tuples	as	they	move	between	operators	
• Synopses,	which	store	operator	state	

• Each	operator	reads	from	one	or	more	input	queues,	
processes	the	input,	and	writes	output	to	an	output	queue.	

• All	queues	enforce	nondecreasing	timestamps.		
• Synopses	store	state	that	may	be	required	for	future	
evaluation	of	an	operator,	and	are	shared	between	
operators	whenever	possible.		
• E.g.	materialize	the	contents	of	a	sliding	relation	or	the	result	
of	a	subquery	

Query plans for continuous queries

12	

Operators in CQL query plans

13	

Example

14	

Select * from S1 [Rows 1000], S2 [Range 2 minutes]
Where S1.A=S2.A and S1.A>10

Tuple-based windows
do not commute
with filter conditions.

• Novel	optimizations	
• Synopsis	sharing	
• Constraints	on	streams	
• Operator	scheduling	

• Monitoring	and	adaptive	query	processing	
• Profiler	collects	and	maintains	statistics	about	stream	and	plan	
characteristics,	e.g.	constraints	

• Reoptimizer	ensures	that	plans	and	memory	structures	are	efficient	
for	current	characteristics,	e.g.	join	orders,	adding/deleting	subresult	
caches	

• Approximation	
	

Performance in a time-varying landscape

15	

• Use	“stubs”	to	index	into	shared	synopses		
• Within	a	query,	e.q.		Synopsis	1	and	Synopsis	3	

• Across	queries,	e.g.	

Optimization: synopsis sharing

16	

Select * from S1 [Rows 1000], S2 [Range 2 minutes]
Where S1.A=S2.A and S1.A>10

Select A, Max(B) From S1 [Rows 200] Group By A

• Referential	integrity	k	on	a	many-one	join:		bound	k	on	the	delay	
between	the	arrival	of	a	tuple	on	the	“many”	stream	and	the	
arrival	of	its	joining	“one”	tuple	on	the	other	stream.	

• Ordered-arrival	k-constraint	on	a	stream	attribute	A:		bound	k	on	
the	amount	of	reordering	in	values	of	A.		
• For	any	tuple	s	in	stream	S,	for	all	tuples	s’		that	arrive	at	least	k	+	1	
elements	after	s,	it	must	be	true	that	s’:A>=	s:A.	

• Clustered-arrival	k-constraint	on	a	stream	attribute	A:	bound	k	
on	the	distance	between	any	two	elements	that	have	the	same	
value	of	A.	

Optimizations: constraints

17	

• Data	streams	may	be	bursty	with	peaks	during	which	system	
resources	are	exhausted.	
• CPU-limited:		data	arrival	rate	is	so	high	that	there	is	insufficient	
CPU	time	to	process	each	stream	element	

• Memory-limited:		total	state	required	for	all	queries	may	exceed	
available	memory	

• Solution:	degrade	accuracy	by	providing	approximate	answers	
during	load	spikes	
• CPU-limited:	drop	elements	before	they	are	processed	

• Memory-limited:	selectively	retain	some	state	and	discard	the	rest	

Approximation

18	

• Introduce	sampling	operators	that	probabilistically	drop	stream	
elements	as	they	are	input	to	the	query	plan.	

• For	example,	suppose	there	is	set	of	sliding	window	aggregation	
queries	
• Goal:	sample	the	inputs	to	minimize	the	maximum	relative	error	across	
all	queries,	i.e.	keep	the	relative	error	the	same	for	all	queries	

• Assume:		for	each	Qi,	know	the	mean	and	standard	deviation	of	input	
stream	values	as	well	as	the	window	size	(can	be	collected	by	the	
profiler)	

• Then	can	use	the	Hoeffding	inequality	to	derive	a	bound	on	the	
probability	that	the	relative	error	exceeds	a	given	threshold	for	a	given	
sampling	rate.	

	

CPU-limited computation

19	

Select	avg(temp)	From	SensorReadings	[Range	5	minutes]		

• Several	optimizations	are	aimed	at	minimizing	memory	devoted	
to	queues	and	synopsis	sizes	(e.g.	synopsis	sharing,	operator	
scheduling,	using	constraints),	but	memory	may	still	be	a	
limitation	
• Spilling	to	disk	may	not	be	feasible	as	it	is	too	slow	

• Focus	on	reducing	synopsis	
• Introducing	a	new	window	or	shrinking	an	existing	window	

• Maintaining	a	sample	of	the	intended	synopsis	content	

• Using	histograms	or	wavelets	when	the	synopsis	is	used	for	
aggregation	

• Using	Bloom	filters	for	duplicate	elimination,	set	difference	or	set	
intersection	

• Lowering	k-values	for	known	k-constraints	

Memory-limited computation

20	

• Many	modern	applications	require	continuous	queries	
over	streaming	data	

• Cannot	directly	apply	relational	semantics,	need	to	
introduce	streamà	relation	and	relationà	stream	
operators	

• Optimizing	continuous	queries	requires	a	new	set	of	
tricks	
• Sharing	state	and	computation	within	and	across	query	plans	
• Using	inferred	constraints	on	data	streams	
• Adaptive	query	processing	
• Load-shedding	and	approximations	

Conclusions

21	

