
© 2017 A. Alawini, S. Davidson

JSON,	MongoDB,	
JSONique	

Susan	B.	Davidson	
CIS	700:	Advanced	Topics	in	Databases	

MW	1:30-3	

Towne	309	

	

	
http://www.cis.upenn.edu/~susan/cis700/homepage.html

•  JSON	(JavaScript	Object	Notation)		is	a	lightweight	data	
exchange	format	for	structured	data		

• Supports	objects	(string-to-value	maps),	arrays	(ordered	
sequences	of	value),	other	simple	types	(integers,	strings,	reals,	
booleans)	

• MongoDB	is	a	NoSQL	solution	based	on	JSON	

•  JSONiq	is	a	query	language	for	JSON	based	on	XQuery	

JSON

2	

Sample JSON Document

3

{			_id:	1,		
				name:	{	first:	“John”,	last:	“Backus”	},		
				birthyear:	1924,		
			contribs:	[“Fortran”,	“ALGOL”,	“Backus-Naur	Form”,	“FP”],		
				awards:	[{	award_id:	“NMS001”,		
																							year:	1975	},		
																				{	award_id:	“TA99”,		
																							year:	1977}]		
																									}	

Array of
documents

MongoDB: Always indexed, automatically
assigned unless provided

MongoDB

University	of	Pennsylvania	 4	

MongoDB Querying

• Use find() function and a query document

• Ranges, set inclusion, inequalities using $conditionals

• Complex queries using $where clause

• Queries return a database cursor

• Meta-operations on cursor include skipping some
number of results, limiting the number of results
returned, sorting results.

5

Sample document

6

d={		
						_id	:	ObjectId(“4c4ba5c0672c685e5e8aabf3”),	
						author	:	“Kevin”,		
						date	:	new	Date(“February	2,	2012”),	
						text	:	“About	MongoDB...”,	
						birthyear:		1980,		
						tags	:	["tech",	"databases"]	
						}		
	
>	db.posts.insert(d)	

Find

Return entire collection in posts:

 Return posts that match condition (conjunction):

7

{	_id	:	ObjectId("4c4ba5c0672c685e5e8aabf3"),	author	:	"Kevin",	
date	:	Date(“February	2,	2012”),	birthyear:		1980,		
	text	:	"About	MongoDB...",		tags	:	["tech",	"databases"]}	

db.posts.find({author: “Kevin”, birthyear: 1980})

db.posts.find()

Specifying which keys to return

8

{		
					_id:	1,		
				name:	{	first:	“John”,	last:	“Backus”	},		
				contribs:	[“Fortran”,	“ALGOL”,	“Backus-Naur	Form”,	“FP”]	
	}	

{	
				name:	{	first:	“John”,	last:	“Backus”	}		
}	

db.people.find({}, {name:1, contribs:1})

db.people.find({}, {_id: 0, name:1})

Ranges, Negation, OR-clauses

• Comparison operators: $lt, $lte, $gt, $gte
• db.posts.find({birthyear: {$gte: 1970, $lte: 1990}})

• Negation: $ne
• db.posts.find({birthyear: {$ne: 1982}})

• Or queries: $in (single key), $or (different keys)
• db.posts.find({birthyear: {$in: [1982, 1985]}})

• db.posts.find({$or: [{birthyear: 1982}, {author: “John”}]})

9

Arrays

• db.posts.find({tags: “tech”})
• Print complete information about posts which are tagged
“tech”

• db.posts.find({tags: {$all: [“tech”, “databases”]},
{author:1, tags:1})
• Print author and tags of posts which are tagged with both
“tech” and “databases” (among other things)

• Contrast this with:
 db.posts.find({tags: [“databases”, “tech”]})

10

Querying Embedded Documents

• db.people.find({“name.first”: “John”})
• Finds all people with first name John

• db.people.find({“name.first”: “John”, “name.last”:
“Smith”})
• Finds all people with first name John and last name Smith.

• Contrast with

db.people.find({“name”: {“first”: “John”, “last”: “Smith”}})

11

Joins in MongoDB

• “Do joins while write, not on reads.”
• Use embedded relationships

• Otherwise, you need to use semi-joins to get an array of
keys from the first collection on which to search the
second collection for matches using cursor methods

12	

Relationships: Embedded

13

{		_id:	1,		
				name:	{	first:	“John”,	last:	“Backus”	},		
				birthyear:	1924,		
			contribs:	[“Fortran”,	“ALGOL”,		
																						“Backus	Naur	Form”,	“FP”],		
				awards:	[{title:		“National	Medal	of	Science”	,		
																			by:	“National	Science	Foundation”,		
																			year:	1975	},		
																		{title:		“Turing	Award”,		
																				by:	“ACM”	,			
																				year:	1977}]			}					

Relationships: Referenced

14

{		_id:	1,		
				name:	{	first:	“John”,	last:	“Backus”	},		
				birthyear:	1924,		
			contribs:	[“Fortran”,	“ALGOL”,		
																						“Backus	Naur	Form”,	“FP”],		
				awards:	[{	award_id:	“NMS001”,	year:	1975	},		
																		{	award_id:	“TA99”,		year:	1977}]			}					

People:	

	{_id:	“NMS001”,		
		title:		“National	Medal	of	Science”	,		
		by:	“National	Science	Foundation”}	
	{_id:	“TA99”,	
		title:		“Turing	Award”,		
		by:	“ACM”	}	

Awards:	

“SemiJoins”
• Suppose you want to print people who have won Turing

Awards using referenced relationship
• Problem: object id of Turing Award is in collection “awards”,

collection “people” references it.

• But this only works for one award with title “Turing Award”, suppose
there were more.

15

turing=	db.awards.findOne({title:	“Turing	Award”})	
db.people.find({"awards.award_id":	turing._id]})	

• Now suppose there is more than one award named
“Turing Award”

Iterating using cursors

University	of	Pennsylvania	 16	

turing=	db.awards.findMany	({title:	“Turing	Award”})	
	
while	(turing.hasNext())		{	
db.people.find({"awards.award_id":	turing.next()._id})	
}	

Aggregation

• A framework to provide “group-by” and aggregate
functionality without the overhead of map-reduce.

• Conceptually, documents from a collection pass through
an aggregation pipeline, which transforms the objects as
they pass through (similar to UNIX pipe “|”)

• Operators include: $project, $match, $group, $sort,
$skip, $limit, $unwind

17

University	of	Pennsylvania	 18	

https://docs.mongodb.com/manual/aggregation/

Aggregation: $group

• Every group expression must specify an _id field.

• Suppose we wanted to find how many people were born
each year

• Contrast with aggregate operation over entire result

19

>	db.people.aggregate({	$group	:		
								{	_id	:	"$birthyear",	birthsPerYear	:	{	$sum	:	1}})	

>	db.people.count()	
>	db.people.find({“name.first”: “John”}).count()	
>	db.people.count({“name.first”: “John”})	

{	"result"	:	[{	"_id"	:	1924,	"birthsPerYear"	:	1	}],	"ok"	:	1	}			

Aggregation: $unwind

• Deconstructs an array field to output a document for
each element.

20

>db.posts.aggregate({ $project : { author : 1, tags : 1 }}, { $unwind : "$tags" })

Posts:					{		
																_id	:	ObjectId(“4c4ba5c0672c685e5e8aabf3”),	
																author	:	“Kevin”,		
																date	:	new	Date(“February	2,	2012”),	
																text	:	“About	MongoDB...”,	
																birthyear:		1980,		
																tags	:	["tech",	"databases"]	
																}		

Result of unwind

21

	
{	"result"	:	[{	"_id"	:	ObjectId("4c4ba5c0672c685e5e8aabf3"),		

																				"author"	:	"Kevin",	
																				"tags"	:	”tech"	},		

																		{	"_id"	:	ObjectId("4c4ba5c0672c685e5e8aabf3"),		
																				"author"	:	"Kevin",		

																				"tags"	:	”databases"	}],		
			"OK"	:	1	}	

	

Summary of MongoDB

• The MongoDB query language is limited, and oriented
around “collection” (relation) at a time processing
• Joins are done via a query language

• The power of the solution lies in the distributed, parallel
nature of query processing (not covered)
• Replication and sharding

22

Wouldn’t it be nice if there was a
better language for JSON?

There	is	…	JSONiq	

University	of	Pennsylvania	 23	

• JSONiq borrows a lot from XQuery
• structure and semantics of a FLWOR construct

• functional aspect of the language

• However it is not concerned with the “peculiarities” of XML
• mixed content

• ordered children

• confusion between attributes and elements

• complexities of namespaces and XML Schema, etc.

JSONiq

University	of	Pennsylvania	 24	

prizes.json

University	of	Pennsylvania	 25	

{"year": "2017”,
"category": "physics”,
"laureates": [{"id": "941”,"firstname": "Rainer”,"surname": "Weiss",
 "motivation": "\"for contributions to the LIGO Detector \"",
 "share": "2”},
 {"id": "942”,"firstname": "Barry C.”,"surname": "Barish",
 "motivation": "\"for contributions to the LIGO detector\"",
 "share": "4”},
 {"id": "943”,"firstname": "Kip S.”,"surname": "Thorne”,
 "motivation": "\"for contributions to the LIGO detector\"”,
 "share": "4”}]
 }

Total number of Nobel prizes in medicine

University	of	Pennsylvania	 26	

db.prizes.find({"category":"medicine"}).count()	

return	count(
for	$i	in	$prizes	
where	$i.category="medicine"	
return	$i)	

MongoDB

JSONiq

Nobel Laureates who are the sole recipients
of a prize in physics

University	of	Pennsylvania	 27	

db.prizes.find({"category":	"physics",	"laureates":	{$size:	1}})	

for	$i	in	$prizes	
where	size($i.laureates)=1	and	$i.category="physics"	
return	$i	

MongoDB

JSONiq

Number of Nobel Laureates who were either
born in Philadelphia or affiliated with Penn.

University	of	Pennsylvania	 28	

db.laureates.find({$or:	[{"bornCity":	"Philadelphia,	PA"},		
{"prizes.affiliations.name":	"University	of	Pennsylvania"}]}).count()	

return	count(
for	$i	in	$laureates,	$j	in	jn:members($i.prizes),		
					$k	in	jn:members($j.affiliations)	
where	$i.bornCity="Philadelphia,	PA"	or		
										$k.name="University	of	Pennsylvania"	
return	$i)	

JSONiq

MongoDB

First and last names of all the female Nobel
prize Laureates who have won a Nobel prize

in either Physics or Chemistry.

University	of	Pennsylvania	 29	

db.laureates.find({$and:	[
{$or:	[{"prizes.category":	"physics"},	{"prizes.category":	"chemistry"}]},		
{"gender":"female"}]},	{"firstname":1,	"surname":	1,	"_id":	0})	

for	$i	in	$laureates,	$j	in	jn:members($i.prizes)	
where	$i.gender="female"	and		
									($j.category="physics"	or	$j.category="chemistry")	
return	{firstname:	$i.firstname,	lastname:	$i.surname}	

MongoDB

JSONiq

For each of the categories, print the number
of Nobel prizes awarded, sort them in

decreasing order.

University	of	Pennsylvania	 30	

db.prizes.aggregate([{$group:	{_id:	"$category",	num:	{$sum:	1}}},		
{$sort:	{num:	-1}}])	

for	$i	in	$prizes	
group	by	$category:=	$i.category	
order	by	count($i)	descending	
return	{category:	$category,	"count":	count($i)}	

JSONiq

MongoDB

Years where Nobel Prizes were not awarded
in all the six categories.

University	of	Pennsylvania	 31	

db.prizes.aggregate([{$group:	{_id:	"$year",	num:	{$sum:	1}}},		
{$match:	{num:	{$lt:	6}}}])	

for	$i	in	$prizes	
group	by	$year:=	$i.year	
where	count($i)<6	
return	$year	

MongoDB

JSONiq

laureates.json

University	of	Pennsylvania	 32	

{"id": "3",
"firstname": "Pieter", "surname": "Zeeman",
"born": "1865-05-25", "died": "1943-10-09",
"bornCountry": "the Netherlands”, "bornCity": "Zonnemaire",
"diedCountry": "the Netherlands",
"diedCity": "Amsterdam",
"gender": "male",
"prizes": [{"year": "1902”,"category": "physics”,"share": "2",
 "motivation": "\”influence of magnetism …\"",
"affiliations": [{"name": "Amsterdam University”,
"city": "Amsterdam",
"country": "the Netherlands”
}]
}
]
}

Print the DOB of each laureate who won the
Nobel prizes in Physics with John Bardeen.

University	of	Pennsylvania	 33	

var	arr	=[]	
db.prizes.find({"laureates.firstname":"John”,	
																					”laureates.surname":"Bardeen"},		
{"laureates.id":	1}).forEach(function(doc)	
{doc.laureates.forEach(function(x)	arr[arr.length]	=	x.id)})	
	
db.laureates.find().forEach(function(doc)	
{if(arr.indexOf(doc.id)	=	-1)	{printjson(doc.born)}})	

MongoDB

University	of	Pennsylvania	 34	

for	$i	in	$prizes,	$j	in	jn:members($i.laureates)	
where	$j.firstname="John"	and	$j.surname="Bardeen"		
return	(for	$k	in	jn:members($i.laureates),	$l	in	$laureates	
								where	$k.id=	$l.id	and	$l.id	ne	$j.id	
								return	$l.born)	

JSONiq

•  JSON	(JavaScript	Object	Notation)		is	a	lightweight	data	
exchange	format	for	structured	data		

• MongoDB	is	a	NoSQL	solution	based	on	JSON:		good	for	simple	
queries,	sharding/parallelism	are	features	

•  JSONiq	is	a	query	language	for	JSON	based	on	XQuery:	good	
for	joins	and	complex	queries,	Turing	complete	

JSON

35	

