mg"\wm JSON, MongoDB,

JSONique

Susan B. Davidson
CIS 700: Advanced Topics in Databases
MW 1:30-3

Towne 309

http://www.cis.upenn.edu/~susan/cis/00/homepage.html

© 2017 A. Alawini, S. Davidson

JSON

® JSON (JavaScript Object Notation) is a lightweight data
exchange format for structured data

® Supports objects (string-to-value maps), arrays (ordered
sequences of value), other simple types (integers, strings, reals,
booleans)

® MongoDB is a NoSQL solution based on JSON
® JSONiq is a query language for JSON based on XQuery

Sample JSON Document

-
d: | MongoDB: Always indexed, automatically
t _id: 1, — assigned unless provided

name: { first: “John”, last: “Backus” },

birthyear: 1924,
contribs: [“Fortran”, “ALGOL”, “Backus-Naur Form”, “FP”],
awards: [{award_id: “NMSoo1”,

Am year: 1975},
documents | {award_id: “TAgqg’,

year: 19773]
}

MongoDB

University of Pennsylvania 4

MongoDB Querying

®Use find() function and a query document
®Ranges, set inclusion, inequalities using $conditionals
® Complex queries using $where clause

® Queries return a database cursor

® Meta-operations on cursor include skipping some
number of results, limiting the number of results
returned, sorting results.

Sample document

d={
_id : Objectld(“4c4bagco672c685e5e8aabf3”),
author: “Kevin”,
date : new Date(“February 2, 2012"),
text : “About MongoDB...”,
birthyear: 1980,
tags: ["tech", "databases"]
}

> db.posts.insert(d)

Find

Return entire collection in posts:

db.posts.find()

Return posts that match condition (conjunction):

db.posts.find({author: “Kevin”, birthyear: 1980})

{_id: Objectld("4c4basco672c685e5e8aabf3"), author : "Kevin",
date : Date(“February 2, 2012"), birthyear: 1980,
text : "About MongoDB...", tags: ["tech", "databases" I}

Specifying which keys to return

db.people.find({}, {name:I, contribs:1})

{

_id: 1,
name: { first: "John”, last: "Backus” },
contribs: [“"Fortran”, "ALGOL", "Backus-Naur Form”, “FP"]

5

db.people.find({}, {_id: 0, name:I})

{

name: { first: "John”, last: "Backus” }

J

Ranges, Negation, OR-clauses

® Comparison operators: $lt, $lte, $gt, $gte
® db.posts.find({birthyear: {$gte: 1970, $lte: 1990}})
® Negation: $ne
® db.posts.find({birthyear: {$ne: 1982}})
®Or queries: $in (single key), $or (different keys)
® db.posts.find({birthyear: {$in: [1982, 1985]}})
® db.posts.find({$or: [{birthyear: 1982}, {author:“John”}]})

Arrays

®db.posts.find({tags: “tech”})

® Print complete information about posts which are tagged
“tech”

®db.posts.find({tags: {$all: [“tech”, “databases]},
{author:1, tags:1})

® Print author and tags of posts which are tagged with both
“tech” and “databases” (among other things)

® Contrast this with:
db.posts.find({tags: [“databases”, “tech”]})

10

Querying Embedded Documents

® db.people.find({*“name.first”: “John™})

® Finds all people with first name John

® db.people.find({“name.first”: “John”, “name.last”:
“Smith"})

® Finds all people with first name John and last name Smith.
® Contrast with

db.people.find({“name”: {“first”: “John”, “last”: “Smith"}})

1

Joins in MongoDB

®*“Do joins while write, not on reads.”
® Use embedded relationships
® Otherwise, you need to use semi-joins to get an array of

keys from the first collection on which to search the
second collection for matches using cursor methods

Relationships: Embedded

§ id:1a,
name: { first: “John”, last: “Backus”},
birthyear: 1924,
contribs: [“Fortran”, “ALGOL”,
“Backus Naur Form”, “FP”],
awards: [{title: “National Medal of Science”,
by: “National Science Foundation”,
year: 1975},
ftitle: "Turing Award’,
by: “ACM”,
year:1977}] }

I8

People:

Awards:

Relationships: Referenced

§ id:1a,
name: { first: “John”, last: “Backus”},
birthyear: 1924,
contribs: [“Fortran”, “ALGOL”,
“Backus Naur Form”, “FP”],
awards: [{ award_id: “NMSoo01”, year: 19753},
faward_id: “TAg9q”, year: 197731 }

{_id: “"NMSo01”,

title: “National Medal of Science”,
by: “National Science Foundation”}
{ id: “TAgg”,

title: “Turing Award”,

by: "ACM" }

14

“Semijoins”
®Suppose you want to print people who have won Turing
Awards using referenced relationship

® Problem: object id of Turing Award is in collection “awards”,
collection “people” references it.

turing= db.awards.findOne({title: “Turing Award"})
db.people.find({"awards.award_id": turing._id]})

® But this only works for one award with title “Turing Award”, suppose
there were more.

15

Iterating using cursors

®* Now suppose there is more than one award named
“Turing Award”

turing= db.awards.findMany ({title: “Turing Award"})

while (turing.hasNext()) {
db.people.find({"awards.award_id": turing.next()._id})
}

University of Pennsylvania

Aggregation

® A framework to provide “group-by” and aggregate
functionality without the overhead of map-reduce.

® Conceptually, documents from a collection pass through
an aggregation pipeline, which transforms the objects as

677

they pass through (similar to UNIX pipe | ")

® Operators include: $project, $match, $group, $sort,
$skip, $limit, $unwind

17

https://docs.mongodb.com/manual/aggregation/

Collection

db.orders.aggregate([
$match stage——» { $match: { status: "A" } },

$group stage— { $group: { _id: "$cust_id"”,total: { $sum: "$amount” } } }
1)

{
cust_id: "A123",
amount: 5@@,
status: "A"
}
Results
{
cust_id: "A123", {
amount: 250,
status: "A" total: 75@
} { }
: 250,
{ Tiatch > | o Teroup >
cust_id: "B212", } {
amount: 200,
status: "A" (total: 200
amount: 209,
{ status: "A"
cust_id: "A123", }
amount: 300,
status:

orders

Aggregation: $group

®Every group expression must specify an _id field.

®Suppose we wanted to find how many people were born
each year

> db.people.aggregate({ $group:
{_id: "sbirthyear", birthsPerYear: { $sum: 1}})

f"result" : [{"_id" : 1924, "birthsPerYear":11], "ok" : 1}

® Contrast with aggregate operation over entire result

> db.people.count()
> db.people.find({“name.first”: “John”}).count()

> db.people.count({“name.first”: “John™})

19

Aggregation: $unwind

® Deconstructs an array field to output a document for
each element.
Posts:
_id : Objectld(“4c4bagco672c685e5e8aabf3”),
author : “Kevin”,

date : new Date(“February 2, 2012"),
text : “About MongoDB...”,
birthyear: 1980,

tags: ["tech", "databases"]

}

db.posts.aggregate({ $project : { author : I, tags : | }},{ $unwind : "$tags" })

20

Result of unwind

{"result": [{"_id" : Objectld("4c4basco672c685e5e8aabf3"),
"author" : "Kevin",
"tags": “tech"},
{"_id" : Objectld("4c4basco672c685e5e8aabf3"),
"author" : "Kevin",
"tags": “databases"}],
"OK": 1}

21

Summary of MongoDB

® The MongoDB query language is limited, and oriented
around “collection” (relation) at a time processing

® Joins are done via a query language

® The power of the solution lies in the distributed, parallel
nature of query processing (not covered)

® Replication and sharding

22

Wouldn't it be nice if there was a
better language for JSON?

There is ... JSONiq

University of Pennsylvania 23

JSONIqg

® JSONiqg borrows a lot from XQuery
® structure and semantics of a FLWOR construct
® functional aspect of the language

® However it is not concerned with the “peculiarities” of XML
® mixed content

® ordered children

® confusion between attributes and elements

® complexities of namespaces and XML Schema, etc.

University of Pennsylvania

24

prizes.json

{"year": "2017",
"category": "physics”,
"laureates": [{"id": "941" "firstname": "Rainer”,"surname": "Weiss",
"motivation": "\"for contributions to the LIGO Detector \"",
"share": "2"},

{"id": "942" "firstname": "Barry C.”,"surname": "Barish",
"motivation": "\"for contributions to the LIGO detector\"",
"share": "4"},
{"id": "943" "firstname": "Kip S.”,"surname": "Thorne”,

"motivation”: "\"for contributions to the LIGO detector\"”,
llsharell: l|4ll}]

University of Pennsylvania 25

Total number of Nobel prizes in medicine

MongoDB

db.prizes.find({"category":"medicine"}).count()

JSONig

return count(

for $iin $prizes
where si.category="medicine"
return $i)

University of Pennsylvania

Nobel Laureates who are the sole recipients
of a prize in physics
MongoDB

db.prizes.find({"category": "physics", "laureates": {$size: 1}})

JSONiqg

for $iin $prizes

where size($i.laureates)=1 and si.category="physics"
return $i

University of Pennsylvania

Number of Nobel Laureates who were either
born in Philadelphia or affiliated with Penn.

MongoDB

db.laureates.find({sor: [{"bornCity": "Philadelphia, PA",
{"prizes.affiliations.name": "University of Pennsylvania"}]}).count()

JSONiq

return count(
for siin $laureates, $jin jn:members(si.prizes),
$k in jn:members(sj.affiliations)
where s$i.bornCity="Philadelphia, PA" or
$k.name="University of Pennsylvania"

return $i)

University of Pennsylvania

First and last names of all the female Nobel
prize Laureates who have won a Nobel prize

In either Physics or Chemistry.
MongoDB

db.laureates.find({$and: [

fsor: [{"prizes.category": "physics"}, {"prizes.category": "chemistry"}]3,
{"gender":"female"1]3, {"firstname":1, "surname": 1, "_id": 0})

JSONiq

for $iin $laureates, $jin jn:members($i.prizes)
where $i.gender="female" and

($j.category="physics" or $j.category="chemistry")
return {firstname: si.firstname, lastname: $i.surname}

University of Pennsylvania

For each of the categories, print the number
of Nobel prizes awarded, sort them in

decreasing order.
MongoDB

db.prizes.aggregate([{$group: {_id: "$category", num: {$sum: 1}}3,
§$sort: fnum: -1}}])

JSONIq | for $iin $prizes
group by $category:= $i.category
order by count(s$i) descending

return {category: $category, "count": count(si)}

University of Pennsylvania

Years where Nobel Prizes were not awarded

In all the six categories.
MongoDB

db.prizes.aggregate([{$group: {_id: "$year", num: {$sum: 1}}3,
f$smatch: {num: {slt: 63}}])

JSONiIq | for $iin $prizes
group by $year:= si.year
where count($i)<6

return $year

University of Pennsylvania

laureates.json
{"id": "3",
"firsthame": "Pieter", "surname": "Zeeman",
"born": "1865-05-25", "died": "1943-10-09",
"bornCountry": "the Netherlands”, "bornCity": "Zonnemaire",
"diedCountry": "the Netherlands”,
"diedCity": "Amsterdam”,
"gender": "male",
"prizes”: [{"year": "1902","category": "physics”,"share": "2",
"motivation": "\"influence of magnetism ...\"",
"affiliations": [{"name": "Amsterdam University”,
"city": "Amsterdam”,
"country": "the Netherlands”

University of Pennsylvania

Print the DOB of each laureate who won the
Nobel prizes in Physics with John Bardeen.

MongoDB

var arr =[]

db.prizes.find({"laureates.firstname":"John”,
“l[aureates.surname":"Bardeen"},

"laureates.id": 1}).forEach(function(doc)

fdoc.laureates.forEach(function(x) arr[arr.length] = x.id)})

db.laureates.find().forEach(function(doc)
fif(arr.indexOf(doc.id) = -1) {printjson(doc.born)}})

University of Pennsylvania

33

JSONiqg

for siin $prizes, $jin jn:members(si.laureates)

where $j.firstname="John" and $j.surname="Bardeen"
return (for sk in jn:members(si.laureates), $lin $laureates
where $k.id=$l.id and $l.id ne $j.id

return $l.born)

University of Pennsylvania

34

JSON

® JSON (JavaScript Object Notation) is a lightweight data
exchange format for structured data

® MongoDB is a NoSQL solution based on JSON: good for simple
queries, sharding/parallelism are features

® JSONiq is a query language for JSON based on XQuery: good
for joins and complex queries, Turing complete

35

