
Query Languages for
Graph Databases

Susan	B.	Davidson	
CIS	700:	Advanced	Topics	in	Databases	

MW	1:30-3	

Towne	309	

	

http://www.cis.upenn.edu/~susan/cis700/homepage.html

• Offer	a	more	intuitive	representation	for	many	modern	
applications	
• Social	networks	

• Transportation	networks	

• Biological	pathways	

• Citation	networks	

• …	
• A	number	of	graph	database	engines,	data	models	and	query	
languages	have	been	released	over	the	past	few	years.	

Graph Databases

2	

• Graph	data	models:		edge-labeled	and	property	graphs	
• Graph	patterns	

• Basic	and	complex	

• How	expressed	in	SPARQL	and	Cypher	

• Navigational	queries	
• Regular	path	queries,	integrated	into	graph	pattern	queries	
• How	expressed	in	SPARQL	and	Cypher	

Outline

3	

• Edge-labeled	graph,	e.g.	used	in	RDF	

• Property	graph,	e.g.	used	in	Neo4j	

Graph data models

4	

Components of property graphs

5	

• Pattern	matching	
• Basic	graph	patterns	(bgp)	
• Complex	graph	patterns	(cgp):		bgp	extended	to	include	
operators	such	as	projection,	union,	options,	etc.	

• Navigation	
• Use	paths	as	a	core,	e.g.	regular	path	queries	(RPQs)	

• Navigational	graph	patterns	(ngps):		paths	incorporated	into	
bgps		

• Complex	navigational	graph	patterns	(cngps):	ngps	extended	
with	operators	

Graph query languages: Core features

6	

• Graph	data	models:		edge-labeled	and	property	graphs	

• Graph	patterns	
• Basic	and	complex	

• How	expressed	in	SPARQL	and	Cypher	

• Navigational	queries	
• Regular	path	queries,	integrated	into	graph	pattern	queries	
• How	expressed	in	SPARQL	and	Cypher	

Outline

7	

• Find	all	co-stars.	

Basic graph patterns (edge-labeled graph)

8	

Social Network Property Graph

9	

• Things	that	(mutual)	friends	in	the	social	network	both	like.		
Return	first	and	last	names,	all	details	of	the	items	they	both	
like,	and	the	date	on	which	they	both	like	the	items.	

Basic graph patterns (property graph)

10	

Query result

11	

• Def.	3.5	(Match):		Given	an	edge-labeled	graph	G=	(V,	E)	and	a	
bgp	Q=	(V’,	E’)	a	match	of	Q	in	G	is	a	mapping	from	the	set	of	
constants	and	variables	in	Q	to	contants	in	G	such	that:	
• Constants	are	mapped	to	themselves:		h(a)=	a	

• Each	edge	of	Q	is	mapped	to	an	edge	of	G	which	preserves	the	
structure	of	Q	in	its	image	under	h	in	G:		for	each	(b,	l,	c)	in	E’	it	
holds	that	(h(b),	h(l),	h(c))	is	in	E	

• This	leads	to	three	different	semantics	for	evaluation:	
• Homomorphism-based	semantics	–	currently	used	in	SPARQL	(RDF)	

• Isomorphism-based	semantics		
•  No-repeated	anything:	no	two	variables	can	be	bound	to	the	same	term	

• No-repeated	node	

• No-repeated	edge	-–	currently	used	in	Cypher	(Neo4j)	

Evaluation

12	

• Consider	the	following	query:	

Effect of semantics: sample query

13	

• Unrestricted	semantics:		

Effect of semantics: query result

14	

• No-repeated	anything:		

Effect of semantics: query result

15	

• No-repeated	node:		

Effect of semantics: query result

16	

• Basic	graph	patterns	cover	natural	join	and	selection	
based	on	equality	

• Complex	graph	patters	add	further	traditional	
relational	operators:	
• Projection,	union,	difference,	optional	(aka	left-outer-join),	
filter	

Complex graph patterns

17	

• W3C	standard	for	query	RDF	graphs	
• Based	on	triple	patterns	(subject,	predicate,	object),	
where	variables	are	indicated	by	“?”	

• Supports	all	complex	graph	pattern	features	
• Uses	a	homomorphism-based	semantics	

SPARQL

18	

Sample RDF graph

19	

• Result:	

SPARQL query: projection and filter

20	

• Result:	:Unforgiven

• Result:	:Anna_Levine

SPARQL queries: union, difference

21	

• Result:	

SPARQL query: optional

22	

• Query	language	for	Neo4j,	based	on	patterns	
• Semantics:		Isomorphism-based	no-repeated	edges	
• Syntax:	

• Nodes	are	written	inside	“()”	and	edges	inside	of	“[]”.	
• Filters	for	labels	specified	using	“:”	
• Values	for	properties	specified	using	“{		}”	
• Return	clause	projects	output	variables	

Cypher

23	

Sample graph

24	

Isomorphism-based semantics

25	

• Result:		{“Unforgiven”, “Unforgiven”}

• Result:	{“Anna Levine”}

Cypher queries: union, difference

26	

• Result:	

Cypher queries: optional

27	

• Graph	data	models:		edge-labeled	and	property	graphs	

• Graph	patterns	
• Basic	and	complex	

• How	expressed	in	SPARQL	and	Cypher	

• Navigational	queries	
• Regular	path	queries,	integrated	into	graph	pattern	queries	
• How	expressed	in	SPARQL	and	Cypher	

Outline

28	

• Path	queries	are	added	to	basic	graph	queries:	x		α						y	
• α	is	a	regular	expression	over	the	set	of	edge	labels	

• knows+	

• knows+.likes	

• knows+.(likes	|	dislikes)	

• *	
• Inverse	operator	to	allow	backward	edge	traversal	

• acts_in.	acts_in	–	

Navigational graph queries

29	

• All	paths	in	G	whose	label	satisfies	α	

• But	there	may	be	an	infinite	number	of	such	paths	(cycles),	so	in	practice:	
•  Arbitrary	path	semantics:		test	existence	of	such	a	path,	or	pairs	of	nodes	connected	by	

such	paths	(finite)	

•  Shortest	path	semantics	

•  No-repeated	node	semantics	(simple	paths)	

•  No-repeated	edge	semantics		(used	in	Cypher)	

• Output:	
•  Boolean	
•  Nodes	

•  Paths	
•  Graphs	(compact	representation)	

Evaluation of path query

30	

• Complex	navigational	graph	patterns	(cngps)		
• Project	x5:	recommended	posts	for	Julie	

• Union:		recommended	posts	for	John	or	Julie	

•  Intersection:	recommended	posts	for	both	John	and	Julie	

• Difference:		recommended	posts	for	Julie	but	not	John	

Navigational graph patterns (ngps)

31	

• All	pairs	of	actors	who	have	finite	collaboration	distance	

• All	people	with	a	finite	Erdos-Bacon	number	

• Posts	recommended	to	Julie	but	not	to	John	

SPARQL examples

32	

• Will	match	:Unforgiven	(IRI),	“Unforgiven”	(string)	and	:Movie	
(IRI)	

• Called	“negated	property	sets”	

SPARQL: limited form of negation

33	

• Does	not	support	full	regular	expressions,	but	allows	transitive	
closure	over	a	single	edge	label	or	edge	property/value	pair	

• Uses	no-repeated-edge	semantics	for	cngps	and	bag	semantics	

Cypher

34	

What would this return?

• Returns	a	single	shortest	witnessing	path	(could	also	use	
allShortestPaths	to	get	all	shortest	paths)	

	

• Star	operator	on	edge	label	-	can	also	specify	bounds	on	the	
length	(e.g.	[:knows*2..7]	

Cypher: shortest and bounded paths

35	

Ok, but what about aggregation?

We’ll take a look at Cypher.

36	

Cypher and aggregation

37	

Common	aggregation	functions	are	supported:		
count,	sum,	avg,	min,	and	max	

• Collect()		function	collects	all	aggregated	values	into	a	list	

Cypher: beyond min, max, sum, count

38	

Cyper: WITH Example

39	

Source: https://neo4j.com/developer/cypher-query-language/

• SPARQL	is	the	W3C	recommended	language	for	querying	RDF	graphs,	
and	is	based	on	an	edge-labeled	graph	model.			
•  Supports	all	complex	graph	patterns	

• Homomorphism-based	bag	semantics	

• Allows	more	than	regular	path	queries	(e.g.	inverse)	

• Output	can	be	boolean	or	nodes	

• Cypher	is	the	query	language	for	Neo4j,	and	is	based	on	a	property	
graph	model.	
•  Supports	all	complex	graph	patterns	

• No-repeated-edge	bag	semantics	

• Allows	only	a	fragment	of	regular	path	queries	(repeated	label)	

• Output	can	be	boolean/nodes/paths/graphs	

	

Summary

40	

