Query Languages for
Graph Databases

Susan B. Davidson
CIS 700: Advanced Topics in Databases
MW 1:30-3

Towne 309

http://www.cis.upenn.edu/~susan/cis/00/homepage.html

Graph Databases

® Offer a more intuitive representation for many modern
applications

® Social networks
® Transportation networks
® Biological pathways

® Citation networks

® A number of graph database engines, data models and query
languages have been released over the past few years.

Outline

® Graph data models: edge-labeled and property graphs
® Graph patterns

® Basic and complex

® How expressed in SPARQL and Cypher
® Navigational queries

® Regular path queries, integrated into graph pattern queries
® How expressed in SPARQL and Cypher

Graph data models

® Edge-labeled graph, e.g. used in RDF

I
Clint Eastwood Unforgiven] acts_in —— Anna Levine

r163 ¢ acts_in:-\

I
role=Delilah

|

|

' ref=1IMDb :
! : name = Anna Levine

n1 : Person

name =Clint Eastwood

gender =male gender =female

Components of property graphs

V = {ni,n2,n3} E ={ei1,e2,e3} o(ni,name) = Clint Eastwood

o(ni1,gender) = male

p(er) = (n1,n2) p(e2) = (n1,n2) o(n2,title) = Unforgiven

p(es) = (n3,n2) o(ns,name) = Anna Levine
o(ns,gender) = female

A(n1) = Person A(n2) = Movie o(e1,role) = Bill

A(n3z) = Person A(e1) = acts_in o(e1,ref) = IMDb

A(ez2) = directs A(e3) = acts_in o(e3,role) = Delilah

o(es,ref) = IMDb

n1 : Person

Person

name =Clint Eastwood

gender =male

| |
i role=Delilah , ns
! ref=IMDb :

o : name = Anna Levine

L gender =female

Graph query languages: Core features

® Pattern matching
® Basic graph patterns (bgp)

® Complex graph patterns (cgp): bgp extended to include
operators such as projection, union, options, etc.

® Navigation
® Use paths as a core, e.g. regular path queries (RPQs)

® Navigational graph patterns (ngps): paths incorporated into
bgps

® Complex navigational graph patterns (cngps): ngps extended

with operators

Outline

® Graph data models: edge-labeled and property graphs
® Graph patterns

® Basic and complex

® How expressed in SPARQL and Cypher
® Navigational queries

® Regular path queries, integrated into graph pattern queries
® How expressed in SPARQL and Cypher

Basic graph patterns (edge-labeled graph)

[
Clint Eastwood Unforgiven < acts_in] Anna Levine

Z3

X1 X2 X3

Clint Eastwood Anna Levine Unforgiven
__;;;;:;A'_I l--ac;;:;;--: Anna Levine Clint Eastwood Unforgiven
""""""" - Clint Eastwood Clint Eastwood Unforgiven

Anna Levine Anna Levine Unforgiven

T2

Social Network Property Graph

— ng : Person | —

n1 : Person

e1 : knows firstName = John

firstName=Julie
lastName = Cook

lastName =Freud

Fr-———== ender =male
country=Chile [ez : knows — | & .
_______ country=Chile
- J
" likes - — L |
_______ - €6 : dislikes —
T 2 |
date=14-09-15 ,—4er @ likes - — |
__________ y | -——————— ! date=15-03-14 ,
| date=23-10-15 , |- =—-—=—-—-—-—--—-—-~- g
Yy oA ,
ng4 : Post Y
ns : Post

content=1 love U2
language =en content =Queen is awesome

Basic graph patterns (property graph)

® Things that (mutual) friends in the social network both like.
Return first and last names, all details of the items they both

like, and the date on which they both like the items.

10

]

: Person > T knows xr11 : Person
. U2 TR —y)
firstName=x firstName=x3
lastName =2 ‘\‘_ng_ . knows | lastName =14
L

Query result

: Person

10 : Person

11

firstName=x firstName=x3

lastName=x9 lastName=x4

e |

—-lxq14 : likes | — ,—'x15 1 likes| —
_______ | S~
[
: date=x5 " date =x¢g '
- R-—'\7 _______ '
16 7

X2 X3 X4 X5 X6 X7 X3 X9 X10
Freud | John Cook 14-09-15 | 23-10-15 | Post | content I love U2 | ny
Cook Julie | Freud | 23-10-15 | 14-09-15 | Post | content I love U2 | ny
Freud | John Cook 14-09-15 | 23-10-15 | Post | language | en ni
Cook Julie | Freud | 23-10-15 | 14-09-15 | Post | language | en ny

11

Evaluation

® Def. 3.5 (Match): Given an edge-labeled graph G= (V, E) and a
bgp Q= (V’, E’) a match of Q in G is a mapping from the set of
constants and variables in QQ to contants in G such that:

® Constants are mapped to themselves: h(a)=a

® Each edge of Q is mapped to an edge of G which preserves the
structure of Q in its image under h in G: for each (b, I, ¢) in E’ it

holds that (h(b), h(l), h(c)) isin E
® This leads to three different semantics for evaluation:
®* Homomorphism-based semantics - currently used in SPARQL (RDF)

® [somorphism-based semantics
® No-repeated anything: no two variables can be bound to the same term
® No-repeated node

® No-repeated edge -- currently used in Cypher (Neo4j)

Effect of semantics: sample query

role=Bill
ref =IMDDb

[

I
: [t 0
| role=Delilah

ref = IMDb !
B : name = Anna Levine

3 : Person

name =Clint Eastwood

gender =male gender = female

® Consider the following query:

x4 : Person x1 : Movie xrg : Person
r———=-=- r—-——— - =
name = Is lﬁ_w_Z - x3 J'_' title=Unforgiven R J;‘ name = g

13

Effect of semantics: query result

® Unrestricted semantics:

X2 X3 X4 X5 X6 X7 X8 X9

e directs ny Clint Eastwood e;3 acts_in ns Anna Levine

es acts_in ns Anna Levine e directs nq Clint Eastwood
el acts_in ny Clint Eastwood e;3 acts_in ns Anna Levine

e;3 acts_in ns Anna Levine e acts_in ny Clint Eastwood
e directs ny Clint Eastwood el acts_in ni Clint Eastwood
el acts_in ny Clint Eastwood e directs nq Clint Eastwood
el acts_in ny Clint Eastwood el acts_in nq Clint Eastwood
e directs ni Clint Eastwood e directs ni Clint Eastwood
es acts_in ny Anna Levine e;3 acts_in ni Anna Levine

14

Effect of semantics: query result

® No-repeated anything:

X2 X3 X4 X5 X6 X7 X8 X9
e directs ny Clint Eastwood e;3 acts_in ns Anna Levine
es acts_in ns Anna Levine e directs nq Clint Eastwood
a acktc 313 n Clanmt Eactunand P2y acte 1n n Anna | oavine
Dl u\-l.s)_lll Ibl CLALTTC LI CWOOUT \/J ‘LU_AAA ™Yy Ty — v
e acts in Anna levine e acts in 2P Clint Eastwood
<3 ey *3 T = T

1 L Clawod Lot a anta 3o 1. Clanmt Lot d
c2 UrrccCeLsS Iy CLIITTC EasSTwWoUT CT acts_ar T CITIITC OS5 quO
&g aeks—in 7 Hntastwesd & chreeks 1 lapt—Eastweod
e acts _in n; Clint Fastwood ey acts in n, Clint Fastwood
& chreets 1 clintEastwood &5 directs By Clint—Eastweod
a ankto daa 3 Aurna | Aviama Q ackte 1 n Anna | avina
3 acilo_ 11 LI | ATTa T vV ITT <3 acTo 1IOrT L} LAALEE B A= Bun = = = o 4 =)

15

Effect of semantics: query result

®No-repeated node:

X2 X3 X4 X5 X6 X7 X8 X9

e directs ny Clint Eastwood e;3 acts_in ns Anna Levine

es acts_in ns Anna Levine e directs nq Clint Eastwood
el acts_in ny Clint Eastwood e;3 acts_in ns Anna Levine

e;3 acts_in ns Anna Levine e acts_in ny Clint Eastwood
€7 directs 1T ClHint—tastwood &1 aets—ir H E-dp—FEastwood
&g aeks—in 7 Ert—Eastwesd & chreeks 1 lapt—Eastweod
e acts_in n; Clint Fastwood ey acts in n, Clint Fastwood
& direets 1 clintEastwood &5 directs By Clint—Eastweod
a ankto daa 2. Aurna | Aviama Q acktc 11 n Anna | avina

Cj u\,l-o_lll "rl mrnTra Lo varTre DJ avio_11x LA | LALEARA~ VTS

16

Complex graph patterns

®Basic graph patterns cover natural join and selection
based on equality

® Complex graph patters add further traditional
relational operators:

® Projection, union, difference, optional (aka left-outer-join),
filter

SPARQL

®*W3(C standard for query RDF graphs

® Based on triple patterns (subject, predicate, object),
where variables are indicated by “?”

® Supports all complex graph pattern features

®Uses a homomorphism-based semantics

Sample RDF graph

- —e— e = — -

) :acts_in
______ N T T T T T T
:Clint_Eastwood | _ _ _ _ _ _ _ :Unforgiven [+— :acts_in j :Anna_Levine
[g s) AN
J :directs | 4/// \\x J
- - e - - = - = 71 |__ |
:type | , :type | , :title | , :type |

L 1.

:Person :Movie "Unforgiven" :Person

19

SPARQL query: projection and filter

SELECT ?x1 ?x2
WHERE {
?x1 :acts_in ?x3 . ?x1 :type :Person .
?x2 :acts_in ?x3 . 7?x2 :type :Person .
?x3 :title "Unforgiven" . ?x3 :type :Movie .
FILTER(?x1 != ?x2)

®*Result: 2x1 2%2
:Clint_Eastwood | :Anna_Levine

:Anna_Levine :Clint_Eastwood

20

% SPARQL queries: union, difference

SELECT 7?x
WHERE {{ :Clint_Eastwood :acts_in ?x . } UNION { :Clint_Eastwood :directs ?x . }}

®*Result: :Unforgiven

SELECT 7?x
WHERE {{ 7?x :acts_in :Unforgiven . } MINUS { ?x :directs :Unforgiven . }}

®Result: :Anna_Levine

SPARQL query: optional

SELECT ?x1 ?x2 ?7x3
WHERE {{ 7?x1 :acts_in ?x2 .} OPTIONAL { ?x1 ?x3 ?x2 . FILTER(?x3 != :acts_in) }}

?x1 %2 ?x3

:Clint_Eastwood :Unforgiven :directs
:Anna_Levine :Unforgiven

®Result:

22

Cypher

® Query language for Neoy4j, based on patterns
®Semantics: Isomorphism-based no-repeated edges

®Syntax:

»

® Nodes are written inside “()” and edges inside of “[|”.

® Filters for labels specified using “:”
® Values for properties specified using “{ }”
® Return clause projects output variables

MATCH (x1:Person) -[:acts_in]-> (:Movie {title:"Unforgiven"})
<-[:acts_in]- (x2:Person)}
RETURN x1,x2

Sample graph

| I
| role=Bill , -:_63 acts_inl
! f=IMDb ' L le=Delilah |
ni1 : Person [e [i role=Delilah n3 : Person
! ref=1IMDDb !
name =Clint Eastwood | I name = Anna Levine

gender =male gender =female

24

Isomorphism-based semantics

MATCH (x1:Person) -[:acts_in]-> (:Movie {title:"Unforgiven"})
<-[:acts_in]- (x2:Person)}
RETURN x1,x2

MATCH (x1:Person) -[:acts_in]-> (x3:Movie {title:"Unforgiven"})
MATCH (x2:Person) -[:acts_in]-> (x3)
RETURN x1,x2

Cypher queries: union, difference

MATCH (:Person {name:"Clint Eastwood"}) -[:acts_in]-> (x3:Movie)

RETURN x3.title

UNION ALL MATCH (:Person {name:"Clint Eastwood"}) -[:directs]-> (x3:Movie)
RETURN x3.title

7 \\

®*Result: {"Unforgiven”, “Unforgiven”}

MATCH (x1:Person) -[:acts_in]-> (x3:Movie {title:"Unforgiven"})
WHERE NOT (x1) -[:directs]-> (x3)
RETURN x1.name

®*Result: {"Anna Levine”}

Cypher queries: optional

SELECT ?x1 ?x2 7x3
WHERE {{ ?x1 :acts_in ?x2 .3} OPTIONAL { ?x1 ?x3 ?x2 . FILTER(?x3 != :acts_in) }}

®* Result:

?x1 ?x2 ?x3

:Clint_Eastwood :Unforgiven :directs
:Anna_Levine :Unforgiven

27

Outline

® Graph data models: edge-labeled and property graphs
® Graph patterns

® Basic and complex

® How expressed in SPARQL and Cypher
® Navigational queries

® Regular path queries, integrated into graph pattern queries
® How expressed in SPARQL and Cypher

28

Navigational graph queries

® Path queries are added to basic graph queries: x %5y
® ais a regular expression over the set of edge labels

® knows+

® knows+.likes

® knows+.(likes | dislikes)

® %
® Inverse operator to allow backward edge traversal

® acts_in. acts_in

Evaluation of path query

® All paths in G whose label satisfies o

® But there may be an infinite number of such paths (cycles), so in practice:

® Arbitrary path semantics: test existence of such a path, or pairs of nodes connected by
such paths (finite)

® Shortest path semantics

® No-repeated node semantics (simple paths)

® No-repeated edge semantics (used in Cypher)
® Output:

® Boolean

® Nodes

® Paths

® Graphs (compact representation)

30

Navigational graph patterns (ngps)

x1 : Person
firstName=Julie
P : 'zg : hasFollower

-—_————

1
|

Tro : Person

firstName=x3

-

Fig. 10. A navigational graph pattern that characterises the friends of friends of Julie that like a post with a

tag she that she follows.

® Complex navigational graph patterns (cngps)

® Project x5: recommended posts for Julie

® Union: recommended posts for John or Julie

® Intersection: recommended posts for both John and Julie

® Difference: recommended posts for Julie but not John

31

SPARQL examples
® All pairs of actors who have finite collaboration distance
SELECT ?x ?y
WHERE 7?x (:acts_in/facts_in)* ?y
® All people with a finite Erdos-Bacon number

SELECT 7?x
WHERE { ?x (:acts_in/":acts_in) * :Kevin_Bacon . ?x (:author/":author)* :Paul_Erdos . }

® Posts recommended to Julie but not to John
SELECT 7?x
WHERE {
{

{ :Julie :knows+/:likes ?x . ?x :hasTag/:hasFollower :Julie . }
MINUS
{ :John :knows+/:likes ?x . ?x :hasTag/:hasFollower :John . }

3

32

SPARQL.: limited form of negation

-_—_——— = — —

I
acts_in ——— e |
:Clint_Eastwood - o :Unforgiven [+—' :acts_in | :Anna_Levine
X > L - - -
J :directs | / \ J
T T T T T |_ I | - T
| type | | type | ctitle | type
:Person :Movie "Unforgiven" :Person
SELECT ?y

WHERE { :Clint_Eastwood (!{:type,:directs})* ?y }

® Will match :Unforgiven (IRI), “Unforgiven” (string) and :Movie
(IRI)

® Called “negated property sets”

Cypher

® Does not support full regular expressions, but allows transitive
closure over a single edge label or edge property/value pair

MATCH (x1:Person) -[:knows*]-> (x2:Person)
RETURN x1,x2

® Uses no-repeated-edge semantics for cngps and bag semantics

MATCH (x1) -[*1-> (x2)

' 2
RETURN x1.x2 What would this return-

34

Cypher: shortest and bounded paths

® Returns a single shortest witnessing path (could also use
allShortestPaths to get all shortest paths)

MATCH (julie:Person {firstname:"Julie"}),
p = shortestPath((julie) -[:knows*]-> (x:Person))
RETURN p

® Star operator on edge label - can also specify bounds on the
length (e.g. [:knows*2..7]

MATCH (x1:Person firstName:"Julie") -[:knows*]-> (x2:Person)
MATCH (x2) -[:likes]-> () -> [:hasTag] -> (x3)

MATCH (x3) -[:hasFollower]-> (x1)
RETURN x2

35

Ok, but what about aggregation?

We'll take a look at Cypher.

Cypher and aggregation

Common aggregation functions are supported:
count, sum, avg, min, and max

MATCH (p:Person)
RETURN count(*) as headcount;

""headcount"

II145II

MATCH (actor:Person)-[:ACTED_IN]->(movie:Movie)<-[:DIRECTED]-(director:Person)
RETURN actor,director,count(*) AS collaborations

"actor" "director" "collaborations"
{"born":"1946","name":"Susan S|{"born":"1965","name":"Lana Wa|"1"
arandon"} chowski"}

{"born":"1960","name" :"Annabel|{"born'":"1956", " name" :"Vincent|"1"
la Sciorra"} Ward"}

{"born":"1956", " name" :"Tom Han|{"born":"1951","name" :"Robert |["2"
ks"} Zemeckis"}

{"born":"1953","name" :"David M|{"born'":"1959","name":"Frank D|"1"
orse"} arabont"}

37

Cypher: beyond min, max, sum, count

® Collect() function collects all aggregated values into a list

MATCH (m:Movie)<-[:ACTED_IN]-(a:Person)
RETURN m.title AS movie, collect(a.name) AS cast, count(*) AS actors

"movie" ""cast" ""actors"

"You've Got Mail" [""Dave Chappelle",'"Parker Pose|"6"
y'","Steve Zahn","Meg Ryan","To
m Hanks","Greg Kinnear"]

"Apollo 13" ["Tom Hanks","Kevin Bacon","Ed|"5"
Harris","Bill Paxton',"Gary S
inise"]

"Johnny Mnemonic" [""'Dina Meyer" ,"Takeshi Kitano'|"4"

,"Ice-T","Keanu Reeves"]

"'Stand By Me" [""Marshall Bell","Kiefer Suthe|"7"
rland","John Cusack",'"Corey Fe
ldman","Jerry 0'Connell","Rive
r Phoenix" ,"wWil Wheaton'"]

"The Polar Express' [""Tom Hanks'"] i 38

Cyper: WITH Example

MATCH (person:Person)-[:ACTED_IN]->(m:Movie)

WITH person, count(*) AS appearances, collect(m.title) AS movies
WHERE appearances > 1

RETURN person.name, appearances, movies

"person.name" ""appearances'" |"movies"

""Cuba Gooding Jr." aqn [""A Few Good Men'","Jerry Magui
re'","As Good as It Gets",'"What
Dreams May Come']

"Oliver Platt"™ "2 ["Frost/Nixon","Bicentennial M
anu]

"Philip Seymour Hoffman'|'"2" ["Twister","Charlie Wilson's W
ar']

""'Sam Rockwell"™ "2 [""The Green Mile" ,"Frost/Nixon
ll]

"Greg Kinnear" o [""As Good as It Gets",'"You've

Got Mail"]

""Zach Grenier" "o [""RescueDawn","Twister"]
""Rosie O'Donnell" "2 [""A League of Their Own','"Slee
pless in Seattle'"] 39

Source: https://neo4j.com/developer/cypher-query-language/

Summary

® SPARQL is the W3C recommended language for querying RDF graphs,
and is based on an edge-labeled graph model.

® Supports all complex graph patterns
® Homomorphism-based bag semantics
® Allows more than regular path queries (e.g. inverse)

® Output can be boolean or nodes

® Cypher is the query language for Neo4j, and is based on a property
graph model.

® Supports all complex graph patterns
® No-repeated-edge bag semantics
® Allows only a fragment of regular path queries (repeated label)

® Output can be boolean/nodes/paths/graphs

40

