Homework for this week

• Sign up to present a paper (the Google doc link was sent on Friday)
• Class schedule is being updated based on this.
• Think about a course project, and come speak with me about it. You should send me a written proposal by Feb. 9.
Last time: Datalog\(^+\) with recursion

- Evaluating non-recursive IDB predicates: ordering
- Naïve and semi-naïve evaluation of recursive predicates
- Negation can be tricky...
Example: Recursion and Negation

EDB:
red(X,Y)= There is a red bus from X to Y
green(X,Y)= There is a green bus from X to Y

IDB:
greenPath(X,Y)= You can get from X to Y using only green buses.
monopoly(X,Y)= Red has a bus from X to Y, but you can’t get there on Green, even changing buses.
Example: Recursion and Negation

EDB:
red(X,Y) = There is a red bus from X to Y
green(X,Y) = There is a green bus from X to Y

IDB:
greenPath(X,Y) :- green(X,Y)
greenPath(X,Y) :- greenPath(X,Z), greenPath(Z,Y)
monopoly(X,Y) :- red(X,Y), NOT greenPath(X,Y)
Two Minimal Models

1. EDB + greenPath(1,2) + monopoly(2,3)

2. EDB + greenPath(1,2) + greenPath(2,3) + greenPath(1,3)

greenPath(X,Y) :- green(X,Y)

greenPath(X,Y) :- greenPath(X,Z), greenPath(Z,Y)

monopoly(X,Y) :- red(X,Y), NOT greenPath(X,Y)
1. *Dependency graph* describes how IDB predicates depend negatively on each other.

2. *Stratified Datalog* = no recursion involving negation.

3. *Stratified model* is a particular model that “makes sense” for stratified Datalog programs.
Dependency Graph

• Nodes = IDB predicates.
• Arc $p \rightarrow q$ iff there is a rule for p that has a subgoal with predicate q.
• Arc $p \rightarrow q$ labeled “-” iff there is a subgoal with predicate q that is negated.
Monopoly Example

monopoly

--

greenPath
Another Example: “Win”

\[
\text{win}(X) :- \text{move}(X,Y), \neg \text{win}(Y)
\]

- Represents games where you win by forcing your opponent to a position where they have no move.
Dependency Graph for “Win”
Strata

• The stratum of an IDB predicate is the largest number of ‘–’s on a path from that predicate, in the dependency graph.

• Examples:

\[\text{monopoly} \rightarrow \text{greenPath} \rightarrow \text{win} \]

- Infinite stratum
- Stratum 0
- Stratum 1
Stratified Programs

• If all IDB predicates have finite strata, then the Datalog program is *stratified*.

• If any IDB predicate has an infinite stratum, then the program is *unstratified*, and no stratified model exists.
Stratified Model

- Evaluate strata 0, 1,... in order.
- If the program is stratified, then any negated IDB subgoal has already had its relation evaluated.
 - Safety assures that we can “subtract it from something.”
 - Treat it as EDB.
- Result is the stratified model.
Examples

• For “Monopoly,” greenPath is in stratum 0: compute it (the transitive closure of green).
• Then, monopoly is in stratum 1: compute it by taking the difference of red and greenPath.
• Result is first model proposed.
• “Win” is not stratified, thus no stratified model.
Putting it all together…

EDB predicates are q, t, s.
- Q={ab, bc, cd, de}
- S={ab, bc, ac}
- T={a, b, c}

What are the strata of the IDB predicates p and r?
- p(x,y):- q(x,y), NOT r(x,y)
- r(x):- s(x,y), not t(y)
- r(x):- s(x,y), r(y)

What is the translation of the rules for p and r into relational algebra?
Summary

• Datalog captures the core of many query languages:
 • Unions of conjunctive queries
 • Recursion
 • Negation

• The syntax for conjunctive queries is used for a number of different practical problems
 • Query optimization
 • Data integration
 • Data citation
 • ...

University of Pennsylvania