
Archiving Scientific Data

Susan	B.	Davidson	
CIS	700:	Advanced	Topics	in	Databases	

MW	1:30-3	

Towne	309	

	

http://www.cis.upenn.edu/~susan/cis700/homepage.html

• Data	changes	over	time	
• New	data	is	added	

• Mistakes	are	corrected	
• Old	data	is	removed	

• To	enable	reproducibility	and	verifiability,	it	must	be	
possible	to	access	the	state	of	a	database	as	of	a	
certain	point	in	time.	
• Also	crucial	for	dereferencing	citations	

• May	also	want	to	ask	questions	about	how	the	
database	has	changed.	

Why archive?

2	

• Many	databases	periodically	publish	new	versions		
• Keep	copy	of	each	version		

• Allows	data	as	of	a	certain	time	to	be	accessed	quickly		

• May	not	be	space	efficient	since	very	little	may	change	
between	versions	

• Doesn’t	allow	efficient	queries	over	the	change	history	

• Keep	a	log	of	changes	(“sequence	of	delta”)	
• Space	efficient	
• May	be	expensive	to	recompute	data	as	of	a	certain	time	

• May	be	expensive	to	query	change	history	

How to archive?

3	

• Versioning	and	citation:		experiences	with	eagle-i	
• Archiving	XML	datasets	
• Conclusions	

Outline

4	

• eagle-i	is	an	RDF	dataset	which	contains	information	
about	resources	for	translational	research	(e.g.	
software,	cell	lines,	lab	facilities)	

• Each	resource	has	an	immutable	eagle-i	id;	the	subject	
of	each	resource	triple	is	an	eagle-i	id	

• Resources	are	classified	using	an	ontology,	and	the	
citation	depends	on	the	classification	of	the	resource.		

• eagle-i	talked	about	citation	but	didn’t	automate	it…	

Our experience: eagle-i

5	

6	

7	

8	

Citation architecture

9	

• The	latest	copy	of	eagle-i	is	available	on	the	website,	
but	it	is	not	“versioned”	

• We	did	a	daily	download	since	we	didn’t	know	how	
frequently	it	changed	(not	frequently!)	

• Needed	“time	queries”	to	understand	how	the	dataset	
changed	over	time	
• What	triples	were	added/deleted	in	the	period	[t,	t’]?	

• What	was	the	object	of	triple	X	at	time	t?	

• When	was	triple	Y	first	added/deleted	

eagle-i versioning manager

10	

Example: versioning 2 RDF triples

11	

• When	should	versioning	be	triggered?	
• At	least	when	a	user	cites	an	eagle-i	resource	

• What	should	be	versioned?	
• At	least	changes	to	the	resource	being	cited.	

Ø If	a	version	of	a	resource	is	not	cited,	it	does	not	have	to	
be	stored.	

Ø However,	time-based	queries	will	only	detect	changes	
with	respect	to	citations	rather	than	all	changes.	

Versioning and citation

12	

• Versioning	and	citation:		experiences	with	eagle-i	
• Archiving	XML	
• Conclusions	

Outline

13	

• Keep	copy	of	each	new	version	of	the	database	
• Allows	data	as	of	a	certain	time	to	be	accessed	quickly		

• May	not	be	space	efficient	since	very	little	may	change	
between	versions	

• Doesn’t	allow	efficient	queries	over	the	change	history	

• Keep	a	log	of	changes	(“sequence	of	delta”)	
• Space	efficient	
• May	be	expensive	to	recompute	data	as	of	a	certain	time	

• May	be	expensive	to	query	change	history	

Recall: approaches to archiving

14	

• Ignores	the	“semantic	continuity	of	keys”	by	focusing	
on	minimal	edit	distance	

Problem with diff-based approaches

15	

• Focus	on	hierarchical	scientific	datasets	
• XML-based		
• Changes	are	primarily	insertions	

• Changes	identified	based	on	keys	
• Version	merging	based	on	keys	
• Inheritance	of	timestamps	

• Timestamp	is	stored	at	a	child	element	only	when	it	is	different	
from	the	timestamp	of	its	parent	element	

Ø “Key-based	+	merging”	approach	

Proposed approach in paper

16	

Example: sequence of versions

17	

Adding keys

18	

Example of an archive

19	

Representing archive in XML

20	

• A	key	has	form	(Q,	{P1,…,Pk}),	where	Q,	Pi	are	path	
expressions	
• Q	identifies	the	target	set	

• Pi	are	key	paths,	analogous	to	key	attributes	in	relations	

• An	XML	document	satisfies	a	key	(Q,	{P1,…,Pk})	if	
• From	any	node	identified	by	Q,	every	Pi	exists	uniquely	
• If	two	nodes	n1	and	n2	identified	by	Q	have	the	same	value	
at	the	end	of	each	key	path	in	{P1,…,Pk}	then	n1	and	n2	are	
the	same	node.	

What is a key for XML?

21	

• Since	XML	is	hierarchical,	we	also	need	to	specify	keys	
relative	to	a	context	node	
• (Q,	(Q’,	{P1,…,Pk}))	

• Examples	
• (/,	(db,	{})).	There	is	at	most	one	db	element	below	the	root.	

• (/db,	(dept,	{name})).	Every	dept	node	within	a	db	node	can	
be	uniquely	identified	by	the	contents	of	its	name	subelement.	

• (/db/dept,	(emp,	{fn,	ln})).	Every	emp	node	within	a	dept	node	
along	the	path	/db/dept	can	be	uniquely	identified	by	the	
contents	of	its	fn	and	ln	subelements.	

• (/db/dept/emp,	(sal,	{})).	There	is	at	most	one	sal	subelement	
under	each	emp	node	along	the	path	/db/dept/emp.	

Relative keys

22	

• Assumptions:	
• Every	key	defined	for	a	node	is	relative	to	its	parent,	e.g.	
the	key	for	emp	is	relative	to	its	parent	dept	node	

• Frontier	nodes	identify	unkeyed	portions	of	the	document	

Archiver architecture

23	

• Recursively	merge	nodes	in	the	incoming	version	(D)	to	nodes	in	the	
archive	(A)	that	have	the	same	key	value,	starting	from	the	root.	

• When	a	node	y	in	D	is	merged	with	a	node	x	from	A,	the	timestamp	of	x	is	
augmented	with	i	(the	new	version	number),	and	subtrees	are	recursively	
merged.	

• Nodes	in	D	that	do	not	have	nodes	in	A	are	simply	added	with	i	as	the	
timestamp	

Nested merge

24	

Further compaction under frontier node

25	

• What	is	the	database	at	t=1?			

• When	did	Joe	Doe	get	a	salary	raise?	

• What	were	the	changes	to	the	database	between	t=1	and	t=3?	

Querying the archive

26	

• Versioning	is	important	for	many	different	
applications	

• While	techniques	are	similar	between	different	
representations	(e.g.	files,	relations,	XML,	RDF),	
differences	in	assumptions	can	be	used	to	build	more	
efficient	solutions.	
• And	the	operations	(e.g.	queries)	you	wish	to	perform	are	
important	too!	

Conclusions

27	

